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Abstract
In this paper, we investigate the effect of
enhancing lexical embeddings in LSTM
language models (LM) with syntactic and
semantic representations. We evaluate the
language models using perplexity, and we
evaluate the performance of the models
on the task of predicting human sentence
acceptability judgments. We train LSTM
language models on sentences automat-
ically annotated with universal syntactic
dependency roles (Nivre et al., 2016), de-
pendency tree depth features, and uni-
versal semantic tags (Abzianidze et al.,
2017) to predict sentence acceptability
judgments. Our experiments indicate that
syntactic depth and tags lower the perplex-
ity compared to a plain LSTM language
model, while semantic tags increase the
perplexity. Our experiments also show
that neither syntactic nor semantic tags im-
prove the performance of LSTM language
models on the task of predicting sentence
acceptability judgments.

1 Introduction

Lau et al. (2014) show that human acceptability
judgments are graded rather than binary. It is not
entirely obvious what determines sentence accept-
ability for speakers and listeners. However, syn-
tactic structure and semantic content are clearly
central to acceptability judgments. In fact, as Lau
et al. (2015, 2017) show, it is possible to use a lan-
guage model, augmented with a scoring function,
to predict acceptability. Standard RNN language
models perform fairly well on the sentence accept-
ability prediction task.

By experimenting with different sorts of enrich-
ments of the training data, one can explore their
effect on both the perplexity and the predictive ac-
curacy of the LM. For example, Bernardy et al.

(2018) report that including contextual informa-
tion in training and testing improves the perfor-
mance of an LSTM LM on the acceptability task,
when contextual information is contributed by pre-
ceding and following sentences in a document.

Here we report several experiments on the pos-
sible contribution of symbolic representations of
semantic and syntactic features to the accuracy of
LSTM LMs in predicting human sentence accept-
ability judgments. 1

For semantic tags, we use the Universal Se-
mantic Tagging scheme, which provides language
independent and fine-grained semantic categories
for individual words (Abzianidze et al., 2017). We
take our syntactic roles from the Universal Depen-
dency Grammar scheme (Nivre et al., 2016). This
allows us to assign to each word in a sentence a
semantic and a syntactic role, respectively.

Our working hypothesis is that for a language
model the syntactic and semantic annotations will
highlight semantic and syntactic patterns observed
in the data. Therefore sentences that exhibit these
patterns should be more acceptable than sentences
which diverge from them. One would expect that
if we get lower perplexity for one of the tagging
scheme LMs, then its performance would improve
on the acceptability prediction task. Clearly, bet-
ter performance on this task indicates that tagging
supplies useful information for predicting accept-
ability.

2 Experimental Setup

First, we train a set of language models, some of
them on tag annotated corpora, and some on plain
text. While we are interested in the effect of the
tags on model perplexity, our main concern is to
measure the influence of the tags on an LSTM

1Our training and test sets, and the code for generating
our LSTM LM models are available at https://github.
com/GU-CLASP/predicting-acceptability.

https://github.com/GU-CLASP/predicting-acceptability
https://github.com/GU-CLASP/predicting-acceptability


LM’s predictive power in the sentence acceptabil-
ity task.

We implement four variants of LSTM language
models. The first model is a plain LSTM that pre-
dicts the next word based on the previous sequence
of words. The second, third and fourth models pre-
dict the next word wi conditioned on the previous
sequence of words and tags, for which we write
PM (wi). For a model M that uses syntactic or
semantic information:

PM (wi) = P (wi|(wi−1, ti−1), ..., (wi−n, ti−n))
(1)

We stress that the current tag (ti) is not given when
the model predicts the current word (wi).

Using the main hyperparameters from a previ-
ous similar experiment (Bernardy et al., 2018), all
language models use a unidirectional LSTM of
size 600. We apply a drop-out of 0.4 after the
LSTM layer. The models are trained on a vocab-
ulary of 100,000 words. We randomly initialise
word embeddings of size 300 dimensions, and tag
embeddings of size 30 dimensions. Each model is
trained for 10 epochs.

Following the literature on acceptability (Lau
et al., 2015, 2017; Bernardy et al., 2018), we pre-
dict a judgment by applying a variant of the scor-
ing function SLOR (Pauls and Klein, 2012) to a
model’s predictions.

2.1 SLOR

To estimate sentence acceptability, we use a
length-normalized syntactic log-odds ratio (here-
after simply referred to as SLOR). We use SLOR
rather than any other measurements since it was
shown to have the best results in a previous study
(Lau et al., 2015). It is calculated by taking the
logarithm of the ratio to the probability of the sen-
tence s predicted by a model M (PM ) with the
probability predicted by the unigram model (PU ),
divided by the length of the sequence |s|.

SLORM (s) =
log(PM (s))− log(PU (s))

|s|
(2)

where PM (s) =
∏|s|

i=1 PM (wi), and PU (s) =∏|s|
i=1(PU (wi)). This formula discounts the effect

of both word frequency and sentence length on the
acceptability score that it assigns to the sentence.
SLOR has been found to be a robustly effective
scoring function for the acceptability prediction
task (Lau et al., 2015).

2.2 Model evaluation

We evaluate the model by calculating the
Weighted Pearson correlation coefficient between
the SLOR score assigned by the model and the
judgments assigned by the annotators.

Even though we show only the mean judgment
in Figure 3, each data point comes also with a vari-
ance (there is heteroscedasticity). Thus we have
chosen to weight the data points with the inverse
of the variance when computing the Pearson corre-
lation, as is standard when computing least square
regression on heteroscedastic data.

We report the weighted correlation point wise
between all models, and between each model and
the human judgments. Additionally, we perform
three experiments where we shuffle the syntactic
and semantic representations in the test sentences.
This is done to determine if the tags provide useful
information for the task.

2.3 Language Model Training Data

For training the LMs we selected the English part
of the CoNLL 2017 dataset (Nivre et al., 2017).
The input sentences were taken from a subset of
this corpus. We used only 1/10 of the total CoNNL
2017 Wikipedia corpus, randomly selected. We
took out all sentences whose dependency root is
not a verb, thus eliminating titles and other non-
sentences. We also removed all sentences longer
than 30 words. After filtering, the training data
contained 87M tokens and 5.3M sentences.

3 Semantic Tags

We train a LSTM model for predicting semantic
tags. We use this model to tag both the training
set extracted from the CoNLL 2017 corpus, and
the crowdsource annotated test set (described in
Section 6).

The Universal semantic tagging scheme pro-
vides fine-grained semantic tags for tokens. It in-
cludes 80 different semantic labels. The seman-
tic tags are similar to Part-of-Speech (POS) tags,
but they are intended to generalise and to semanti-
cally disambiguate POS tags. For many purposes,
POS tags do not provide enough information for
semantic processing, and this is where semantic
tags come into play. A significant element of POS
disambiguation consists in assigning proper nouns
to semantic classes (named entities). In this way,
the scheme also provides a form of named entity
recognition. The scheme is designed to be lan-



guage independent. Annotations currently exist
for English, German, Dutch and Italian, but we
only use the English labels in our model.

The corpus of semantically tagged sentences
that we use comes from the Parallel Meaning Bank
(PMB) (Abzianidze et al., 2017). It contains 1.4M
tagged tokens divided into 68,177 sentences2. The
dataset is extracted from a variety of sources:
Tatoeba, News Commentary, Recognizing Textual
Entailment (RTE), Sherlock Holmes stories, and
the Bible. The sentences are split into gold and sil-
ver annotations, where the gold has been manually
annotated, and the silver has been annotated by a
parser with manual corrections. The silver anno-
tations are mostly correct, but may contain some
errors.

Example (1) below is a semantically tagged sen-
tence, taken from the PMB corpus. It includes two
pronouns ’he’ and ’his’. Both of these instanti-

(1) He took his book .
PRO EPS HAS CON NIL

ate the same POS, but their semantic classes are
distinct. The first is a simple third person pro-
noun, while the second is a possessive pronoun.
Semantic tags are able to handle this distinction,
by assigning PRO (pronoun) to the third person
pronoun, and HAS (possessive) to the possessive
pronoun.

3.1 Semantic Tagging Model

To assign semantic tags to the CoNNL 2017 train-
ing corpus and our training set we use a bidirec-
tional LSTM of size 256, with a standard config-
uration. The model is trained with a batch size of
512 sentences. The word embeddings are of size
256 and are randomly initialized. The model is im-
plemented with keras (Chollet et al., 2015). We
stress that this model is separate from the language
models used to predict sentence acceptability.

The semantic tagging model is trained for a
maximum of 1024 epochs, with early stopping
if the validation loss does not improve after 32
epochs. For each epoch, we feed the model 64
batches of 512 randomly selected sentences. The
model observes 32,768 sentences (e.g. roughly
half of the corpus) per epoch. To select the best
model we left out 1024 gold annotated sentences,

2Available for download at https://pmb.let.rug.
nl/releases/sem-0.1.0.zip

randomly selected, and we used them for valida-
tion.

Performance The model was validated on 1.5%
of the sentences with gold annotations. The re-
maining data were used for training. This split was
chosen because the primary goal of this model is
a downstream task, namely tagging data for lan-
guage modeling. We wish to maximise the num-
ber of sentences in the training data.

The model finished after 33 epochs, with a final
validation loss of 0.317 and a validation accuracy
of 91.1%. The performance of our model is similar
to that of (Bjerva et al., 2016).

4 Syntactic Tags

To introduce syntactic information into our model
in an explicit way, we provide it with Universal
Dependency Grammar (UD) roles. The UD anno-
tation scheme seeks to develop a unified syntac-
tic annotation system that is language independent
(Nivre et al., 2016). UD implements syntactic an-
notation through labelled directed graphs, where
each edge represents a dependency relation. In
total, UD contains 40 different dependency rela-
tions (or tags). For example, the sentence ’There
is no known cure’ (taken from the CoNLL2017
Wikipedia corpus) is annotated as the dependency
graph shown in Figure 1.

There is no known cure .

ROOT

expl

neg

amod

nsubj

punct

Figure 1: Dependency Graph

The model gives the label of the dependency
originating from each word, which we call the syn-
tactic role of the word. This label is provided as an
additional feature for each word in the input to our
language model. The model does not attempt to
predict these roles. For the above sentence, the in-
formation given to our syntactic tag trained mod-
els would be:

There is no known cure
expl root neg amod nsubj

We use the Stanford Dependency Parser (Chen
and Manning, 2014) to generate syntactic tags for

https://pmb.let.rug.nl/releases/sem-0.1.0.zip
https://pmb.let.rug.nl/releases/sem-0.1.0.zip


the training and test sets.

5 Syntactic Depth

In addition to using syntactic and semantic tags,
we also experiment with syntactic depth. To as-
sign a depth to word n, we compute the number of
common ancestors in the tree between word n and
word n + 1. The last word is arbitrarily assigned
depth 0. This method was proposed by Gómez-
Rodrı́guez and Vilares (2018) for constituent trees,
but the method works just as well for dependency
trees. An example tree is shown below:

There is no known cure .
1 1 2 2 1 0

ROOT

expl

neg

amod

nsubj

punct

Figure 2: Linearized dependency graph

6 Test Set

The test set for evaluating our LMs comes from
the work of Lau et al. (2015, 2017). 600 sentences
were extracted from the BNC corpus (BNC Con-
sortium, 2007) and filtered for length (8 < |s| <
25). After this filtering 500 sentences remained
and were put through a round-trip machine trans-
lation process, from English to Norwegian, Span-
ish, Chinese or Japanese, and then back to English.
In total, the test set contains 2500 sentences: 500
original sentences, and 500 from each language
used for round-trip translation (i.e. Norwegian,
Spanish, Chinese and Japanese). The purpose of
using round-trip MT is to introduce a wide variety
of infelicities into some of the sentence in our test
set. This insures variation in acceptability judge-
ments across the examples of the set.

We used Amazon Mechanical Turk (AMT)
crowdsourcing to obtain acceptability judgments.
The annotators were asked to rate the sentences
based on their naturalness (as opposed to the theo-
retically committed notion of well-formedness) on
a scale of 1 to 4. On average, each sentence had
14 annotators after filtering (for a more detailed
description see (Lau et al., 2017)).

The results are shown in Table 1. The original
sentences, and the sentences that were round-trip
translated through Norwegian and Spanish have a

higher mean rating than the sentences translated
through Japanese and Chinese. The standard devi-
ation is slightly higher for all the sentences which
underwent round-trip translation, which is to be
expected.

Table 1: Mean judgments and standard deviation
for the test set.

SENTENCES MEAN ST-DEV

en 3.51 0.46
en-no-en 3.13 0.70
en-es-en 3.12 0.69
en-zh-en 2.42 0.72
en-ja-en 2.14 0.74

7 Results

Below we denote the plain LSTM LM by LSTM,
the LM with syntactic tags as +SYN, the LM with
semantic tags as +SEM, and the LM with syntactic
tree depth as +DEPTH. We denote the models with
shuffled tags by using the star (*) as a modifier.

7.1 Language Model Perplexity
We report in Table 3 the training loss for the plain-
LSTM language model, and for the LSTM lan-
guage models enhanced with syntactic and seman-
tic tags. At the end of the training, the language
model conditioned on syntactic tags shows the
lowest loss. By definition loss is the logarithm of
the perplexity. The semantic tag LM exhibits the
highest degree of loss. It seems that the syntac-
tic tags reduce LM perplexity, while the semantic
tags increase it.

7.2 Acceptability Predictions
The matrix in Table 2 gives the results for the sen-
tence acceptability prediction task. Each entry rij
indicates the weighted Pearson correlation r be-
tween SLORi and SLORj . Scatter plots showing
the correlation between human and model predic-
tions are given in Figure 3

The plain LSTM performs close to the level that
Bernardy et al. (2018) report for the same type of
LM, trained and tested on English Wikipedia data.
This indicates the robustness of this model for the
sentence acceptability prediction task, given that,
unlike the LSTM of Bernardy et al. (2018), it is
trained on Wikipedia text, but tested on a BNC test
set. Therefore, it sustains a relatively high level of
performance on an out of domain test set.



Table 2: Weighted Pearson correlation between prediction from different models on the SMOG1 dataset.
* indicates that the tags have been shuffled.

HUMAN LSTM +SYN +SYN* +SEM +SEM* +DEPTH +DEPTH*
HUMAN 1.00
LSTM 0.58 1.00
+SYN 0.55 0.96 1.00
+SYN* 0.39 0.76 0.75 1.00
+SEM 0.54 0.81 0.78 0.61 1.00
+SEM* 0.52 0.81 0.78 0.63 0.96 1.00
+DEPTH 0.56 0.97 0.97 0.74 0.79 0.79 1.00
+DEPTH* 0.46 0.87 0.85 0.73 0.72 0.72 0.86 1.00

Table 3: Training loss and accuracy for the lan-
guage modeling task.

MODEL LOSS ACCURACY

LSTM 5.04 0.24
+SYN 4.79 0.26
+SEM 5.23 0.21
+DEPTH 4.88 0.27

We also tested a model that combined depth
markers and syntactic tags, which is, in effect, a
full implicit labelled dependency tree model. In-
terestingly, its Pearson correlation of 0.54 was
lower than the ones achieved by the syntactic tag
and depth LSTM LMs individually.

None of the enhanced language models in-
creases correlation with human judgments com-
pared to the plain LSTM. Neither does the addi-
tional information significantly reduce correlation.

Shuffling the tags causes a drop of 0.16 in corre-
lation for syntactic tags, and a drop of 0.1 for tree
depth. Shuffling the semantic tags also lowers the
correlation, but only by a small amount (−0.02).

8 Discussion

8.1 Semantic Tags

As can be observed in Table 3, the semantic tags
show the highest loss during training. This indi-
cates that semantic tags increase the perplexity of
the model, and do not help to predict the next word
in a sentence. Despite this, +SEM correlates fairly
well with human judgments (r = 0.54).

The results obtained with shuffled semantic tags
(+Sem*) are revealing. They yield a correlation
factor nearly as high as the non-shuffled tags (r =
0.53). This suggests that the semantic tags do not
provide any useful information for the prediction

task. This hypothesis is further confirmed by the
high correlation between the non-shuffled and the
shuffled semantic tag LMs (r = 0.96).

The question of why semantic tags do not re-
duce perplexity, or why randomly assigned seman-
tic tags are almost as good as non-shuffled tags
at predicting acceptability requires further study.
One possibility is that the tagging model does not
perform as well on the ConLL 2017 Wikipedia
subset, or the BNC test set, as it does on the PMB
corpus. It may be the case that since the domains
are somewhat different, the model is not able to
accurately predict tags for our training and test
sets. Similarly, we do not know the accuracy of
the Stanford Dependency Parser on the BNC test
set.

8.2 Syntactic Tags

Providing syntactic tags improves the language
model, but not the correlation of its predictions
with mean human acceptability judgments. How-
ever, shuffling the syntactic tags does lower the
correlation substantially. This indicates that syn-
tactic tags significantly influence the predictions
of the language model.

8.3 Tree Depth

The depth marker enriched LSTM performs best
of all the feature enhanced models. Shuffling the
markers significantly degrades accuracy, and the
non-shuffled depth model achieves a reduction in
perplexity. However, it still performs below the
simple LSTM on the acceptability prediction task

It may be the case that the plain LSTM already
acquires a significant amount of latent syntactic in-
formation, and adding explicit syntactic role label-
ing does not augment this information in a way
that is accessible to LSTM learning. This con-
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Figure 3: Scatter plots showing the weighted Pearson correlation between human acceptability judgments
(y-axis) and model predictions (x-axis).

clusion is supported by the work of Bernardy and
Lappin (2017) on syntactic agreement. They ob-
serve that replacing a significant portion of the lex-
icon of an LSTM with POS tags degrades its ca-
pacity to predict agreement.

In general, our results do not show that syntac-
tic and semantic information plays no role in the
performance of any LM for the acceptability pre-
diction task. It seems clear that the simple LSTM
model learns both semantic and syntactic relations
among words and phrases, but represents these in
a distributed way through the encoding of lexical
embeddings in vectors. In fact, there is a body
of work which shows that such LSTMs recognise
complex long-distance syntactic relations (Linzen
et al., 2016; Bernardy and Lappin, 2017; Gulor-
dava et al., 2018; Lakretz et al., 2019).

8.4 Error analysis
We analyse the models in two ways. First, we ex-
plore how they score sentences in the test set as
categorised by the round-trip translation language

that the sentences went through. Second, we look
at two example sentences for which no model did
particularly well.

8.4.1 Model performance on test sentences
To analyse the scores assigned by the model in
comparison to the human judgments we first need
to normalise the scores. We do this by dividing
the score assigned to each sentence by the maxi-
mum score assigned. Thus, the relative score of
a sentence indicates how close it is to the highest
acceptability judgment.

The mean relative score of the human judg-
ments and model scores are presented in Table 4.
We observe that the models generally appear to as-
sign a lower relative score than humans. But all
models also appear to follow the general trend of
human judgments and assign a lower score to the
Chinese and Japanese round-trip translated sen-
tences compared to the Spanish, Norwegian and
original sentences. However, looking at the num-
bers the difference in magnitude for Chinese and



Japanese sentences is rather large. The Chinese
and Japanese sentences have a lower relative score
of 0.27 and 0.35 respectively. But for models, this
difference is only ≈ 0.07 and ≈ 0.12 respectively.
This indicates that while the models are able to see
some acceptability differences between the sub-
classes of test sentences, the models do not penal-
ize these sentences as much as humans.

Table 4: Comparison of the average relative score
assigned by the models and humans for the differ-
ent sentences in the test set.

MODEL EN NO ES ZH JA

Human 0.88 0.78 0.78 0.61 0.53
LSTM 0.41 0.40 0.40 0.34 0.29
+SYN 0.46 0.44 0.45 0.39 0.35
+SEM 0.39 0.36 0.37 0.30 0.28
+DEPTH 0.45 0.43 0.44 0.38 0.34

We also note that the models consistently
assign much lower relative scores than the human
annotators do to most of the sentences. This,
biases their scores in favour of the Chinese and
Japanese target sentences, since these are typically
’worse’ than their original English sources, or the
Norwegian and Spanish targets, according to the
human judges (see Table 1).

We also compare the worst scoring sentences
between the models. This was done by splitting
the predictions into two sets: (a) model scores
above the average3 and (b) model scores below
the average. We sort these sets by their difference
to the humans and select the top 20 sentences for
each model. Table 5 shows the intersection of sen-
tence sets for the different models.

Table 5: Shared erroneous sentences between the
models.

MODEL LSTM +SYN +SEM +DEPTH

LSTM 40
+SYN 30 40
+SEM 19 15 40
+DEPTH 30 28 17 40

We observe that the syntactic tag and depth
models share many sentences with each other, and
with the plain LSTM, but not as many with the

3We compare scores by dividing each score by it’s maxi-
mum value, as described previously.

semantic model. This shows that the difficult sen-
tences for the semantic model are different than
those for the syntactic and plain models.

8.4.2 Model and human performance
We use the relative scores from the previous sec-
tion to select sentences for examination. We look
at two types of cases, one in which the model pre-
dicts a higher score than the human judgments,
and the other where the model predicts a lower
score than human judgments. For both cases we
select a sentence at random.

We begin by considering an example to which
the model assigns a higher score than humans do.
The sentence went through Chinese:

(1) ’1.5% Hispanic or Latino of any race popula-
tion.’

The sentence lacks a verb, and the modifier-
noun construction ’race population’ is lexically
strange. It is interesting to note that our syntactic
models (+SYN and +DEPTH) both assign a high
score to this sentence, while the semantic and plain
LM assign a lower score (which is closer to the
human judgment). We would think that the model
using syntactic tags would pick up on the missing
verb, and so penalize the sentence. The scores for
the sentence (1) are shown in Table 6:

Table 6: Human judgments and model scores for
sentence (1).

MODEL RELATIVE ABSOLUTE

HUMAN 0.40 1.62
LSTM 0.77 3.74
+SYN 0.90 4.47
+SEM 0.71 3.29
+DEPTH 0.85 4.17

For (1), the LM enhanced with semantic tags
gave the sentence the lowest score. The syntactic
and depth model gave the sentence a high score
(0.90 and 0.85 respectively). This indicates that
while still assigning the sentence a relatively high
score, the semantic and plain LM rate the sentence
closer to humans than the syntactical LM.

In the second case, (2), the sentence is one of
the original English sentences:

(2) ’ACS makes a special ”FAT” heavy duty
BMX freewheel in 14T and 16T with 3/16
”teeth compatible only with 3/16” chains.’



The human annotators gave it an appropriately
high score, but the models did not, as indicated in
table Table 7.

Table 7: Human judgments and model scores for
sentence (2).

MODEL RELATIVE ABSOLUTE

HUMAN 0.80 3.23
LSTM -0.007 -0.03
+SYN 0.002 0.01
+SEM 0.26 1.20
+DEPTH 0.02 -0.01

Again, we can see that the LM enhanced with
semantic tags performed the best (i.e. assigned the
sentence the highest score). The sentence has a
few features which might make it difficult for the
standard LM and syntactically enhanced language
models. The sentence contains a high number of
quotations, acronyms (e.g. ACS) and specialized
terms (e.g. 3/16). The dependency tags do not
treat these words in any special way. Because the
words are rare they are not likely candidates. The
semantic tags will treat these words in a different
manner, since it contains tags for named entities
and quantities.

8.5 Pre-Trained Language Models
Recently several large pre-trained language mod-
els using transformation architecture, like BERT
(Devlin et al., 2018), or bidirectional LSTM with
attention, such as ELMo (Peters et al., 2018), have
achieved state of the art results across a variety
of NLP tasks. We opted not to experiment with
any of these pre-trained language models for our
task. The LSTM architecture of our LMs is far
simpler, which facilitates testing the contribution
of explicit feature representation to correlation in
the acceptability prediction task, and perplexity
for the language modeling task.

9 Related Work

There has been a considerable amount of work
showing that encoding tree representations in deep
neural networks, particularly LSTMs, improves
their performance on semantic relatedness tasks.
So, for example, Tai et al. (2015) show that Tree-
LSTMs outperform simple LSTMs on SemEval
2014 Task 1, and sentiment classification. Sim-
ilarly, Gupta and Zhang (2018) argue that by
adding progressive attention to a Tree-LSTM it is

possible to improve its performance on several se-
mantic relatedness tasks.

Williams et al. (2018) describe a number of ex-
periments with latent tree learning RNNs. These
models learn tree structures implicitly, rather than
through training on a parse annotated corpus.
They construct their own parses. Williams et al.
(2018) state that they outperform Tree-LSTM and
other DNN models on semantic relatedness appli-
cations, and the Stanford Natural Language Infer-
ence task. Interestingly, the parse trees that they
construct are not consistent across sentences, and
they do not resemble the structures posited in for-
mal syntactic or semantic theories. This result is
consistent with our finding that LSTMs learn syn-
tactic and semantic patterns in a way that is quite
distinct from the classifications posited in classical
grammatical and semantic systems of representa-
tion.

Finally, Warstadt and Bowman (2019) discuss
the performance of several pre-trained transformer
models on classifying sentences in their Corpus of
Linguistic Acceptability (CoLA) as acceptable or
not. These models exhibit levels of accuracy that
vary widely relative to the types of syntactic and
morphological patterns that appear in CoLA.

It is important to recognise that CoLA is a very
different sort of test set from the one that we use
in our experiments. It is drawn from linguists’
examples intended to illustrate particular sorts of
syntactic construction. It is annotated for binary
classification according to linguists’ judgments.
By contrast, our BNC test set consists of natu-
rally occurring text, where a wide range of infe-
licities are introduced into many of the sentences
through round trip machine translation. It is anno-
tated through AMT crowd sourcing with gradient
acceptability judgments. Given these significant
differences in design and annotation between the
two test sets, applying our models to CoLA would
have taken us beyond the scope of the sentence
acceptability task, as specified in (Lau et al., 2015,
2017; Bernardy et al., 2018),

Moreover, our experiments are not focused on
identifying the best performing model as such. In-
stead, we are interested in ascertaining whether
enriching the training and test data with explicit
syntactic and semantic classifier representations
contributes to LSTM learning for the sentence ac-
ceptability prediction task.



10 Conclusions

We present experiments that explore the effect
of enhancing language models with syntactic and
semantic tags, and dependency tree depth mark-
ers, for the task of predicting human sentence
acceptability judgments. The experiments show
that neither syntactic nor semantic tags, nor tree
depth indicators improve the correlation between
an LSTM LM and human judgments. Our experi-
ments also show that syntactic tags provide infor-
mation that is useful for language modeling, while
semantic tags do not. However, further experi-
ments are needed to verify our results for semantic
tags. The model that we used for tagging, rather
than the information in the tags themselves, may
be responsible for the observed result.

Surprisingly our initial hypothesis that lower
training perplexity produces better acceptability
prediction has been overturned. We have not ob-
served any correlation between the perplexity of
an LM and its accuracy in acceptability prediction.
The SLOR scoring function may mask an underly-
ing connection between preplexity and prediction
accuracty.

Our tentative conclusion from these experi-
ments is that simple LSTMs already learn syntac-
tic and semantic properties of sentences through
lexical embeddings only, which they represent in a
distributional manner. Introducing explicit seman-
tic and syntactic role classifiers does not improve
their capacity to predict the acceptability of sen-
tences, although such information may be useful
in boosting the performance of deep neural net-
works on other tasks.

In future work, we plan to test other sources of
information for the language models. One pos-
sibility is to use constituency, rather than depen-
dency tree depth. We also plan to experiment with
different combinations of tags for the language
models, such as models that use both semantic and
syntactic roles.
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