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Abstract

Translation quality could degrade non-
gracefully outside the desired domain for
MT. Meanwhile, translation requests are
often unknown and potentially out-of-
domain in practice. This paper shows that
having an ecosystem with a range of pre-
trained domain-specific MT systems can
reduce the effect: a translation task can
be out of scope of most pre-trained MT
systems, but a few others can be capable
of handling the task. But how to obtain
the best translation from an ecosystem for
such translation requests? We contribute
two frameworks to address the problem.
Experiments show that our frameworks
give the performance in the middle be-
tween top rank MT systems with reason-
ably large-scale ecosystems.

1 Introduction

Translation models have been developed under the
assumption that we know the domain at test time in
advance, and the domain is strictly relevant to our
training data. However, we inevitably will come
across test data that is sampled from a different dis-
tribution to our training data when using the mod-
els in the wild. Another critical thing is that the
domain of test data is often unknown in practice
(e.g. Google Translate and Microsoft Translators
receive translation requests from their users with-
out knowing in advance their interests).

We have not had a solution for this well-known
problem yet. Machine Translation (MT) has been
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advanced by new models, including using Neu-
ral Machine Translation (NMT) instead of Sta-
tistical Machine Translation (SMT). The hope is
that a better translation model would improve the
translation in all settings/situations. This, how-
ever, is not true. Translation quality could degrade
nongracefully outside the desired domain for both
NMT and SMT. In fact, it has been known that
NMT suffers even harder than SMT when the test
data is out-of-domain (Koehn and Knowles, 2017;
Chu and Wang, 2018). We also improve MT by
using domain adaptation methods (i.e. improving
translation system from having a small seed in-
domain data such as system interpolation, instance
weighting and data selection). In practice, this is
not a thorough solution because we do not know
the domain of user translation requests in advance.

The contribution of this work is to pro-
vide a simple, easy-and-fast-to-deploy, translation
model-agnostic1 solution to the challenging prob-
lem. Our approach is to construct an “ecosystem”
with a range of pre-trained domain-specific MT
systems, each specialized in a certain domain (e.g.
Speech, Financial, Food, etc.). Our intuition is
that having such an ecosystem could reduce the de-
crease in translation quality for an outside domain.
That is, an out-of-domain translation task can be
out of scope of most pre-trained MT systems in
the ecosystem. However, with the diversity of do-
mains in a reasonably large ecosystem, we hope
there is a chance to have certain pre-trained sys-
tems in the ecosystem that can be capable of han-
dling the task well. The larger our ecosystem is,
the more likely we have more capable pre-trained
MT systems to an out-of-domain task.

The next step is to work on an unsupervised

1We aim for a solution that works with both NMT, SMT or
other translation models.
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method that automatically finds the best transla-
tions from an ecosystem for every translation re-
quest from an unknown and out-of-domain trans-
lation task. This is surprisingly difficult. Creat-
ing a domain classifier for translation requests pro-
vides suboptimal performance, because the target
domain is unknown and out-of-domain. System
combination could degrade translation quality sub-
stantially, as the majority of pre-trained MT sys-
tems in the ecosystem are incapable of handling
the task. We propose two frameworks to address
the problem.

VOTING I involves two separate steps for han-
dling each translation request: First, the request
is translated by all pre-trained MT systems. Sec-
ond, the translation output that is most similar to
others is returned to the user. An agreement mea-
sure is proposed to calculate how similar transla-
tion outputs are. The intuition behind VOTING I
is that good translations may be similar to the oth-
ers. That is, because they are good translations,
they must be similar to translation references, and
therefore it is likely that they are similar to the oth-
ers as well.

VOTING II selects only a limited number of MT
systems for decoding. Decoding cost is thus sub-
stantially cheaper in VOTING II. The intuition be-
hind VOTING II is that MT systems that are good
in a domain tend to agree with each other. How-
ever, the expertise parameters of MT systems re-
garding to an unknown domain are hidden and we
thus do not know which MT systems we should
select. In VOTING II expertise parameters are ini-
tialized randomly and our heuristic learning algo-
rithm consequently updates the parameters during
translation. We note that VOTING II works with
the assumption that the translation requests would
be handled in sequential (not parallel). While this
is not true for all cases, it is true when we trans-
late request translations of large documents as one
task.

We conduct extensive experiments with
Spanish-English, French-English and German-
English to support our intuition. Experiments
show that VOTING I gives the performance in
between the top two systems for medium-scale
ecosystem, and in between the top three systems
for a large-scale ecosystem. VOTING II performs
substantially better than VOTING I and occasion-
ally reaches close to the top Rank 1 MT system
for medium-scale ecosystems. Our framework

is scalable and has promising applications to
large-scale online translation services.2

2 Related Work

This paper discusses a complementary problem to
domain adaptation: How to handle unknown and
out-of-domain translation tasks. Domain adapta-
tion has been an active topic of research for many
years. A survey of domain adaptation for MT can
be referred to (Chu and Wang, 2018; Cuong and
Sima’an, 2017). Within MT, but the domain of
the request is typically known in advance. do-
main adaptation can be regarded as injecting prior
knowledge about the target translation task into
learning.

Combination of in-domain data with a general-
domain system A common is approach is to
combine a system trained on the in-domain
data with a general-domain system (Koehn and
Schroeder, 2007; Farajian et al., 2017; Kobus et
al., 2017; Foster et al., 2010; Shah et al., 2010;
Bisazza et al., 2011; Sennrich, 2012b; Razmara
et al., 2012; Cuong and Sima’an, 2014a; Cuong
and Sima’an, 2015; Sennrich et al., 2013; Haddow,
2013; Hildebrand and Vogel, 2008; Joty et al.,
2015; Wang et al., 2018; Khayrallah et al., 2017;
Chen et al., 2017; Tars and Fishel, 2018) or to com-
bine the in-domain system with a system trained on
a selected subset (Axelrod et al., 2011; Duh et al.,
2013; Kirchhoff and Bilmes, 2014; Eetemadi et al.,
2015; Chen and Huang, 2016; Wang et al., 2018;
van der Wees et al., 2017; Cuong and Sima’an,
2014b).

Meta-information Prior knowledge may also lie
in meta-information about training data. This
could be document-annotated information (Eidel-
man et al., 2012; Hu et al., 2014; Hasler et
al., 2014; Zhang et al., 2014; Su et al., 2015),
and domain-annotated sub-corpora (Chiang et al.,
2011; Sennrich, 2012b; Chen et al., 2013; Kothur
et al., 2018; Michel and Neubig, 2018; Bapna and
Firat, 2019).

Other DA Topics Recent work also performs
adaptation by exploiting separate in-domain devel-
opment sets (Sennrich, 2012a; Carpuat et al., 2013;
Mansour and Ney, 2014; Clark et al., 2012; Wang
et al., 2012). Rewarding domain invariance is also

2The code can be downloaded at:
github.com/hoangcuong2011/UnsupervisedDomainAdaptation.

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 56



another approach to perform unsupervised adapta-
tion (Cuong et al., 2016). Combining several dif-
ferent Machine Translation outputs operating on
the same input is also a promising DA approach
(Jayaraman and Lavie, 2005; Hildebrand and Vo-
gel, 2008).

Using online methods for adapting MT sys-
tems in a scenario where human feedback (e.g.
post-edited MT output) is constantly returned has
been gaining interest recently (Ortiz-Martı́nez et
al., 2010; Koehn et al., 2014; Denkowski et al.,
2014; Bertoldi et al., 2014; Blain et al., 2015;
Ortiz-Martı́nez, 2016; Wuebker et al., 2016; Ka-
rimova et al., 2018). Using Bayesian models pro-
vides promising results for adapting MT systems
(e.g. see (Denkowski et al., 2014; Bertoldi et al.,
2014; Blain et al., 2015; Peris and Casacuberta,
2018)). Recently, deploying bandit learning algo-
rithms shows promising results for minimizing the
cost of human feedback for improving system per-
formance (e.g. see (Sokolov et al., 2015; Sokolov
et al., 2016; Sokolov et al., 2017; Nguyen et al.,
2017)).

3 Our Framework

Assume we are given a set of N pre-trained MT
systems mN

1 = {m1, m2, . . . , mN}. At test
time, our goal is to handle an unknown and out-of-
domain translation task: fK1 = {f1, f2, . . . , fK}.
Note that the requests may be submitted intermit-
tently by the user, which is common in practice
(e.g. as in web-based translation services).

3.1 Voting I
Our first proposed framework is VOTING I. It in-
volves two separate steps. First, each translation
request f is translated by all pre-trained MT sys-
tems. Second, the translation output produced by
an MT system that is most similar to others is re-
turned to the user. Note that this approach is quite
similar to (Macherey and Och, 2007), only that the
approach here is made to be symmetrical.

Technically, the agreement between two trans-
lation outputs em and e

m′ produced by two dif-
ferent MT systems m and m′ is calculated as
the arithmetic mean between BLEU+1(e, e′) and
BLEU+1(e′,e):

a(em, em′) =
BLEU+1(em, em′) + BLEU+1(em′, em).

2

Here, BLEU+1 (Lin and Och, 2004) is a variant
of BLEU for sentence-level assessment (Papineni

et al., 2002). Given that all N MT systems are
used to decode each translation request, the aver-
age agreement score between one translation out-
put em produced by an MT system m and all the
others produced by other MT systems m′ is calcu-
lated as:

a(em) =
∑

m′6=m

1

N − 1
a(em, em′). (1)

VOTING I simply uses the proposed agree-
ment measure to rank translation outputs. As dis-
cussed, our assumption is that good translations
(e.g. Book, Wikipedia) is likely to be similar to
the others. See Table 1 for a positive example we
obtain from our experiments with VOTING I .

3.2 Voting II
MT systems can generate similar translations by
chance. We show such an example we obtain from
our experiments with VOTING I in Table 2 (on the
left). There are also cases of “black sheep”: a very
good translation may be too different from the oth-
ers. Table 2 (on the right) shows such an exam-
ple. VOTING I is not able to handle these issues.
Applying VOTING I is expensive regarding the de-
coding cost.

How to address these issues? In our refined
framework – VOTING II, we introduce a set of
expertise parameters of all MT systems: ΘN

1 =
{θm1 , θm2 , . . . , θmN }. Here, expertise parameter
θm represents how suitable a systemm to a certain
domain. VOTING II simply selects only the top M
MT systems with the highest expertise parameters,
instead of using all N MT systems for decoding
each translation request. In our experiments, we
set M = 3.

VOTING II addresses the shortcomings of VOT-
ING I as follows:

• (1) VOTING II explicitly filters bad MT sys-
tems for a certain domain;

• (2) VOTING II ranks translation outputs ac-
cording to a sum of a(em) + θm instead of
only a(em) as in VOTING I;

• and (3) the decoding cost is substantially re-
duced (with a ratio of (N −M)/N ). As dis-
cussed, VOTING II works with the assump-
tion that the translation requests would be
handled in sequential and not parallel (e.g.
we translate request translations of large doc-
uments as one task).
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Medicine Input: aliments et boissons abilify peut se prendre pendant ou en dehors des repas .
Reference: taking abilify with food and drink abilify can be taken regardless of meals .

MT System Score Translation Output
Book 0.70 food and drink abilify can take during or outside meals .
Speech 0.64 food and drink abilify can take yourself for or outside meals .
IT 0.45 aliments and boissons abilify might take in or out of meal .
Bank 0.58 foods and beverages abilify may take during or outside the repas .
News 0.65 foods and drinks abilify can take during or outside the meal .
Wikipedia 0.69 food and drink abilify can be take during or outside the meal .
Legal 0.52 feedingstuffs and beverages abilify may be taken during or outside the meals .
Europarl 0.65 food and drink abilify can take over or outside meals .
Subtitles 0.58 aliments and drinks abilify can take for or out the food .

Table 1: Positive example with VOTING I: Good translations (e.g. Book, Wikipedia) tend to be similar to the others.

Medicine Input: resume des caracteristiques du produit Input: étiquetage et notice
Reference: summary of product characteristics Reference: labelling and package leaflet

MT System Score Translation Output Score Translation Output
Book 0.62 resume of product characteristics 0.30 labelling and package leaflet
Speech 0.78 resume of caracteristiques of the product 0.53 étiquetage and warning
IT 0.77 resume of caracteristiques the product 0.53 tag and notice
Bank 0.46 summary of characteristics of product 0.74 étiquetage and notice
News 0.78 resume of caracteristiques of the product 0.74 étiquetage and notice
Wikipedia 0.74 resume the caracteristiques of the product 0.74 étiquetage and notice
Legal 0.69 resume of the characteristics of the product 0.36 labelling and document
Europarl 0.70 resume the caracteristiques product 0.74 étiquetage and notice
Subtitles 0.63 resume some caracteristiques the product 0.74 étiquetage and notice

Table 2: Two negative examples with VOTING I. On the left: bad translations (e.g. IT, Wikipedia, Speech) are also similar to
the others by chance. On the right: a case of “black sheep”: a very good translation (Book) is too different from the others.

Of course the expertise parameters of MT sys-
tems are hidden. The question is how to learn
them? The intuition behind VOTING II is that MT
systems that are good in a certain domain are likely
to agree with each other.

Two models are proposed in this paper to im-
plement the idea. They are in the same spirit: the
expertise parameter of each system m is sampled
from a posterior distribution πm(θ): θm ∼ πm(θ).
Our heuristic learning algorithm starts in a naive
state, and we do not have any a-priori preference
for one system over another. The algorithm con-
sequently updates the parameters of the posterior
distribution πm(θ) based on agreement scores for
translation outputs produced by system m. The
proposed models use different posterior distribu-
tions π(θ) for sampling θ. Our goal of proposing
different models is to investigate which one that
addresses the problem best.

Figure 1 illustrates the framework.

3.2.1 Voting II Real

Our first model (VOTING II - REAL) uses nor-
mal distribution to sample expertise parameters.
Let us assume a sample of agreement scores from
all translation outputs produced by an MT system
m as Am = {a1, a2, . . . , a|Am|}. Here, |Am| de-
notes the sample size. Let us denote the sample
mean and sample variance as µ̄m and δ2

m.
In VOTING II - REAL, we assume (by way of

the Central Limit Theorem) that the expertise pa-
rameter of systemm is approximately normal with
mean µ̄m and variance δ2

m/|Am|:

θm ∼ N (µ̄m, δ
2
m/|Am|). (2)

We propose a heuristic algorithm for learning
expertise parameters in VOTING II - REAL:

• Given each translation request f , expertise pa-
rameter is first drawn from the posterior distri-
bution for each MT system.
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1 2 3 4 5

e1 e2 e4

θ1 ∼ π1(θ) θ2 ∼ π2(θ) θ3 ∼ π3(θ) θ4 ∼ π4(θ) θ5 ∼ π5(θ)

a(e1) a(e2) a(e4)

Sample Expertise Parameters

Select Top Systems

Perform Translation

Compute Agreement Score

Return em̂, with m̂ = argmax
m=1,2,4

a(em) + θm, and up-

date posterior distributions πm(θ) for selected systems

Figure 1: The setup of VOTING II for N = 5. Expertise θ is sampled from posterior distribution π(θ) for each system, and
three systems are selected. Here we assume the top 3 systems arem1,m2 andm4. Then, agreement scores for their translations
are calculated. The translation with the highest agreement is returned. Finally, the posterior distributions are updated for all
three selected systems.

• Select top three MT systems m, m′ and m′′

with the highest expertise parameters and de-
code translation request f . Let us assume trans-
lation outputs are as em, e

m′ and e
m′′ respec-

tively.

• Compute a(em), a(e
m′) and a(e

m′′).

• Add a(em) to Am, a(e
m′) to A

m′ and a(e
m′′)

to A
m′′. Update sample mean µ̄m and sample

variance δ2
m for Am, A

m′ and A
m′′.

Analysis: MT systems are promoted/demoted ex-
plicitly during learning. A high agreement score
increases the sample mean for a promoted system,
while a low agreement score decreases the sample
mean for a demoted system. A promoted system
becomes more likely to be selected in later rounds,
but it is not the case for a demoted system.

The chance of being selected for MT systems
also depends on variance for sampling expertise
parameters. The variance effect decreases with
sample size |A|. This reflects that the learning be-
comes gradually more confident about its estimate
of expertise parameters.

3.2.2 Voting II Binary
Our second model (VOTING II - BINARY) uses

Beta distribution to sample expertise parameters.
The parameters of the posterior distribution is up-
dated based on a simplified outcome of agreement
scores, which has only two values: [0, 1] (i.e.
SUCCESS/FAILURE). This is done by perform-
ing a Bernoulli trial with success probability ex-
actly as the agreement score.

Let us assume a sample of simplified agreement
scores from all translation outputs produced by an

MT system m as Ām = {ā1, ā2, . . . , ā|Ām|}. For
this sample, we focus on the numbers of SUC-
CESSes/FAILUREs instead of the sample mean
and sample variance. Let us denote the numbers
as Sm and Fm.

In VOTING II - BINARY, we assume that for a
sample of simplified agreement scores Ā, the num-
ber of SUCCESSes is the output of a Binomial
probability distribution with |Ā| Bernoulli trials
with success probability exactly as expertise pa-
rameter θ. We also use the Beta distribution with
two hyper-parameters α and β for priors for the ex-
pertise parameter θ in VOTING II - BINARY, main-
taining uncertainty over their values.

This results in a Beta-Binomial model for VOT-
ING II - BINARY: the expertise parameter θm of
each MT system m is sample from a Beta distribu-
tion with hyper-parameters Sm + α and Fm + β:

θm ∼ Beta(Sm + α, Fm + β). (3)

In our experiments we set α = β = 1 for every
MT system.

Our heuristic algorithm for learning expertise
parameters in VOTING II - BINARY is in the same
spirit as in VOTING II - REAL. Given a translation
request f , expertise parameters are drawn from the
posterior distributions, and top three MT systems
m, m′ and m′′ with the highest expertise parame-
ters are selected to decode f . This results in dif-
ferent translation outputs em, e

m′ and e
m′′ respec-

tively. The update is as follows:

• Compute a(em), a(e
m′) and a(e

m′′).

• Sample ā(em), ā(e
m′) and ā(e

m′′) from
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Bernoulli trials with success probability exactly
as a(em), a(e

m′) and a(e
m′′) respectively.

• Add ā(em) to Ām, ā(e
m′) to Ā

m′ and ā(e
m′′) to

Ā
m′′. Update for Sm and Fm for Ām, S

m′ and
F
m′ for Ā

m′, Sm′′ and F
m′′ for Ā

m′′.

Analysis: MT systems are promoted/demoted ex-
plicitly during learning: the posterior Beta(S+1+
α, F +β) has a higher mean than Beta(S+α, F +
β) and the posterior Beta(S + α, F + 1 + β) has a
lower mean than distribution Beta(S + α, F + β).

Both Beta(S + 1 + α, F + β) and Beta(S +
α, F + 1 + β) have a lower variance than distri-
bution Beta(S + α, F + β). The variance effect
thus also decreases with sample size |Ā|.

4 Experiment Design

We conduct experiments with three language pairs:
Spanish-English, French-English and German-
English. We create different translation ecosys-
tems with a large number (from 6 to 10) of domain-
specific MT systems for experiments. Our experi-
ments are extensive with 23 translation tasks in to-
tal, which are unknown and out-of-domain. Note
that we use NMT for one language pair and SMT
for the rest, and the motivation behind this deci-
sion is simply that training SMT is somewhat eas-
ier than NMT for us.

4.1 Domain-specific MT system

Spanish-English: Our MT system is an attention-
based Neural MT system (Bahdanau et al., 2015)
for English-Spanish. We use Nematus (Sen-
nrich et al., 2016; Sennrich and Haddow, 2016)
with 512-dimensional word embeddings and lay-
ers. We use a vocab size of 50K for both the
source and target languages. The vocabulary con-
tains the top word types from all domains com-
bined, and we train on sentences up to length 50.
Pervasive dropout (Gal and Ghahramani, 2015) is
applied to all vertical and recurrent connections,
but not on word types. We optimize MT systems
using Adam (Kingma and Ba, 2014) with a learn-
ing rate of 0.0001 and use early-stopping to pre-
vent over-fitting. Translations are obtained using
beam search with a beam of size 12.

We create a medium scale translation ecosys-
tem with 6 different domain-specific Neural MT
systems for Spanish-English. Each MT system is
trained on a domain-specific dataset consisting of
250K sentence pairs, which is taken from OPUS.

The system is tuned on an in-domain devset with
3K sentence pairs. The domains are: Subtitles
(Domain 1), Wikipedia (Domain 2), Medicine (Do-
main 3), Legal (Domain 4), News (Domain 5),
and Speech (Domain 6). Each domain has an in-
domain test set with 3K sentence pairs as transla-
tion task.
French-English: The scale of our ecosystem is in-
creased to 10 instead of 6 for experiments with
French-English, Our MT systems are with SMT
instead of Neural MT systems. Each SMT sys-
tem is a standard phrase-based approach (Koehn et
al., 2003). The language model is a 4-gram model
with Kneser-Ney smoothing, estimated by KenLM
(Heafield et al., 2013) from in-domain monolin-
gual corpus. We use the k-best batch MIRA to
tune MT systems (Cherry and Foster, 2012). Fi-
nally, the decoder is MOSES (Koehn et al., 2007).

Each domain-specific SMT system is trained on
a domain-specific dataset consisting of 250K sen-
tence pairs, and tuned on an in-domain devset with
3K sentence pairs taken from OPUS. The domains
are: Book (Domain 1), Speech (Domain 2), IT
(Domain 3), Bank (Domain 4), News (Domain 5),
Medicine (Domain 6), Wikipedia (Domain 7), Le-
gal (Domain 8), European Parliament (Domain 9),
Subtitles (Domain 10). Similarly, each domain has
an in-domain test set with 3K sentence pairs as
translation task.
German-English: Domain-specific MT systems
are constructed differently for German-English.
We first train an SMT system on a dataset con-
sisting of 4.1M sentence pairs released for WMT
2015 Shared Task. We then optimize the system
over 7 different domain-specific devsets with dif-
ferent domains taken from TAUS. The domains
are: Consumer Electronics (Domain 1), Hardware
(Domain 2), Industrial Electronics (Domain 3),
Legal (Domain 4), Professional & Business (Do-
main 5), Software (Domain 6), Retail Distribution
(Domain 7).

The agreement degree between domain-specific
MT systems for our German-English translation
ecosystem for the pair is expected to be signifi-
cantly higher than for the other cases.

4.2 Translation Task

Given each translation ecosystem, we are given
one task out of the N translation tasks at test time.
We evaluate how do we obtain translation quality
from an ecosystem with range of remaining N − 1
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Spanish-English

Tasks Reference Avg. Rank 2 Rank 1 VOTE I VOTE II
MT1 MT2 MT3 MT4 MT5 MT6 REAL BIN.

Task 1 − 14.3 2.2 2.8 22.5 19.4 15.1 19.4 22.5 20.4 22.4 22.1
Task 2 7.0 − 6.2 13.6 31.0 20.3 14.1 20.3 31.0 26.6 29.9 29.5
Task 3 2.3 21.0 − 20.7 17.8 11.3 14.6 20.7 21.0 22.8 23.1 23.0
Task 4 2.7 25.6 8.0 − 22.1 15.1 14.7 22.1 25.6 23.9 24.7 24.4
Task 5 7.6 27.6 4.9 10.9 − 22.6 14.7 22.6 27.6 25.6 26.6 26.6
Task 6 16.1 24.8 4.8 7.2 29.0 − 16.4 24.8 29.0 26.8 26.7 28.2

Table 3: Results for Spanish-English experiments.

French-English

Tasks Reference Avg. Rank 3 Rank 2 Rank 1 VOTE I VOTE II
MT1 MT2 MT3 MT4 MT5 MT6 MT7 MT8 MT9 MT10 REAL BIN.

Task 1 − 9.6 6.3 9.8 12.2 8.7 11.5 11.7 13.9 5.7 9.9 11.7 12.2 13.9 12.7 13.0 12.5
Task 2 18.3 − 14.8 13.3 27.3 11.4 21.4 10.7 22.3 20.2 17.7 21.4 22.3 27.3 22.5 23.1 23.0
Task 3 16.9 22.9 − 15.6 19.6 14.1 19.9 12.5 17.5 16.1 17.2 19.6 19.9 22.9 19.2 19.2 20.5
Task 4 33.9 21.9 21.5 − 29.0 22.9 26.2 35.0 34.2 11.3 26.2 33.9 34.2 35.0 30.2 29.0 30.3
Task 5 16.0 20.7 11.2 13.2 − 10.7 18.4 12.0 17.9 12.9 14.8 17.9 18.4 20.7 17.5 17.8 16.9
Task 6 26.7 22.5 21.6 24.7 26.9 − 25.0 21.8 22.3 16.8 23.1 25.0 26.7 26.9 25.9 26.2 25.9
Task 7 15.8 18.8 14.1 15.6 20.8 14.9 − 14.8 17.8 14.9 16.4 17.8 18.8 20.8 18.6 19.4 18.1
Task 8 31.4 15.8 11.0 27.3 22.3 15.2 23.6 − 29.4 18.8 20.8 27.3 29.4 31.4 26.6 24.9 27.9
Task 9 21.4 15.1 7.6 15.7 19.5 8.4 16.4 14.8 − 8.6 14.2 16.4 19.5 21.4 19.3 18.9 19.5

Task 10 12.0 23.3 10.7 9.6 22.8 8.3 16.9 8.4 17.3 − 14.4 17.3 22.8 23.3 17.5 17.6 15.5

Table 4: Results for French-English experiments.

pre-trained domain-specific systems.

5 Results

5.1 Ecosystem Performance
We first investigate how well the ecosystems han-
dle unknown and out-of-domain translation tasks.
Tables 3, 4 and 5 present the results (in BLEU).
Note that:

• AVG: average of BLEU score of MT systems

• Rank 3, Rank 2, Rank 1: top 3 MT systems

• Vote I: VOTING I method

• Vote II Real: VOTING II method with real re-
ward

• Vote II Bin: VOTING II method with binary
reward

As expected, translation quality degrades sub-
stantially for most pre-trained MT systems given
such a translation task. The Subtitle-adapted MT
system for Spanish-English (MT 1 - Tables 3) is a
notable example to raise the issue: the translation
accuracy substantially drops for the other out-of-
domain translation tasks (i.e. Task 2 (Wikipedia):
7.0 BLEU score, Task 3 (Medicine): 2.3 BLEU
score, Task 4 (Legal): 2.7 BLEU score, Task 5
(News): 7.6 BLEU score, Task 6 (Speech): 16.1
BLEU score).

However, the degradation of each pre-trained
MT system is different from the others. For exam-
ple, the Speech-adapted MT system for Spanish-
English (MT 6 - Tables 3) drops their perfor-
mance significantly for only Task 3 (Medicine)
(11.3 BLEU score) and Task 4 (Legal) (15.1 BLEU
score). The Speech-adapted MT system is capable
of handling other out-of-domain translation tasks
(i.e. Task 1 (Subtitles): 19.4 BLEU score, Task
2 (Wikipedia): 20.3 BLEU score, Task 5 (News):
22.6 BLEU score).

For 23 out-of-domain translation tasks in total,
our results show that despite the translation quality
substantially drops for most pre-trained MT sys-
tems, a few pre-trained MT systems are still com-
petitive to handle the tasks. In 21/23 cases, top
MT systems with respect to a certain translation
task are still able to handle the task well.3

This supports our claim: Having a large-scale
ecosystem of pre-trained MT systems is very use-
ful for handling out-of-domain tasks in practice.
But is it possible to gain competitive performance
to top rank MT systems from ecosystem of pre-
trained domain-specific systems for unknown and
out-of-domain translation tasks? Our experiments
show that it is possible with our proposed frame-
works.

3For convenience, we set a BLEU threshold (20) to decide if
the MT quality is good or not. In practice, it should not be a
good idea to have such a fixed threshold for any domain.
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German-English

Tasks Reference Avg. Rank 2 Rank 1 VOTE I VOTE II
MT1 MT2 MT3 MT4 MT5 MT6 MT7 All REAL BIN.

Task 1 − 22.9 23.1 19.8 18.9 23.2 23.0 21.8 23.1 23.2 23.0 23.0 23.0
Task 2 20.2 − 20.5 19.7 19.0 20.8 20.7 20.2 20.7 20.8 20.7 20.7 20.7
Task 3 20.7 20.9 − 18.1 17.4 21.1 20.7 19.8 20.9 21.1 21.0 20.2 20.9
Task 4 28.5 29.0 28.9 − 28.5 29.5 29.4 29.0 29.4 29.5 29.4 29.4 29.3
Task 5 12.6 13.8 13.7 14.8 − 13.4 13.4 13.6 13.8 14.8 13.6 13.6 13.6
Task 6 21.8 23.3 23.2 20.8 20.8 − 22.8 22.1 23.2 23.3 23.0 23.1 23.0
Task 7 32.3 33.5 33.5 28.2 28.2 33.0 − 31.5 33.5 33.5 33.2 33.4 33.3

Table 5: Results for German-English experiments.

Spanish-English

Tasks MIN SC Avg. DC Avg. VOTE I VOTE II
All TRs REAL BIN.

Task 1 2.2 10.9 15.1 18.6 21.0 20.4 22.4 22.1
Task 2 6.2 15.2 14.1 15.7 25.7 26.6 29.9 29.5
Task 3 2.3 18.4 14.6 15.2 20.9 22.8 23.1 23.0
Task 4 2.7 13.9 14.7 13.5 23.9 23.9 24.7 24.4
Task 5 4.9 14.0 14.7 17.3 25, 1 25.6 26.6 26.6
Task 6 4.8 17.0 16.4 18.2 26, 9 26.8 26.7 28.2

Table 6: A detailed comparison for other baselines (SC:
System Combination, DC: Domain Classification, Avg. TR:
Average baseline between top rank MT systems (Rank 1 and
Rank 2) for Spanish-English.

5.2 Our Framework Performance
Tables 3, 4 and 5 present the results. Note that
our models are stochastic, and results for our ex-
periments are averaged among 20 runs. The main
findings are:

VOTING I substantially outperforms Rank 2 for
all cases for Spanish-English. It outperforms Rank
3 for 6/10 tasks for French-English. We would like
to emphasize that: (1) this performance is obtained
without any knowledge about translation task; and
(2) the gap between the best and the worst MT
systems for each task in ecosystems is huge (i.e.
usually around +20 BLEU score). This validates
the idea behind VOTING I: Good translations are
likely to be similar to the others.

We perform System Combination (SC) by en-
sembling all NMT systems for the tasks. SC rather
gives a poor performance in our setting (Table 6).
We should emphasize that the result is rather ex-
pected: SC degrades translation quality substan-
tially because most pre-trained MT systems in the
ecosystem are incapable of handling the task.4

We also create a simple domain classifier (DC)
for translation requests: We train different in-
domain language models from in-domain mono-
4We should also note that interpolating all SMT systems gives
a rather poor performance as well. This is because of the same
reason: most pre-trained MT systems in the ecosystem are
incapable of handling the task. We did not report the results
here due to space constraints.

lingual corpora, and perform a search to select
an MT system from the ecosystem based on their
language model probability of each translation re-
quest: m̂ = argmax

m=1,...,N
Pm(f). DC also rather gives

a poor performance in our setting (Table 6). It out-
performs the average baseline (Avg. All) in most
cases, but its performance is far behind the middle
of top rank MT systems (Avg. TRs). The result is
unsurprising: it is hard to expect a domain classi-
fier for translation requests provides robust perfor-
mance for target domain that is not only unknown
but also out-of-domain.

Interestingly, VOTING I gives the performance
at least in the middle between Rank 1 and Rank 2
in 5/6 tasks for Spanish-English, except only Task
1. Meanwhile, the performance is at least in the
middle between Rank 1, Rank 2 and Rank 3 in
3/10 tasks for French-English.

VOTING II - REAL and VOTING II - BINARY
perform better than VOTING I for 5/6 tasks for
Spanish-English. All these frameworks perform
substantially better (at least +1.0 BLEU score)
than VOTING I in 4 cases (Tasks 1, 2, 3 and 5). For
French-English, VOTING II - REAL and VOTING

II - BINARY perform at least compatible to VOT-
ING I for 6/10 tasks. Each of these frameworks
performs better than VOTING I for 4/10 tasks.

The results validate the idea behind VOTING II:
MT systems that are good in a domain tend to
agree with each other.

VOTING II - REAL usually performs better
than VOTING II - BINARY. This is reasonable as
in VOTING II - BINARY, model parameters are
updated based on simplified outcome of the agree-
ment scores instead of the agreement scores.

Despite having a different set up for construct-
ing domain-specific MT systems, all our observa-
tions are also confirmed for German-English as in
Table 5. VOTING I gives the performance in the
middle between Rank 1 and Rank 2 in 6/7 tasks,

Proceedings of MT Summit XVII, volume 1 Dublin, Aug. 19-23, 2019 | p. 62



except only Task 5. VOTING II provides compat-
ible performance to VOTING I. This is reasonable
as when MT systems are close to the others regard-
ing their translation quality, the benefits of reduc-
ing the decoding cost is what VOTING II is ex-
pected to provide. It is worthy to emphasize that
our VOTING frameworks still outperform the aver-
age baseline significantly.

5.3 Disadvantage of our method
While the result from our method is impressive, we
should be clear about its disadvantage. We found
that:

• A generic system trained with all the training
data of the different domains normally pro-
duces significantly better performance than
what our framework provides.

• An indomain MT system trained on in-
domain training data normally produces sig-
nificantly better performance than what our
framework provides as well.

Improving our framework to make it work compat-
ible to those stronger baselines is a goal of future
research.

6 Conclusion

This work shows that having an ecosystem of pre-
trained domain-specific MT systems is not only ef-
ficient for in-domain translation tasks, but could
be also very useful for out-of-domain translation
tasks. More specifically, we show that an out-
of-domain translation task can be out-of-scope
of most pre-trained adapted MT systems in the
ecosystem, but a few others can be still very ca-
pable of handling the task. We conduct exten-
sive experiments with different scale (from 6 to
10) ecosystems of pre-trained MT systems to sup-
port our claim. We also contribute two frame-
works that gain competitive performance to top
rank MT systems from ecosystem of pre-trained
domain-specific systems for unknown and poten-
tially out-of-domain translation tasks. We hope our
study fills an important gap in the domain adapta-
tion literature: making translation ecosystems with
domain-adapted MT systems capable of handling
unknown and out-of-domain tasks.
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