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Abstract

More and more evidence is appearing that
integrating symbolic lexical knowledge
into neural models aids learning. This
contrasts the widely-held belief that neural
networks largely learn their own feature
representations. For example, recent work
has shown benefits of integrating lexicons
to aid cross-lingual part-of-speech (PoS).
However, little is known on how com-
plementary such additional information is,
and to what extent improvements depend
on the coverage and quality of these exter-
nal resources. This paper seeks to fill this
gap by providing a thorough analysis on
the contributions of lexical resources for
cross-lingual PoS tagging in neural times.

1 Introduction

In natural language processing, the deep learning
revolution has shifted the focus from conventional
hand-crafted symbolic representations to dense in-
puts, which are adequate representations learned
automatically from corpora. However, particu-
larly when working with low-resource languages,
small amounts of symbolic lexical resources such
as user-generated lexicons are often available even
when gold-standard corpora are not. Recent work
has shown benefits of combining conventional lex-
ical information into neural cross-lingual part-of-
speech (PoS) tagging (Plank and Agié, 2018).
However, little is known on how complementary
such additional information is, and to what extent
improvements depend on the coverage and quality
of these external resources.

The contribution of this paper is in the analysis
of the contributions of models’ components (tag-
ger transfer through annotation projection vs. the
contribution of encoding lexical and morphosyn-
tactic resources). We seek to understand un-
der which conditions a low-resource neural tagger
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benefits from external lexical knowledge. In par-
ticular:

a) we evaluate the neural tagger across a total
of 20+ languages, proposing a novel baseline
which uses retrofitting;

b) we investigate the reliance on dictionary size
and properties;

c) we analyze model-internal representations
via a probing task to investigate to what ex-
tent model-internal representations capture
morphosyntactic information.

Our experiments confirm the synergetic effect
between a neural tagger and symbolic linguistic
knowledge. Moreover, our analysis shows that the
composition of the dictionary plays a more impor-
tant role than its coverage.

2 Methodology

Our base tagger is a bidirectional long short-term
memory network (bi-LSTM) (Graves and Schmid-
huber, 2005; Hochreiter and Schmidhuber, 1997;
Plank et al., 2016) with a rich word encoding
model which consists of a character-based bi-
LSTM representation cw paired with pre-trained
word embeddings «. Sub-word and especially
character-level modeling is currently pervasive in
top-performing neural sequence taggers, owing
to its capacity to effectively capture morpholog-
ical features that are useful in labeling out-of-
vocabulary (OOV) items. Sub-word information is
often coupled with standard word embeddings to
mitigate OOV issues. Specifically, i) word embed-
dings are typically built from massive unlabeled
datasets and thus OOVs are less likely to be en-
countered at test time, while ii) character embed-
dings offer further linguistically plausible fallback
for the remaining OOVs through modeling intra-
word relations. Through these approaches, multi-
lingual PoS tagging has seen tangible gains from
neural methods in the recent years.



2.1 Lexical resources

We use linguistic resources that are user-generated
and available for many languages. The first is
WIKTIONARY, a word type dictionary that maps
words to one of the 12 Universal PoS tags (Li
et al., 2012; Petrov et al., 2012). The second re-
source is UNIMORPH, a morphological dictionary
that provides inflectional paradigms for 350 lan-
guages (Kirov et al., 2016). For Wiktionary, we
use the freely available dictionaries from Li et al.
(2012). UniMorph covers between 8-38 morpho-
logical properties (for English and Finnish, re-
spectively).! The sizes of the dictionaries vary
considerably, from a few thousand entries (e.g., for
Hindi and Bulgarian) to 2M entries (Finnish Uni-
Morph). We study the impact of smaller dictionary
sizes in Section 4.1.

The tagger we analyze in this paper is an exten-
sion of the base tagger, called distant supervision
from disparate sources (DSDS) tagger (Plank and
Agi¢, 2018). It is trained on projected data and
further differs from the base tagger by the integra-
tion of lexicon information. In particular, given
a lexicon src, DSDS uses €5, to embed the lex-
icon into an [-dimensional space, where €s,. is
the concatenation of all embedded m properties of
length [ (empirically set, see Section 2.2), and a
zero vector for words not in the lexicon. A prop-
erty here is a possible PoS tag (for Wiktionary) or
a morphological feature (for Unimorph). To inte-
grate the type-level supervision, the lexicon em-
beddings vector is created and concatenated to the
word and character-level representations for every
token: 1 o ¢ o €.

We compare DSDsS to alternative ways of
using lexical information. The first approach
uses lexical information directly during decod-
ing (Tackstrom et al., 2013). The second approach
is more implicit and uses the lexicon to induce
better word embeddings for tagger initialization.
In particular, we use the dictionary for retrofitting
off-the-shelf embeddings (Faruqui et al., 2015) to
initialize the tagger with those. The latter is a
novel approach which, to the best of our knowl-
edge, has not yet been evaluated in the neural tag-
ging literature. The idea is to bring the off-the-
shelf embeddings closer to the PoS tagging task
by retrofitting the embeddings with syntactic clus-
ters derived from the lexicon.

We take a deeper look at the quality of the lex-
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icons by comparing tag sets to the gold treebank
data, inspired by Li et al. (2012). In particular, let
T be the dictionary derived from the gold treebank
(development data), and W be the user-generated
dictionary, i.e., the respective Wiktionary (as we
are looking at PoS tags). For each word type, we
compare the tag sets in 7" and W and distinguish
six cases:

1. NONE: The word type is in the training data
but not in the lexicon (out-of-lexicon).

EQuaL: W =T

DISIOINT: WNT =10

el

OVERLAP: WNT # 0
5. SUBSET: W C T
6. SUPERSET: W DO T

In an ideal setup, the dictionaries contain no dis-
joint tag sets, and larger amounts of equal tag sets
or superset of the treebank data. This is particu-
larly desirable for approaches that take lexical in-
formation as type-level supervision.

2.2 Experimental setup

In this section we describe the baselines, the data
and the tagger hyperparameters.

Data We use the 12 Universal PoS tags (Petrov
et al., 2012). The set of languages is motivated by
accessibility to embeddings and dictionaries. We
here focus on 21 dev sets of the Universal Depen-
dencies 2.1 (Nivre and et al., 2017), test set results
are reported by Plank and Agi¢ (2018) showing
that DSDS provides a viable alternative.

Annotation projection To build the taggers for
new languages, we resort to annotation projec-
tion following Plank and Agi¢ (2018). In par-
ticular, they employ the approach by Agi¢ et al.
(2016), where labels are projected from multi-
ple sources to multiple targets and then decoded
through weighted majority voting with word align-
ment probabilities and source PoS tagger confi-
dences. The wide-coverage Watchtower corpus
(WTC) by Agic¢ et al. (2016) is used, where 5k
instances are selected via data selection by align-
ment coverage following Plank and Agi¢ (2018).

Baselines We compare to the following alterna-
tives: type-constraint Wiktionary supervision (Li
et al., 2012) and retrofitting initialization.



DEV SETS (UD2.1)

LANGUAGE 5k TCw | RETRO DsDs
Bulgarian (bg) 89.8 899 87.1 91.0
Croatian (hr) 84.7 852 83.0 85.9
Czech (cs) 875 875 84.9 87.4
Danish (da) 89.8 893 88.2 90.1
Dutch (nl) 88.6 89.2 86.6 89.6
English (en) 86.4 87.6 82.5 87.3
Finnish (fi) 81.7 814 79.2 83.1
French (fr) 91.5 90.0 89.8 91.3
German (de) 85.8 87.1 84.7 87.5
Greek (el) 809 86.1 79.3 79.2
Hebrew (he) 75.8 759 71.7 76.8
Hindi (hi) 63.8 639 63.0 66.2
Hungarian (hu) 775 715 75.5 76.2
Italian (it) 922 91.8 90.0 93.7
Norwegian (no) 91.0 91.1 88.8 914
Persian (fa) 43.6 438 44.1 43.6
Polish (pl) 849 849 83.3 854
Portuguese 924 922 88.6 93.1
Romanian (ro) 842 842 80.2 86.0
Spanish (es) 90.7 88.9 88.9 91.7
Swedish (sv) 894 89.2 87.0 89.8
AVG(21) 834 83.6 81.3 84.1
GERMANIC (6) 88.5 88.9 86.3 89.3
ROMANCE (5) 90.8 90.1 88.4 914
SLavic (4) 86.7 86.8 84.6 874
INDO-IRANIAN (2) 53.7 538 53.5 54.9
URALIC (2) 796 794 79.2 79.6

Table 1: Replication of results on the dev sets. Sk:
model trained on only projected data; TCyy: type
constraints; Retro: retrofitted initialization.

Hyperparameters We use the same setup
as Plank and Agi¢ (2018), i.e., 10 epochs, word
dropout rate (p=.25) and [=40-dimensional lex-
icon embeddings for DSDs, except for down-
scaling the hidden dimensionality of the character
representations from 100 to 32 dimensions. This
ensures that our probing tasks always get the same
input dimensionality: 64 (2x32) dimensions for
cw, which is the same dimension as the off-the-
shelf word embeddings. Language-specific hy-
perparameters could lead to optimized models for
each language. However, we use identical settings
for each language which worked well and is less
expensive, following Bohnet et al. (2018). For all
experiments, we average over 3 randomly seeded
runs, and provide mean accuracy.

We use the off-the-shelf Polyglot word embed-
dings (Al-Rfou et al., 2013). Word embedding
initialization provides a consistent and consider-
able boost in this cross-lingual setup, up to 10%
absolute improvements across 21 languages when
only 500 projected training instances are avail-
able (Plank and Agi¢, 2018). Note that we em-
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Figure 1: Analysis of Wiktionary vs gold (dev set)
tag sets. ‘None’: percentage of word types not
covered in the lexicon. ‘Disjoint’: the gold data
and Wiktionary do not agree on the tag sets. See
Section 2.1 for details on other categories.

pirically find it to be best to not update the word
embeddings in this noisy training setup, as that re-
sults in better performance, see Section 4.4.

3 Results

Table 1 presents our replication results, i.e., tag-
ging accuracy for the 21 individual languages,
with means over all languages and language fam-
ilies (for which at least two languages are avail-
able). There are several take-aways.

Inclusion of lexical information Combining
the best of two worlds results in the overall
best tagging accuracy, confirming Plank and Agi¢
(2018): Embedding lexical information into a neu-
ral tagger improves tagging accuracy from 83.4 to
84.1 (means over 21 languages). On 15 out of 21
languages, DSDs is the best performing model.
On two languages, type constraints work the best
(English and Greek). Retrofitting performs best
only on one language (Persian); this is the lan-
guage with the overall lowest performance. On
three languages, Czech, French and Hungarian,
the baseline remains the best model, none of the
lexicon-enriching approaches works. We proceed
to inspect these results in more detail.

Analysis Overall, type-constraints improve the
baseline but only slightly (83.4 vs 83.6). Intu-
itively, this more direct use of lexical information
requires the resource to be high coverage and a
close fit to the evaluation data, to not introduce
too many pruning errors during decoding due to
contradictory tag sets. To analyze this, we look at
the tag set agreement in Figure 1. For languages
for which the level of disjoint tag set information
is low, such as Greek, English, Croatian, Finnish
and Dutch, type constraints are expected to help.
This is in fact the case, but there are exceptions,
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(c) Per language analysis: absolute improvements of DSDS over the baseline for words in the lexicon, in the training data, in

both or in neither (true OOVs).

Figure 2: Analysis of OOVs and dictionary properties.

such as Finnish. Coverage of the lexicon is also
important, and for this morphologically rich lan-
guage, the coverage is amongst the lowest (c.f.
large amount of the ‘none’ category in Figure 1).
The more implicit use of lexical information
in DSDS helps on languages with relatively high
dictionary coverage and low tag set disagreement,
such as Danish, Dutch and Italian. Compared to
type constraints, embedding the lexicon also helps
on languages with low dictionary coverage, such
as Bulgarian, Hindi, Croatian and Finnish, which
is very encouraging and in sharp contrast to type
constraints. The only outlier remains Greek.
Figure 2 (a) plots the absolute improvement in
tagging accuracy over the baseline versus the num-
ber of properties in the dictionaries. Slavic and
Germanic languages cluster nicely, with some out-
liers (Croatian). However, there is only a weak
positive correlation (p=0.08). More properties do

not necessarily improve performance, and lead to
sparsity. The inclusion of the lexicons results in
higher coverage, which might be part of the expla-
nation for the improvement of DsDs. The ques-
tion remains whether the tagger learns to rely only
on this additional signal, or it generalizes beyond
it. Therefore, we first turn to inspecting out-of-
vocabulary (OOV) items. OOV items are the key
challenge in part-of-speech tagging, i.e., to cor-
rectly tag tokens unseen in the training data.

In Figure 2 (b) and (c), we analyze accuracy im-
provements on different groups of tokens: The in
lex+train tokens that were seen both in the lexicon
and the training data, the in train only tokens seen
in the training data but not present in the lexicon,
the in lex only tokens that were present in the lex-
icon but not seen in the training data and the true
OOV tokens that were neither seen in training nor
present in the lexicon. Figure 2 (b) shows means



over the 21 languages, Figure 2 (c) provides de-
tails per language. The first take-away is that in
many cases the tagger does learn to use informa-
tion beyond the coverage of the lexicon. The em-
bedded knowledge helps the tagger to improve on
tokens which are in train only (and are thus not
in the lexicon, green bars). For true OOVs (or-
ange bars), this is the case for some languages as
well Figure 2 (c), i.e., improvements on true OOV's
can be observed for Bulgarian, German, Greek,
English, Finish, Croatian, Italian and Portuguese.
Over all 21 languages there is a slight drop on true
OOVs: -0.08, but this is a mean over all languages,
for which results vary, making it important to look
beyond the aggregate level. Over all languages ex-
cept for Hungarian, the tagger, unsurprisingly, im-
proves over tokens which are both in the lexicon
and in the training data (see further discussion in
Section 4).

4 Discussion

Here we dig deeper into the effect of including lex-
ical information by a) examining learning curves
with increasing dictionary sizes, b) relating tag
set properties to performance, and finally c) hav-
ing a closer look at model internal representations,
by comparing them to the representations of the
base model that does not include lexical informa-
tion. We hypothesize that when learning from
dictionary-level supervision, information is prop-
agated through the representation layers so as to
generalize beyond simply relying on the respec-
tive external resources.

4.1 Learning curves

The lexicons we use so far are of different sizes
(shown in Table 1 of Plank and Agi¢ (2018)),
spanning from 1,000 entries to considerable dic-
tionaries of several hundred thousands entries. In
a low-resource setup, large dictionaries might not
be available. It is thus interesting to examine how
tagging accuracy is affected by dictionary size. We
examine two cases: randomly sampling dictionary
entries and sampling by word frequency, over in-
creasing dictionary sizes: 50, 100, 200, 400, 800,
1600 word types. The latter is motivated by the
fact that an informed dictionary creation (under
limited resources) might be more beneficial. We
estimate word frequency by using the UD training
data sets (which are otherwise not used).

Figure 3 (a) provides means over the 21 lan-
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Figure 3: Learning curves over increased dictio-
nary sizes.

guages (with confidence intervals of +1 standard
deviation based on three runs). We note that sam-
pling by frequency is overall more beneficial than
random sampling. The biggest effect of sampling
by frequency is observed for the Romance lan-
guage family, see Figure 3 (b). It is noteworthy
that more dictionary data is not always necessarily
beneficial. Sometimes a small but high-frequency
dictionary approximates the entire dictionary well.
This is for instance the case for Danish, where
sampling by frequency approximates the entire
dictionary well (‘all’ achieves 90.1, while using
100 most frequent entries is close: 89.93). Fre-
quency sampling also helps clearly for Italian, but
here having the entire dictionary results in the
overall highest performance.

For some languages, the inclusion of lexical in-
formation does not help, not even at smaller dictio-
nary sizes. This is the case for Hungarian, French
and Czech. For Hungarian using the entire dictio-
nary drops performance below the baseline. For
Czech, this is less pronounced, as the performance
stays around baseline. Relating these negative ef-
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Figure 4: Proportion of tokens unseen in the train-
ing data, in the lexicon or in both (true OOV’s).
Lighter bars are proportion of correctly labeled
portion, dark bars are proportion of errors.

fects to the results from the tag set agreement anal-
ysis (Figure 1), we note that Hungarian is the lan-
guage with the largest disjoint tag set. Albeit the
coverage for Hungarian is good (around .5), in-
cluding too much contradictory tag information
has a clear deteriorating effect. Consequently, nei-
ther sampling strategy works. Czech, which has
less coverage, sees a negative effect as well: half
of the dictionary entries have disjoint tag sets. Ital-
ian is the language with the highest dictionary cov-
erage and the highest proportion of equal tag sets,
thereby providing a large positive benefit.

We conclude that when dictionaries are not
available, creating them by targeting high-
frequency items is a pragmatic and valuable strat-
egy. A small dictionary, which does not contain
too contradictory tag sets, can be beneficial.

4.2 Analysis of correct/incorrect predictions

In the following we analyze correctly and in-
correctly labeled tokens. Because we are analyz-
ing differences between languages as well as be-
tween errors and successes we abstract away from
the underlying sample size variation by comparing
proportions.

The analysis inspects the differences in propor-
tions on four subsections of the development set,
as introduced above: the in lex+train tokens, the
in train only tokens, the in lex only tokens and the
true OOVs. The proportion of these four data sub-
sets in the correctly and the incorrectly labeled to-
kens are shown side by side in Figure 4 in lighter
and darker shades, respectively. If the OOV-
status of a word was unrelated to performance, the
lighter and darker bars would be of identical size.
This is not the case and we can observe that the
true OOVs make up a significantly larger share of
the errors than of successes (two-tailed paired Stu-
dent’s t-test: p = 0.007). Similarly, seen across all
languages the shift in the size of the proportion of

true OOVs is made up by more correct labeling
of a larger proportion of in train only (two-tailed
paired Student’s t-test: p = 0.014) and in lex only
(two-tailed paired Student’s t-test: p = 0.020),
whereas the proportion of in lex+train does not
significantly differ between the correctly and in-
correctly labeled parts (two-tailed paired Student’s
t-test: p = 0.200).2

4.3 Probing word encodings

Probing tasks, or diagnostic classifiers, are sepa-
rate classifiers which use representations extracted
from any facet of a trained neural model as input
for solving a separate task. Following the intuition
of Adi et al. (2017), if the target can be predicted,
then the information must be encoded in the repre-
sentation. However, the contrary does not neces-
sarily hold: if the model fails it does not necessar-
ily follow that the information is not encoded, as
opposed to not being encoded in a useful way for
a probing task classifier.

As the internal representations stored in neural
models are not immediately interpretable, probing
tasks serve as a way of querying neural represen-
tations for interpretable information. The prob-
ing task objective and training data is designed
to model the query of interest. The representa-
tion layer we query in this work is the word-level
output from the character embedding sub-model.
This part of the word-level representation starts
out uninformative and thus without prior predic-
tion power on the classifier objectives.

The pre-trained word embeddings stay fixed
in our model (see Section 4.4). However, the
character-based word encodings get updated: This
holds true both for the BASE system and the DSDS
tagger. As a target for assessing the flow of infor-
mation in the neural tagger, we thus focus on the
character-based word encodings.

The word-level is relevant as it is the granular-
ity at which the tagger is evaluated. The word em-
beddings may already have encoded PoS-relevant
information and the lexicon embeddings explic-
itly encodes PoS-type-level information. By con-
trast, the character-based word encodings are ini-
tialized to be uninformative and any encoding of
PoS-related information is necessarily a result of
the neural training feedback signal.

For these reasons we query the character-based
word representations of the tagger in order to com-

“Significance based on an a-level of 0.05



pare variation between the base tagger and the
DsDs lexicon-enriched architecture.

wlength

0.8
o
06

0.44

oovlex

0.8 bl
o6 base
. dsds

044

bg cs da de el en es fa fi fr he hi hr hu it nl no pl pt ro sv

Figure 5: Macro F1 scores for stand-alone clas-
sifiers on the probing tasks of predicting which
words are long and which are in the lexicon, re-
spectively. The baseline (bl) is a simple majority
baseline. The base- and DsDs-informed classifiers
were trained on character-based word representa-
tions from the neural taggers with and without ac-
cess to lexical information, respectively.

We employ two binary probing tasks: predict-
ing which words are long, i.e., contain more than
7 characters®, and predicting which words are in
the lexicon. The word length task is included
as a task which can be learned independently of
whether lexicon information is available to the
neural model. Storing length-related information
might help the model distinguish suffix patterns of
relevance to PoS-tagging.

Following Shi et al. (2016) and Gulordava et
al (2018), we use a logistic regression classifier
setup and a constant input dimensionality of 64
across tasks (Conneau et al., 2018). The classi-
fiers are trained using 10-fold cross-validation for
each of three trained runs of each neural model
and averaged. We include a majority baseline and
report macro Fl-scores, as we are dealing with
imbalanced classes. The training vocabulary of
both probing tasks is restricted to the neural tagger
training vocabulary, that is, all word types in the
projected training data, as these are the represen-
tations which have been subject to updates during
training of the neural model. Using the projected
data has the advantage that the vocabulary is sim-
ilar across languages as the data comes from the
same domain (Watchtower).

3Considering words of 7 characters or more to be long is
based on the threshold that was experimentally tuned in the
design of the readability metric LIX (Bjornsson, 1983). This
threshold aligns well with the visual perceptual span within
which proficient readers from grade four and up can be ex-
pected to automatically decode a word in a single fixation
(Sperlich et al., 2015)

The results on the word length probing task
shown on the top half of Figure 5 confirm that in-
formation relevant to distinguishing word length
is being encoded in the neural representation,
as expected. It is intriguing that the lexicon-
informed DSDS representation encodes this infor-
mation even at higher degree.

On the task of classifying which words are in
the lexicon, all neural representations beat the
majority baseline, but we also see that this task
is harder, given the higher variance across lan-
guages. With Spanish (es) and Croatian (hr) as
the only exceptions, the DsDs-based representa-
tions are generally encoding more of the informa-
tion relevant to distinguishing which words are in
the lexicon, confirming our intuitions that the in-
ternal representations were altered. Note, how-
ever, that even the base-tagger is able to solve this
task above chance level. This is potentially an
artifact of how lexicons grow where it would be
likely for several inflections of the same word to
be added collectively to the lexicon at once, and
since the character representations can be expected
to produce more similar representations of words
derived from the same lemma the classifier will
be able to generalize and perform above chance
level without the base-model representations hav-
ing ever been exposed to the lexical resource.

4.4 Updating in light of noisy data?

When training a tagger with noisy training data
and pre-trained embeddings, the question arises
whether it is more beneficial to freeze the word
embeddings or update them. We hypothesize that
freezing embeddings is more beneficial in noisy
training cases, as it helps to stabilize the sig-
nal from the pre-trained word embeddings while
avoiding updates from the noisy training data. To
test this hypothesis, we train the base tagger on
high-quality gold training data (effectively, the UD
training data sets), with and without freezing the
word embeddings layer. We find that updating
the word embedding layer is in fact beneficial in
the high-quality training data regime: on average
+0.4% absolute improvement is obtained (mean
over 21 languages). This is in sharp contrast to
the noisy training data regime, in which the base-
line accuracy drops by as much as 1.2% accuracy.
Therefore, we train the tagger with pre-trained em-
beddings on projected WTC data and freeze the
word embeddings lookup layer during training.



5 Related work

In recent years, natural language processing has
witnessed a move towards deep learning ap-
proaches, in which automatic representation learn-
ing has become the de facto standard methodol-
ogy (Collobert et al., 2011; Manning, 2015).

One of the first works that combines neural rep-
resentations with semantic symbolic lexicons is
the work on retrofitting (Faruqui et al., 2015). The
main idea is to use the relations defined in seman-
tic lexicons to refine word embedding represen-
tations, such that words linked in the lexical re-
source are encouraged to be closer to each other in
the distributional space.

The majority of recent work on neural sequence
prediction follows the commonly perceived wis-
dom that hand-crafted features are obsolete for
deep learning methods. They rely on end-to-end
training without resorting to additional linguistic
resources. Our study contributes to the increas-
ing literature to show the utility of linguistic re-
sources for deep learning models by providing a
deep analysis of a recently proposed model (Plank
and Agié, 2018). Most prior work in this direction
can be found on machine translation (Sennrich and
Haddow, 2016; Chen et al., 2017; Li et al., 2017;
Passban et al., 2018), work on named entity recog-
nition (Wu et al., 2018) and PoS tagging (Sagot
and Martinez Alonso, 2017) who use lexicons, but
as n-hot features and without examining the cross-
lingual aspect.

Somewhat complementary to evaluating the
utility of linguistic resources empirically is the in-
creasing body of work that uses linguistic insights
to try to understand what properties neural-based
representations capture (Kéadar et al., 2017; Adi
et al., 2017; Belinkov et al., 2017; Conneau et al.,
2018; Hupkes et al., 2018). Shi et al. (2016) and
Adi et al. (2017) introduced the idea of prob-
ing tasks (or ‘diagnostic classifiers’), see Belinkov
and Glass for a recent survey (Belinkov and Glass,
2019). Adi et al. (2017) evaluate several kinds of
sentence encoders and propose a range of probing
tasks around isolated aspects of sentence structure
at the surface level (sentence length, word content
and word order). This work has been greatly ex-
panded by including both syntactic and semantic
probing tasks, careful sampling of probing task
training data, and extending the framework to
make it encoder agnostic (Conneau et al., 2018).
A general observation here is that task-specific

knowledge is needed in order to design relevant
diagnostic tasks, which is not always straightfor-
ward. For example, Gulordava (2018) investigate
whether RNNs trained using a language model
objective capture hierarchical syntactic informa-
tion. They create nonsensical construction so that
the RNN cannot rely on lexical or semantic clues,
showing that RNNs still capture syntactic proper-
ties in sentence embeddings across the four tested
languages while obfuscating lexical information.
There is also more theoretical work on investigat-
ing the capabilities of recurrent neural networks,
e.g., Weiss et al. (2018) show that specific types of
RNNs (LSTMs) are able to use counting mecha-
nisms to recognize specific formal languages.

Finally, linguistic resources can also serve as
proxy for evaluation. As recently shown (Agié¢
et al., 2017), type-level information from dictio-
naries approximates PoS tagging accuracy in the
absence of gold data for cross-lingual tagger eval-
uation. Their use of high-frequency word types
inspired parts of our analysis.

6 Conclusions

We analyze DsDs, a recently-proposed low-
resource tagger that symbiotically leverages neu-
ral representations and symbolic linguistic knowl-
edge by integrating them in a soft manner. We
replicated the results of Plank and Agi¢ (2018),
showing that the more implicit use of embedding
user-generated dictionaries turns out to be more
beneficial than approaches that rely more explic-
itly on symbolic knowledge, such a type con-
straints or retrofitting. By analyzing the reliance
of DSDS on the linguistic knowledge, we found
that the composition of the lexicon is more impor-
tant than its size. Moreover, the tagger benefits
from small dictionaries, as long as they do not con-
tain tag set information contradictory to the eval-
uation data. Our quantitative analysis also sheds
light on the internal representations, showing that
they get more sensitive to the task. Finally, we
found that freezing pre-trained word embeddings
complement the learning signal well in this noisy
data regime.
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