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Abstract
A lot of the decision making in financial insti-
tutions, regarding particularly investments and
risk management, is data-driven. An important
task to effectively gain insights from unstruc-
tured text documents is text classification and
in particular sentiment analysis. Sentiment
lexicons, i.e. lists of words with corresponding
sentiment orientations, are a very valuable re-
source to build strong baseline models for sen-
timent analysis that are easy to interpret and
computationally efficient. We present a novel
method to learn classification lexicons from a
labeled text corpus that incorporates word sim-
ilarities in the form of pre-trained word em-
beddings. We show on two sentiment analy-
sis tasks that utilizing pre-trained word embed-
dings improves the accuracy over the baseline
method. The accuracy improvement is partic-
ularly large when labeled data is scarce, which
is often the case in the financial domain. More-
over, the new method can be used to generate
sensible sentiment scores for words outside the
labeled training corpus.

1 Introduction

A vast amount of information in business and es-
pecially in the finance area is only available in
the form of unstructured text documents. Auto-
matic text analysis algorithms are increasingly be-
ing used to effectively and efficiently gain insights
from this type of data. A particularly important
text analytics task is document classification, i.e.
the task to assign a document to a category within
a set of pre-defined categories. For example, an-
nual reports, news articles and social media ser-
vices like twitter provide textual information that
can be used in conjunction with structured data
to quantify the creditworthiness of a debtor. To
give another example, intelligent process automa-
tion may require the categorization of documents

to determine the process flow. In both cases, sound
text classification algorithms help saving costs and
efforts.

To tackle the problem of document classification,
classical methods combine hand-engineered fea-
tures, e.g. word-count based features, n-grams,
part-of-speech tags or negations features, with a
non-linear classification algorithm such as Support
Vector Machine (Joachims, 1998). A detailed sur-
vey of classical sentiment analysis models, a spe-
cial case of text classification, has been compiled
by Pang et al. (2008) and Liu (2012).

Since the reign of deep learning, various neural
network architectures such as convolutional neu-
ral networks (CNN) (Kim, 2014; dos Santos and
Gatti, 2014), character level CNNs (Zhang et al.,
2015), recursive neural networks (Socher et al.,
2013), recurrent neural network (RNN) (Wang
et al., 2015; Liu et al., 2016) and transformers
(Vaswani et al., 2017) have been utilized in text
classification models to yield state-of-the-art re-
sults.

Recently, a steep performance increase has been
achieved by very large pre-trained neural lan-
guage models such as ELMo (Peters et al., 2018),
BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019) and more (Howard and Ruder, 2018; Rad-
ford et al., 2018; Akbik et al., 2018). These mod-
els generate powerful text representations that can
be either used as context-aware word embeddings
or the models can be directly fine tuned to specific
tasks.

One disadvantage of these pre-trained language
models, however, is the high demand of mem-
ory and computing power, e.g. a sufficiently large
GPU to load the large models. In finance, many
documents that can be the subject of text classi-
fication applications (e.g. annual reports or leg-



islative documents), are very large, so that the
computational cost becomes very relevant. An-
other disadvantage is that because of their com-
plexity, many state-of-the-art deep learning mod-
els are hard to interpret and it is very difficult to re-
trace the model predictions. Model interpretabil-
ity, however, seems to be particularly important
for many financial institutions and interpretable
models with transparent features are often favored
over more complex models even if the complex
models are more accurate.

A powerful resource for building interpretable
text classification models are classification lexi-
cons and in particular sentiment lexicons. A senti-
ment lexicon is a list of words (or n-grams) where
each word is assigned a sentiment orientation. The
sentiment orientation can be binary, i.e. each word
in the lexicon is labeled as positive or negative, or
continuous where a continuous sentiment score is
assigned to the words (e.g. in the interval [-1, 1]).
More generally, a classification lexicon is a list of
words where each word is assigned a vector with
one score for each class.

Sentiment lexicons have been an integral part of
many classical sentiment analysis classifiers (Mo-
hammad et al., 2013; Vo and Zhang, 2015). Ap-
proaches based on sentiment lexicons seem to be
particularly popular in the finance domain (Kear-
ney and Liu, 2014). In addition, it has been
shown that even modern neural network models
can profit from incorporating sentiment lexicon
features (Teng et al., 2016; Qian et al., 2016; Shin
et al., 2016). Using classification lexicon features
can be thought of as a way of inducing external
information that has been learned from different
data sets or compiled by experts.

Three approaches to sentiment lexicon generation
are usually distinguished in the literature, namely
the manual approach, the dictionary-based ap-
proach and the corpus-based approach, see for
example (Liu, 2012, Chapter 6). A popular
finance specific lexicon has been compiled by
Loughran and McDonald (2011) from 10-K fill-
ings , but see also the General Inquirer (Stone
et al., 1962) and the Subjectivity Lexicon (Wilson
et al., 2005).

Fairly recently, models have been designed to gen-
erate sentiment lexicons from a labeled text cor-
pus. In many cases distant supervision approaches

are employed to generate large amounts of labeled
data. For example, Mohammad and Turney (2013)
compiled a large twitter corpus where noisy labels
are inferred from emoticons and hashtags. Count-
based methods such as pointwise mutual informa-
tion (PMI) generate sentiment scores for words
based on their frequency in positive and negative
training sentences (Mohammad and Turney, 2013;
Kiritchenko et al., 2014).

A more direct approach to learn sentiment lexi-
cons from labeled corpora is to use supervised ma-
chine learning. The basic idea is to design a text
classification model that contains a parametrized
mapping from word token to sentiment score and
an aggregation of word-level sentiment scores
to document scores. The parametrized mapping
which yields the sentiment lexicon is learned dur-
ing training. Severyn and Moschitti (2015) pro-
posed a linear SVM model and showed that the
machine learning approach outperforms count-
based approaches. A simple linear neural network
model has been proposed by Vo and Zhang (2016).
A similar model with a slightly more complex neu-
ral network architecture is used by Li and Shah
(2017). They use data from StockTwits, a social
media platform designed for sharing ideas about
stocks, which they also use to generate sentiment-
specific word embeddings.1 Pröllochs et al. (2015)
design a linear model and add L1 regularization
to optimally control the size of the sentiment lexi-
cons.

We see two main challenges for the generation of
new domain specific classification lexicons via a
pure supervised learning approach.

• The generation of robust classification lex-
icons requires large amounts of supervised
training data. Manual labeling of data is very
expensive and a distant (or weak) labeling ap-
proach may not be possible for all applica-
tions.

• Using small or medium size supervised train-
ing data, one may encounter many words at
prediction time that are not part of the train-
ing corpus.

1The objective of sentiment-specific word embeddings,
first proposed by Maas et al. (2011), is to map words (or
phrases) close to each other if they are both semantically sim-
ilar and have similar sentiment. A sentiment lexicon could be
considered as one-dimensional or two-dimensional word em-
beddings.



To tackle these problems, we propose a novel su-
pervised method to generate classification lexi-
cons by utilizing unsupervised data in the form
of pre-trained word embeddings. This approach
allows to build classification lexicons with very
small amounts of supervised data. In particular,
it allows extending the classification lexicon to
words outside the training corpus, namely to all
words in the vocabulary of the pre-trained word
embedding.

The remainder of this paper is structured as fol-
lows. Section 2 gives a short introduction to
supervised learning of classification lexicons in
general and then introduces the novel model ex-
tension to utilize pre-trained word embeddings.
We show empirically in Section 3 that the use
of pre-trained word embeddings improves predic-
tion accuracy and generates better classification
lexicons. The accuracy improvement is partic-
ularly large for small training data sets. In ad-
dition, we show that the model generates sensi-
ble word-level class scores for words that are not
part of the training data. For the experiments we
use the popular SST-2 sentiment analysis dataset
which is part of the GLUE benchmark and a new
dataset of manually labeled financial newspaper
headlines. In Section 4 we describe how a mod-
ification of the proposed method can be applied to
hierarchical (multi-level) document classification
and supervised sentence highlighting in large doc-
uments.

2 Methodology

The goal is to learn a classification lexicon, that
is, for a given set of word tokens (or n-grams)
D = {x(l)}Ll=1, the task is to learn a domain spe-
cific function s : D → RC that assigns each to-
ken a vector of class scores. The resulting clas-
sification lexicon L is then defined as the set of
tuples consisting of tokens x(l) and corresponding
C-dimensional class scores sl,

L = {(x(1), s1), . . . , (x(L), sL)}. (1)

In the specific case of sentiment analysis, the
function s may be two-dimensional with chan-
nels for positive and negative sentiment or higher-
dimensional in order to represent fine-grained nu-
ances of sentiment.

For supervised learning of the classification lexi-
con, a data set with labeled text sentences is used,
i.e. a data set D = {(tn, yn)}Nn=1 that consists of
sentences (or other pieces of text) tn with corre-
sponding class label yn ∈ {1, . . . , C}. In this set-
ting, the overall idea is to design a classification
model that consists of an elementwise mapping s
from word token to word-level class scores and a
function f that aggregates the word class scores to
sentence-level class probabilities,

p(t) = f
(
s(x1), s(x2), . . . , s(x|t|)

)
, (2)

with p ∈ [0, 1]C and |t| denotes the number of
words in sentence t. The objective is to learn the
functions s and f such that the model as accu-
rately as possible predicts the sentence class labels
of the training data. The learned function s then
yields the mapping to generate the classification
lexicon.

Note that this is a special case of a more general
class of hierarchical (multi-level) text classifica-
tion models that generate class scores for low-level
segments and then aggregate these scores to pro-
duce document-level classifications. This is dis-
cussed in more detail in Section 4.

In order to assure that the learned function s ac-
tually produces sensible word-level class scores,
the following two conditions have to be ful-
filled.

• The function s(x) that maps a token to a class
score must not depend on context, i.e. each
word token in the lexicon must be mapped to
a unique class score value. If the mapping
was context dependent, then a single word
might be assigned to multiple class scores.

• The aggregation function f must be designed
such that the predicted sentence-level class
probabilities have a clear dependence on the
word-level class scores. In particular, an
increase in a certain word-level class score
must ceteris paribus increase the sentence-
level probability for this class (more than for
any other class). That is, for each sentence
t, each class c′ 6= c ∈ {1, . . . , C} and each
token x ∈ t,

∂pc(t)

∂sc(x)
>
∂pc′(t)

∂sc(x)
. (3)

To design a model instance in this general setting



one has to specify the mapping s(x) and the func-
tion f from Eq. (2) such that the above conditions
are satisfied.

2.1 Baseline

Arguably the simplest instance of the described
approach, which we use as our baseline model, is
to use as function s a direct mapping and as aggre-
gation function f a simple averaging followed by
a softmax function. Very similar models have been
proposed in previous works (Severyn and Mos-
chitti, 2015; Pröllochs et al., 2015; Vo and Zhang,
2016).

Representing the word tokens x as one-hot vec-
tors, the direct mapping s from word token to
word-level class scores can be formulated as a
simple matrix-vector multiplication,

s(x) = Sx, (4)

where S is the class score embedding matrix of
dimensionality C × L. The columns of matrix S
give the classification lexicon, i.e. the lth column
gives the class scores for token xl. The word-level
class scores are then averaged to compute sentence
level class scores,

z(t) =
1

|t|
∑
x∈t

s(x) (5)

that are finally normalized to yield probabilities,

pc(t) =
ezc(t)∑C

c′=1 e
zc′ (t)

. (6)

The only parameters of the model are the elements
of the class score matrix S, that is, the elements of
the classification lexicon. To tune the model pa-
rameters we minimize the average cross-entropy
over the training data,

LCE(D|S) = − 1

N

N∑
n=1

C∑
c=1

ync log pc(tn) +λ|S|1

(7)
where L1 regularization is added as proposed by
Pröllochs et al. (2015). Is is known that L1 regu-
larization tends to drive model parameters to zero
which in this case reduces the size of the classifi-
cation vocabulary. This behavior can be desirable
because many words in the training data (e.g. stop
words) are not expected to carry any sensible class
score.

2.2 New approach

In the baseline model, a direct mapping from word
token to word-level class score is learned from
scratch for every word token. In particular, no
prior knowledge about semantic relationships be-
tween word tokens is considered in the model. Se-
mantic similarity between words can be captured
very well by pre-trained word embeddings such
as word2vec or GloVe. Therefore, we propose a
classification lexicon model that is build on top of
word embeddings. This way, prior knowledge is
induced into the model that has been previously
learned from a very large and representative unsu-
pervised corpus. This should be particularly useful
when learning a classification lexicon from a small
supervised corpus.

For the token-level score function s from Eq. (2)
a two-step function is designed that first maps the
word token to its word vector and then transforms
the word vector to a token class score,

s(x) = s̄(w(x)) (8)

where w(x) is the word embedding of token x
with dimensionality E. The aggregation function
is the same as in the baseline model, that is, the
class score of a sentence is modeled as the average
over the word scores which are then normalized by
a soft-max function, see Eq. (5) and (6).

The function s̄ : RE → RC is modeled as a mul-
tilayer fully connected neural network with ReLU
activations,

h(1) = ReLU
(
W (1)w(x)

)
h(2) = ReLU

(
W (2)h(1)

)
...

h(H) = ReLU
(
W (H)h(H−1)

)
s = W (final)h(H). (9)

We choose all of the H hidden layers to be
of some fixed length I , the word-level class
scores s have length C. This gives a total of
I (E + (H − 1)I + C) parameters. A high-level
sketch of the classification lexicon model is shown
in Figure 1. It should be noted that the same func-
tion s̄ is applied independently to each word to-
ken. This can be efficiently implemented e.g. by a
convolutional layer with kernel size 1.



Figure 1: Sketch of the word embeddings based classi-
fication lexicon model for a dictionary of L = 5 words,
a E = 4 dimensional word embedding, C=2 classes,
H = 2 hidden layers with I = 3 hidden units. To pre-
dict the class probabilities of a piece of text, the word-
level class scores are computed from pre-trained word
embeddings via a set of of linear transformations fol-
lowed by rectifiers. The class prediction for the text is
computed as the average over word-level class scores.

Since the word embeddings in the model are
trained in an unsupervised fashion it is possible
that words with very different true class scores are
assigned very similar word vectors. Fine-tuning
the word embeddings during training could help
to separate words with similar pre-trained embed-
ding but different true class scores. However, we
decide not to fine-tune the word embeddings dur-
ing training, because we want to apply the map-
ping s̄ to words that are not part of the training
data. Moreover, fine-tuning the word embeddings,
which would introduce an additional set of E · L
model parameters, did not improve the model ac-
curacy in the experiments.

3 Experiments

The purpose of the proposed classification model
is to generate powerful application specific clas-
sification lexicons and we want to show that the
new model generates better lexicons than the base-
line model. To this end, we train both mod-
els on two binary sentiment analysis datasets and
compare the test set accuracy as a proxy for
the classification lexicon quality. Since the new
word-embedding based model and the baseline
model contain the same aggregation function, any
improvement in model predictions must result
from the word-level classification scores, i.e. the
learned classification lexicons.

The first dataset that we use for the evaluation is
the SST-2 dataset (Socher et al., 2013) that con-
tains binary labeled movie reviews. This well-
known dataset is publicly available and part of the
GLUE benchmark (Wang et al., 2018). The sec-
ond dataset, which we call FNHL, consists of fi-
nancial news headlines that have been manually
labeled by experts. Table 1 shows simple exam-
ples from both datasets and Table 2 gives basic
dataset statistics. It should be emphasized that the
proposed model is not restricted to binary clas-
sification problems and could also be applied to
multi-class datasets.

FNHL
(+) French rail network gets three offers for new line
(-) Google, Facebook to face tougher EU privacy rules

SST-2
(+) the movie exists for its soccer action and its fine acting
(-) the plot grinds on with yawn-provoking dullness

Table 1: Examples from the SST-2 and FNHL datasets.

Dataset mean(|t|) N |V | |Vw2v|

SST-2 19 9613 16182 14826
FNHL 10 2792 5885 4664

Table 2: Average sentence length (mean(|t|)), total
dataset size (N ), vocabulary size (|V |) and vocabulary
that is contained in word2vec (|Vw2v|). Computed on
the pre-processed datasets.

Both the baseline and the new model are imple-
mented as neural networks and optimized via the
Adam optimizer. For the baseline model dropout
regularization is applied to the word level class
scores and for the new model dropout is ap-
plied before the rectifiers. The new model is im-
plemented with pre-trained word2vec word em-
beddings. For words that are not contained in
word2vec the embedding is set to a vector of zeros.
Since the embedding model can always be refined
based on an unlabeled domain-specific corpus,
one can ensure that the embedding model con-
tains the relevant vocabulary. The SST-2 dataset is
provided with a train/dev/test split which is used
in our experiments whereas for the FNHL dataset
nested cross-validation is used. The dev set is
used for early stopping and to evaluate model hy-
perparameters via grid-search. The optimal hy-
perparameters are provided in Table 7 in the ap-
pendix.



3.1 Model Accuracy

Table 3 shows that the new model outperforms
the baseline model on both datasets which means
that the new model generates better sentiment lex-
icons. As an additional experiment we implement
the new model with ELMo embeddings which fur-
ther increases the accuracy on the SST-2 dataset
by 3.7%. Since ELMo embeddings are context-
dependent this model does not yield a fixed sen-
timent lexicon but instead yields a mapping from
sentence-token pair to sentiment scores.

To put the accuracy of the baseline model
and the new classification lexicon model into
perspective, we show in Table 3 the accu-
racy on SST-2 for several GLUE benchmark
models as well as recent state-of-the-art mod-
els as reported on the official GLUE web-
site, see https://gluebenchmark.com/
leaderboard. CBoW denotes an average
bag-of-words model using GloVe embeddings,
GenSen (Subramanian et al., 2018) denotes the
GLUE benchmark sentence representation model
with best overall score and InferSent (Conneau
et al., 2017) denotes the GLUE benchmark sen-
tence representation model with best SST-2 score.
For these models a mapping from sentence rep-
resentation to class scores was trained. Our new
classification lexicon model outperforms the base-
line models CBoW and GenSen whereas InferSent
achieves slightly better accuracy.

The BiLSTM model with ELMo embeddings and
attention (BiLSTM+ELMo+Attn) achieves only
2.6% higher accuracy than NewElmo, i.e. a simple
mapping from ELMo to token level class scores.
As expected, the popular BERT model and XL-
Net, the currently best performing model on the
SST-2 task, achieve much better accuracy than our
proposed classification lexicon model. It should
be emphasized, however, that the purpose of the
proposed model is not to achieve state-of-the-art
accuracy but to generate powerful sentiment lex-
icons. Therefore, the most relevant result is that
the proposed model outperforms the baseline clas-
sification lexicon model which shows that the new
model generates better sentiment lexicons.

To evaluate the dependency between training set
size and model accuracy, the experiments are re-
peated with subsampled SST-2 training sets, see
Figure 2. For small training sets, the new model

FNHL SST-2

Baseline 77.4 (75.0, 78.4) 82.5
New 82.8 (82.1, 83.9) 84.1
NewElmo - 87.8

CBoW - 80.0
GenSen - 83.1
InferSent - 85.1
BiLSTM+ELMo+Attn - 90.4
BERT - 94.9
XLNet - 96.8

Table 3: Accuracy of the baseline and new classifi-
cation lexicon models. NewElmo denotes the imple-
mentation of the new model with ELMo embeddings
(which does not yield a lexicon). For comparison, the
accuracy on the SST-2 task are shown for the GLUE
baseline models CBoW, GenSen, InferSent and BiL-
STM+ELMo+Attn as well as the popular BERT model
and the currently best performing model XLNet.

outperforms the baseline model by a large mar-
gin. For example, with 1% of training samples
(69 samples) the new model achieves 69% accu-
racy compared to 54% for the baseline model and
with 5% of training samples (346 samples) the
new model yields an accuracy of 79% compared
to 66% for the baseline model.

Figure 2: Prediction accuracy on the SST-2 dataset with
training set subsampled to different sizes. For small
training set sizes the new model significantly outper-
forms the baseline model.

3.2 Sentiment Lexicons

After a quantitative comparison of the new and
baseline classification lexicon models, we now
want to take a qualitative look at the generated
lexicons. Table 4 shows the tails of the senti-
ment lexicons as generated by the new model on
the FNHL and SST-2 datasets. The well-known

https://gluebenchmark.com/leaderboard
https://gluebenchmark.com/leaderboard


domain-specific character of sentiment lexicons is
apparent.

Positive words Negative words

SST-2
melds, combines, mar-
velously, enhances, hearts,
sublimely, breathtaking,
wonderfully, engagingly,
supple, winningly, searing,
enables, heartwarming,
integrates, captures,
mesmerizing, infuses,
masterly, explores

charmless, ineffective, gar-
bled, misfire, itis, use-
less, uncreative, dumped,
uninspiring, overinflated,
unimaginative, unfocused,
incoherent, drowned, un-
ambitious, pointless, half-
hearted, suffers, faulty,
squandering

FNHL
wins, bt, topping, air-
show, turbines, awarded,
selected, supercomputer,
clinch, debut, paves,
beats, tops, inks, secures,
buoyed, success, boosted,
driverless

violated, violations, falls,
lapses, delisted, underre-
porting, violating, fined,
plummet, threatened, mis-
led, sues, fining, drags,
infringe, delisting, halts,
breaches, fines, censures

Table 4: Example of words in the sentiment lexicons
trained on the FNHL and SST-2 datasets using the
word-embedding based model.

Table 5 shows the largest word-level senti-
ment score differences between baseline and new
model. Qualitatively, the new model seems to gen-
erate more sensible sentiment scores. For the com-
parison, the two-channel word-level scores are
first transformed to a scalar score, spos−sneg

spos+sneg
, and

normalized to [−1, 1].

Table 5: Largest differences between sentiment lexi-
cons generated by the baseline and new model.

3.3 Lexicon Extension

By design, the baseline model can only generate
word-level class scores for words that are con-
tained in the training corpus. The new model on
the other hand learns an application specific map-
ping from word embedding to word-level class

scores. This makes it straight forward to gen-
erate class-scores for words outside the training
corpus. To evaluate this property we apply the
learned mapping (from SST-2 dataset) to a subset
of the pre-trained word vectors in word2vec. The
word2vec set is filtered to lowercase 1-grams, i.e.
phrases are excluded. This leaves a total of 180000
words which is more than 10 times the number of
words in the SST-2 training set vocabulary.

Table 6 shows the most positive and most nega-
tive sentiment words when applied to the 180000
tokens in word2vec. Most of the words look sen-
sible, which shows that it is possible to gener-
ate sentiment scores for words that are not con-
tained in the training corpus. Arguably, this abil-
ity to generate scores for unseen words is the rea-
son why the new model significantly outperforms
the baseline model on very small training sizes as
shown in Figure 2. Of course, the extension of
the lexicons also generates poor scores for some
words. Qualitatively unplausible words are under-
lined in Table 6. In general during all sentiment
lexicon model evaluations we got the impression
that negative words have better quality than posi-
tive words.

Positive words
equips, revolutionizing, amazes, reconnects, delighting,
soothes, optimizes, prayerfully, backflip, accelerations,
empowers, nourishes, maximizes, flyby, centenarians,
transfixing, juxtaposes, exhilaratingly, purifies, frugally,
caresses, predeceased, glistened, livability, centenarian,
policyowners, gratified, securityholders, astound, elec-
trifying, sacraments, equanimity, synchronizes

Negative words
uncompetitive, unproductive, overstocking, misaligned,
misconfigured, mistyped, spams, fritz, untargeted,
scrapyard, clunked, uninformative, slouching, unwork-
able, knockoffs, unmarketable, mixup, ineffectively,
misdirected, forlornly, misspell, polluter, overlever-
aged, overwrites, dumper, plagiarized, unemployable,
unimpressive, defective, overloaded, flunky, laminitis

Table 6: Words in the word2vec set (filtered for low-
ercase 1-grams) with most positive and most negative
sentiment as generated by the proposed model that has
been trained on the SST-2 training set. Most word
sentiments are plausible, unplausible words are under-
lined.

4 Hierarchical Document
Classification

In some document classification tasks in the fi-
nance domain one deals with very long docu-



ments, such as annual reports or legislative docu-
ments, that may consist of more than 100 pages.
In order to make model predictions more inter-
pretable it would be desirable that the predic-
tions on document level can be retraced to the
sentence (or paragraph) level. One advanced ap-
proach to achieve this level of locality is to incor-
porate sentence-level attention in the document-
level model, see for example (Yang et al., 2016).
For each sentence the attention function indicates
how relevant the sentence is for the document-
level model prediction. This makes the model pre-
dictions more interpretable, i.e. the analyst could
better understand the model predictions by look-
ing at the most relevant sentences.

A somewhat simpler approach is to build a model
that generates class scores per sentence and then
aggregates these scores to document-level class
scores. By designing the aggregation such that the
document-level scores are in a direct relationship
to the sentence-level scores, one can train a joint
model for document-level classification that – at
the same time – generates sentence-level predic-
tions. This approach is analogous to the classifi-
cation lexicon model where word-embeddings are
replaced by sentence representations. See Figure 3
for a sketch of the model. The sentence represen-
tation model is arbitrary and could be for example
a pre-trained language model such as BERT or a
jointly trained BiLSTM pooling of ELMo embed-
dings.

Figure 3: Sketch of a basic architecture for hierarchi-
cal document classification. Sentence representations
can be computed for example by average pooling all
word embeddings in the sentence. Sentence represen-
tations are mapped by a parametric function to yield
the sentence score for each class. Finally, aggrega-
tion (e.g. simple averaging) of the sentence-level class
scores yields the document level scores.

The described approach localizes model predic-
tions to the sentence level and thereby makes pre-
dictions on large documents interpretable. In addi-

tion, the approach can be utilized as a supervised
method to highlight important sentences in a docu-
ment. For example, a financial institution that has
to process a large number of annual reports or fund
reports can employ such methods to point the ana-
lyst to the important parts of the document. In such
an application the final document prediction may
not be relevant primarily, but the highlighting via
sentence level scores is important. Highlighting
approaches that we currently see in practice are
mostly based on unsupervised text-summarization
algorithms such as LexRank (Erkan and Radev,
2004) , which also determines an importance score
on sentence-level based on non-parametrical sim-
ilarity measures and graph-methods, and can also
be used in conjunction with our approach.

During our literature review on hierarchical doc-
ument classification, no model was found that
is comparable to the approach described above.
However, the general idea to design a joint model
for document-level classification that generates
sentence-level predictions as a byproduct is not
new and has been proposed for example by Yesse-
nalina et al. (2010).

5 Conclusion

This paper presents a novel supervised method to
generate classification lexicons that utilizes unsu-
pervised learning in the form of pre-trained word
embeddings. The method allows to build classifi-
cation lexicons, e.g. sentiment lexicons, from very
small amounts of labeled data and the model al-
lows to extend the lexicons to words that are not
contained in the training corpus. This is very rel-
evant for applications in the financial and compli-
ance area, where labeled data is very sparse and
usually very unbalanced. In addition, in these ar-
eas cross-institutional data pooling is usually not
possible for data protection reasons, and data en-
cryption would render the data useless.

It was shown that using the proposed method
with context-dependent word embeddings
such as ELMo yields powerful word-level
features.2

To improve the overall classification lexicon
2Implementing the approach with context-dependent

word-embeddings yields a context-dependent mapping from
words to class scores and thus does not produce a classifica-
tion lexicon.



model the knowledge distillation approach (Ba
and Caruana, 2014; Hinton et al., 2015) could be
used where a simple model is trained on the raw
predictions of a more complex model. In our
case the new classification lexicon model could be
trained for example on the class scores (scores be-
fore softmax function) of BERT or XLNet. The
potential improvements of distilling knowledge
from BERT to simple neural networks has been
demonstrated recently by Tang et al. (2019). The
classification lexicon model could be further im-
proved, e.g. by using phrases or n-grams, and es-
caping named entities.

In Section 4 a modified version of the classifica-
tion lexicon model is described that can be used
for supervised sentence highlighting in large doc-
uments. We would like to investigate the perfor-
mance of this model in future work.
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A Hyperparameters

The optimal model hyperparameters, see Table 7,
are determined via grid search with evaluation on
the respective dev set. The batch size is fixed to
100 and each model is trained until no further dev
set accuracy is observed.



Model Dataset Hyperparameters

Baseline SST-2 LR 0.05
d 0.8
λ 10−6

FNHL nested CV

New SST-2 LR 0.001
d 0.7
I 500
H 3

FNHL nested CV

NewElmo SST-2 LR 0.001
d 0.7
I 500
H 3

Table 7: Optimal hyperparameters for each model on
the SST-2 dataset. For the FNHL dataset nested cross-
validation is used. LR: learning rate for the Adam Op-
timizer, d: dropout rate, λ: L1 regularization strength,
I: number of hidden units, H: number of hidden layers.


