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Abstract

Neural encoder-decoder models are usually
applied to morphology learning as an end-to-
end process without considering the underly-
ing phonological representations that linguists
posit as abstract forms before morphophono-
logical rules are applied. Finite State Trans-
ducers for morphology, on the other hand, are
developed to contain these underlying forms
as an intermediate representation. This pa-
per shows that training a bidirectional two-step
encoder-decoder model of Arapaho verbs to
learn two separate mappings between tags and
abstract morphemes and morphemes and sur-
face allomorphs improves results when train-
ing data is limited to 10,000 to 30,000 exam-
ples of inflected word forms.

1 Introduction

A morphological analyzer is a prerequisite for
many NLP tasks. A successful morphological an-
alyzer supports applications such as speech recog-
nition and machine translation that could provide
speakers of low-resource languages access to on-
line dictionaries or tools similar to Siri or Google
Translate and might support and accelerate lan-
guage revitalization efforts. This is even more
crucial for morphologically complex languages
such as Arapaho, an Algonquian language indige-
nous to the western USA. In polysynthetic lan-
guages such as Arapaho, inflected verbal forms
are often semantically equivalent to whole sen-
tences in morphologically simpler languages. A
standard linguistic model of morphophonology
holds that multiple morphemes are concatenated
together and then phonological rules are applied
to produce the inflected forms. The operation of
phonological rules can reshape the string of fixed
morphemes considerably, making it difficult for
learners, whether human or machines, to recreate
correct forms (generation) from the morpheme se-

quence or to analyze the reshaped inflected forms
into their individual morphemes (parsing).

In this paper we describe an experiment in
training a neural encoder-decoder model to repli-
cate the bidirectional behavior of an existing finite
state morphological analyzer for the Arapaho verb
(Kazeminejad et al., 2017). When a language is
low-resource, natural language processing needs
strategies that achieve usable results with less data.
We attempt to replicate a low-resource context by
using a limited number of training examples. We
evaluate the feasibility of learning abstract inter-
mediate forms to achieve better results on various
training set sizes. While common wisdom regard-
ing neural models has it that, given enough data
(Graves and Jaitly, 2014), end-to-end training is
usually preferable to pipelined models, an argu-
ment can be made that morphology is an excep-
tion to this: learning two regular mappings sepa-
rately may be easier than learning a single com-
plex one. In Liu et al. (2018), adressing a related
task, noticeably better results were reached for
German, Finnish, and Russian when a neural sys-
tem was first tasked to learn morphosyntactic tags
than when it was tasked to produce an inflected
form directly from uninflected forms and context.
These three languages are morphologically com-
plex or unpredictable, but marginally better results
were achieved for the less complex languages.

2 Arapaho Verbs

Arapaho is a member of the Algonquian (and
larger Algic) language family; it is an aggluti-
nating, polysynthetic language, with free word
order (Cowell and Moss Sr, 2008). The lan-
guage has a very complex verbal inflection sys-
tem, with a number of typologically uncommon
elements. A given verb stem is used either
with animate or inanimate subjects for intransi-



tive verbs (tei'eihi- ‘be strong.animate’ vs. fei'oo-
‘be strong.inanimate’), and with animate or inan-
imate objects for transitive verbs (noohow- ‘see
s.0.” vs. noohoot- ‘see s.t.”). For each of these
categories, the pronominal affixes/inflections vary
in form. For example, 2SG with intransitive, ani-
mate subject is /-n/, while for transitive, inanimate
object it is /-ow/ (nih-tei'eihi-n ‘you were strong’
vs. nih-noohoot-ow ‘you saw it’).

All stem types can occur in four different verbal
orders, whose function is primarily modal. These
verbal orders each use different pronominal af-
fixes/inflections as well. Thus, with four different
verb stem types and four different verbal orders,
there are a total of 16 different potential inflec-
tional paradigms for any verbal root, though there
is some overlap in the paradigms, and not all stem
forms are possible for all roots.

Arapaho also has a proximate/obviative sys-
tem, which designates pragmatically more- and
less-prominent participants. “Direction-of-action”
markers included in inflections do not correspond
to true pronominal affixes. Thus nih-noohow-oot
‘more important 3SG saw less important 3S/PLC
vs. nih-noohob-eit ‘less important 3SG/PL saw
more important 3S’. The elements -oo- and -ei-
specify direction of action, not specific persons or
numbers of participants.

Arapaho has both progressive and regressive
vowel harmony, operating on /i/ and /e/ respec-
tively. This results in alternations in both the
inflections themselves, and the final elements
of stems, such as noohow-un ‘see him!” vs.
niiteheib-in ‘help him!’, or nih-ni'eeneb-e3en ‘1
liked you’ vs. nih-ni'eenow-oot ‘he liked her’.

The Arapaho verb, then, is subject to com-
plicated morphophonological processes. For ex-
ample, the underlying form of the word ‘we
see you’ concatenates the transitive verb stem
with animate object (TA) noohow ‘see’ and the
‘1PL.EXCL.SUBJ.2SG.OBJ’ suffix -een. This
underlying form undergoes significant transforma-
tion after morphophonological rewrite rules are
applied. An initial change (IC) epenthesizes -en
before the first vowel in the verb stem because it
is a long vowel and because the verb is affirmative
present. Then vowel harmony is at work, chang-
ing n-en-oohow-een to n-on-oohow-een. Finally a
consonant mutation rule changes w to b, producing
the surface form nonoohobeen (cf. Figure 1).

3 Finite State Model

One of the clear successes in computational mod-
eling of linguistic patterns has been finite state
transducer (FST) models for morphological anal-
ysis and generation (Koskenniemi, 1983; Beesley
and Karttunen, 2003; Hulden, 2009; Lindén et al.,
2009). An FST is bidirectional, able to both parse
inflected word forms and generate all possible
word forms for a given stem (Beesley and Kart-
tunen, 2003). Given enough linguistic expertise
and time investment, FSTs provide the capability
to analyze any well-formed word in a language.

The Arapaho FST model used in this paper
was constructed with the foma finite-state toolkit
(Hulden, 2009). It used 18,559 verb stems taken
from around 91,000 lines of natural discourse in
a large transcribed and annotated spoken corpus
of Arapaho, parts of which are publicly available
in the Endangered Languages Archive (ELAR).!.
All possible basic inflections occur in the corpus.
The FST produces over 450,000 inflected forms
from the stems.

The FST is constructed in two parts, the first be-
ing a specification of the lexicon and morphotac-
tics using the finite-state lexicon compiler (lexc),
a high-level declarative language for effective lex-
icon creation, where concatenative morphologi-
cal rules and morphological irregularities are ad-
dressed (Karttunen, 1993). The first part pro-
duces intermediate, abstract “underlying” forms.
These forms concatenate the appropriate mor-
phemes from the lexicon in the correct order, (e.g.
noohoween in Figure 1) but are not well-formed
words in the language.

The second part of the FST implements the
morphophonological and phonological rules of the
language using “rewrite rules”. These rules apply
the appropriate phonological changes to the inter-
mediate forms in specified contexts. Thus, in gen-
eration, the inflected word is not merely a bundle
of morphemes, but the completely correct word
form in accord with the morphophonological and
phonological rules of the language. By compos-
ing, in a particular order (specified in the grammar
of the language), the FSTs resulting from these
rewrite rules to the parsed forms, the result is a sin-
gle FST able to both generate and parse as shown
in Figure 1.

"https://elar.soas.ac.uk/Collection/MPI189644
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Figure 1: An example of a parsed form with verb stem
and morphosyntactic tags (top left) and inflected sur-
face form (bottom left) for the Arapaho FST. The in-
termediate underlying phonological forms (middle left)
are accessible to the FST before/after applying mor-
phophonological alternations.

4 Training the LSTM

Although an extensive finite state morphological
analyzer is an extremely useful resource, neural
models are much better able to analyze to un-
seen forms than finite state machines are. How-
ever, neural models are hampered in low-resource
contexts by their data greediness. In order to
see whether this limitation could be addressed we
simulated training a neural model in low-resource
contexts using output from the Arapaho FST.
Since the currently strongest performing mod-
els for morphological inflection (Cotterell et al.,
2017; Kann and Schiitze, 2016; Makarov et al.,
2017) use an LSTM-based sequence-to-sequence
(seq2seq) model (Sutskever et al., 2014), we fol-
low this design in our work. We implement the
seq2seq model with OpenNMT’s (Klein et al.,
2018) default parameters of 2 layers for both the
encoder and decoder, a hidden size of 500 for the
recurrent unit, and a maximum batch size of 64.
Training corpora of various sizes are created
by randomly selecting examples of inflected word
forms and their corresponding intermediate and
parsed forms from the bidirectional output of the
Arapaho FST. This results in triplets like in Fig-
ure 1. The triplets are arranged into three pairs—
inflected “surface” forms (SF) & intermediate
forms (IF), IF & parsed forms (PF), and SF & PF.
Re-using the pairs for both parsing and generation
gives six data sets. For simplicity’s sake, since the
primary aim is to compare the two strategies’ per-
formance and not to measure accuracy, forms with
ambiguous inflected forms, parses, or intermediate
forms were filtered. Other experiments (Moeller
et al., 2018) indicate that pre-processing the data
to account for ambiguous forms would not greatly

affect accuracy.

We treat the intermediate strategy of parsing
as a translation task of input character sequences
from the fully-inflected surface forms to an output
of character sequences of the intermediate forms,
and then from the intermediate forms to a se-
quence of morphosyntactic tags plus the character
sequences of the verbal root. Generation follows
the same model in the opposite direction.

LSTM-based seq2seq LSTM-based seq2seq

SF: nonoohobeen > IF: noohoween

/
/ !
|
/ PF:[VERB|[TA][ANIMATE-
OBJECT]|[AFFIRMATIVE]

[PRESENT][IC|noohow
[1PL-EXCL-SUBJ[2SG-OBJ]|

/
IF:  noohoween <

Figure 2: An example from training/test sets. In pars-
ing, surface forms (SF) predict intermediate forms (IF).
The output trains another encoder-decoder to predict
parsed forms (PF). Generation follows the same steps
but proceeding from the PF instead.

The selected data is divided roughly in half.
The first half serves as training and development
and the second half as testing data in the first
step of the intermediate training strategy (SF<IF
or PF&IF). In order to compare the two train-
ing strategies, the output of this intermediate step
trains and tests the second step of the intermedi-
ate strategy. The original second half also serves
to train and test the direct strategy (SF-PF or PF-
SF). Symbol prediction degrades at the end of a se-
quence. Best results are achieved when each char-
acter/tag sequence is doubled on its line for train-
ing and testing (Moeller et al., 2018) and trimmed
for evaluation. So, for example, nonoohobeen be-
comes nonoohobeennonoohobeen during training
and testing but predicted symbols that exceed the
length of the original string are deleted and the first
half of the predicted string is evaluated against the
original string.

5 Experiment and Results

We compare two strategies to train a neural model
to generate inflected verbs from morphosyntac-
tic tags with verb stem or to parse inflected verb
forms. First, we train the neural model to learn
correct output forms directly from the parsed or
inflected input. Second, we added an intermediate
step where the model first learns the mapping to



intermediate forms and, from there, the mapping
to the correct parsed or inflected form. We mea-
sure the final accuracy score and the average Lev-
enshtein distance and compare the performance of
the two strategies in generation and in parsing. Ac-
curacy is measured as the fraction of correct gener-
ated/parsed forms in the output compared to com-
plete gold inflected or parsed forms.

5.1 Generation
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Figure 4: Generation - average Levenshtein distances

We trained a bidirectional LSTM encoder-
decoder with attention (Bahdanau et al., 2015) to
generate Arapaho verbs using five training sets
with approximately 14.5, 18, 27, 31.5, and 36
thousand examples. The direct strategy trains on
the morphosyntactic tags and verb stem. Each tag
occurs in the same order as its corresponding mor-
pheme appears in the intermediate form. Only

“direction-of-action” tags/morphemes come after
the stem.

The accuracy scores in Figure 3 and the Lev-
enshtein distance measures in 4 show that the in-
termediate strategy performs better than the direct
strategy in low-resource settings. Starting at about
14,500 training examples, where the direct strat-
egy produces barely any inflected forms (SF) cor-
rectly, the intermediate strategy achieves nearly
69% accuracy. As the training size approaches
36,000, the advantage of the intermediate step is
lost. Indeed, the intermediate strategy begins to
perform worse while the direct strategy continues
to improve. The intermediate strategy seems to
peak at 30,000 training examples.

5.2 Parsing
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Figure 6: Parsing - average Levenshtein distances

The parsing trend is less clear when compared
to morphological generation. We compare seven



training sets of approximately 10, 14.5, 18, 31.5,
36, and 45 thousand examples. As in morpholog-
ical generation, at the lowest data settings the in-
termediate learning strategy is preferable to the di-
rect strategy, though it has a less dramatic perfor-
mance difference. The accuracy scores in Figure
5 show that with 14,000 training examples, the in-
termediate strategy performs only about 10 points
higher. The advantage of the intermediate strategy
is less noticeable in parsing, nor does its advan-
tage decrease as quickly. With 36,000 examples
barely one point separates the two strategies and
the intermediate strategy performs slightly better.
The intermediate strategy performance does not
begin to reduce until 45,000 examples. The av-
erage Levenshtein distances in Figure 6, however,
show that the direct strategy improves more con-
sistently, though it is still only slightly better as
training size increases.

5.3 Discussion

An end-to-end neural model demands quite a bit of
data in order to learn patterns. It appears that, for
languages with complicated morphophonological
alternations, if an intermediate model is trained
on a simple concatenation of morphemes, these
disadvantages may be counterbalanced. The mor-
pheme substrings in the intermediate forms corre-
spond predictably to morphosyntactic tags in the
parsed form. Subsequent alternations are less pre-
dictable. This may explain the intermediate strat-
egy’s difference in performance between parsing
and generation. A pipelined approach with inter-
mediate training is generally not preferable to end-
to-end training. The intermediate step inevitably
introduces errors into the training of the second
neural model. The intermediate strategy’s perfor-
mance degradation beyond 35 or 40 thousand ex-
amples might indicate that the errors become too
dominant.

Comparing our results to the recent CoNLL-
SIGMORPHON shared tasks (Cotterell et al.,
2016, 2017, 2018), it is surprising that the Arapaho
direct generation results at 10,000 examples are so
low. However, polysynthetic languages are rare in
the shared task—only one, Navajo, was available
in 2016 and 2017-making it difficult to compare
results on such complicated and varied morpholo-
gies. In addition, our data included phenomena
which could be considered derivational, such as
verbal stems signaling animacy and modality (cf.

Sect. 2). Also, since the data was selected ran-
domly from the full FST output, the neural model
may simply have not seen enough repeated stems
in the low settings. Our results are not very good
at the lowest settings but, in future, more in-depth
pre-processing and filtering of the data could im-
prove overall performance.

The varying results from morphological parsing
shown in Figures 5 and 6 demonstrate the prelim-
inary nature of this study. The trend between the
two strategies seems indicative but several more
comparisons should be conducted on similar lan-
guages. We hope to conduct a similar study on
other low-resource languages for which an FST
exists in order to determine whether the trend will
reappeatr.

6 Conclusion

A sweet spot exists between 10,000 and 30,000
randomly selected training examples of Arapaho
verbs where better results are achieved in mor-
phological generation by first training an encoder-
decoder to produce the intermediate forms from an
FST than by learning the inflected or parsed form
directly. For generation, the intermediate strategy
achieves the strongest results around 30,000 exam-
ples. The results of morphological parsing vary,
with the intermediate strategy outperforming the
direct strategy at very low settings but achieving
similar results with 18,000 and 36,000 training ex-
amples. Overall, the intermediate strategy appears
to produce reliably better results at low-resource
settings than the direct strategy.
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