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1Saarland University, Saarbrücken, Germany
2German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany

smcleod@coli.uni-saarland.de
{ivana.kruijff, bernd.kiefer}@dfki.de

Abstract
This paper describes the use of Multi-Task
Neural Networks (NNs) for system dialogue
act selection. These models leverage the rep-
resentations learned by the Natural Language
Understanding (NLU) unit to enable robust
initialization/bootstrapping of dialogue poli-
cies from medium sized initial data sets. We
evaluate the models on two goal-oriented di-
alogue corpora in the travel booking domain.
Results show the proposed models improve
over models trained without knowledge of
NLU tasks.

1 Introduction

To be successful, goal-oriented dialogue systems
must accurately determine the intent(s) of a user,
identify and understand the relevant information
they have provided, and based on that informa-
tion, select the appropriate response at each turn
in the conversation. One way to model conver-
sation is as a partially observable Markov deci-
sion process (Young et al., 2013). In this frame-
work system response generation is modeled as
a stochastic policy, and research into statistically
optimizing dialogue policies with Reinforcement
Learning (RL) is an active area of research (Ga-
sic and Young, 2014; Lemon and Pietquin, 2007).
However, learning optimal dialogue policies with
RL can be challenging since large state and ac-
tion spaces require large amounts of training data
to densely sample the space (Lemon and Pietquin,
2007; Wen et al., 2016; Li et al., 2017). Addition-
ally, networks trained with RL learn in a trial-and-
error process, guided by a potentially delayed re-
ward function. This exploration process can lead
to poor performance in the early training stages,
which in turn can lead to a negative user experi-
ence (Su et al., 2016).

To address these issues supervised learning has
been used for pre-training of dialogue policies (Su

et al., 2016; Henderson et al., 2007; Williams and
Zweig, 2016), however the previous approaches
only considered one aspect of dialogue during
training. Grosz and Sidner (1986) describe dis-
course structure as a composite of multiple as-
pects that interact and co-constrain one other. This
structure determines the meaning of a discourse
and provides a framework for processing dialogue.
The question then arises whether it would be ben-
eficial to view dialogue policy training as a multi-
task learning (MTL) problem. MTL is an ac-
tive area of research and has been shown to im-
prove performance on a number Natural Language
Processing (NLP) tasks (Ruder, 2017; Zhang and
Yang, 2017). In this work we propose a method
to use the training signals of related tasks during
supervised pre-training of system dialogue act se-
lection as part of dialogue policy initialization. We
also experiment with multiple architectures across
two data sets and evaluate against two basline ar-
chitectures.

Specifically, we use slot-filling and user-intent
classification as auxiliary tasks for the primary
task of system dialogue act selection. For
many corpus trained dialogue systems slot-filling
and user-intent classification are trained indepen-
dently, separate from the dialogue manager. We
hypothesize that the features learned when train-
ing neural models for these tasks are also informa-
tive for the initialization of a robust dialogue pol-
icy network. In MTL there can be an added cost
of collecting labels for auxiliary tasks, but in the
scenario in this paper the labels for user-intent and
slot-filling that are needed to develop a complete
dialogue system already exist; the framework we
propose uses these labels as additional informa-
tion to initialize the dialogue manager. The next
sections describe related work in MTL, including
MTL for goal-oriented dialogue systems, the cor-
pora used in our experiments, the architecture of
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Corpus # Slots # Intents # Actions Avg. UL # Train # Dev # Test Vocab
ATIS 79 17 NA 11.13 4478 500 894 900

Frames 21 45 52 8.05 6131 1532 1916 3249
COMM ATT 34 10 56 1.86 3960 442 781 545
COMM BBN 37 18 48 2.30 3168 351 622 490
COMM CMU 45 32 72 2.58 2793 310 548 580
COMM SRI 37 17 25 2.44 4076 452 800 569

Table 1: The number of slot types, user speech acts, and system dialogue acts for each corpus, as well as the
average length of the user input utterances.

the neural models we tested, and the results of the
evaluation.

2 Related work

Multi-Task Learning: In MTL the training sig-
nals of related tasks are used to learn features
that are relevant to multiple tasks, including a pri-
mary task of interest. In learning these shared
features the model learns a representation that im-
proves generalization on that primary task. Caru-
ana (1998) and Zhang and Yang (2017) describe
a number of tasks where the shared representation
learned with MTL improves generalization. MTL
has also been shown to improve a number NLP
tasks (Toshniwal et al., 2017; Arik et al., 2017;
Dong et al.; Zoph and Knight, 2016; Johnson et al.,
2016). See Ruder (2017) and Zhang and Yang
(2017) for additional examples of MTL for NLP.

Goal-Oriented Dialogue systems: Wen et al.
(2016) treat dialogue as a sequence to sequence
mapping problem and design a dialogue man-
ager where each component is modularly con-
nected and trainable from data. Previous work
also learns state-tracking and other NLU tasks
simultaneously. Hakkani-Tur et al. (2016) use
a bi-directional LSTM to jointly model slot fill-
ing, intent determination, and domain classifica-
tion for different domains. Chen et al. (2016) use
a knowledge-guided structural attention network
(K-SAN) to model intent prediction and slot fill-
ing simultaneously. Both published results on the
ATIS corpus (Price, 1990). Padmakumar et al.
(2017) train a semantic parser and policy network
in batches, giving the policy network access to the
updated semantic parser after every batch. Zhao
and Eskenazi (2016) jointly learn policies for state
tracking and dialogue strategies using Deep Re-
current Q-Network (DRQN). Li et al. (2017) use
a single RNN with LSTM to jointly learn user in-
tent as well as slot filling. Their dialogue man-
ager is initialized by supervised learning of labels
generated by a rule system, then end-to-end train-

ing is continued with RL using a user simulator.
Results were published on data from movie-ticket
booking domain. We also propose to initialize the
dialogue manager with supervised learning, how-
ever we use the information from upstream dia-
logue system tasks during supervised pre-training.
We also experiment on two distinct corpora in the
travel planning domain across multiple architec-
tures.

3 Data

We evaluated our models on three corpora: the
Maluuba Frames (El Asri et al., 2017), DARPA
COMMUNICATOR (Georgila et al., 2009, 2005)
and ATIS (Price, 1990) data sets. The Frames
corpus is a collection of human-human dia-
logues that captures realistic behaviors in natu-
ral conversations. The DARPA COMMUNICA-
TOR corpus is a collection of human-computer
interactions from users calling into the COM-
MUNICATOR travel planning system. We use
the version described in (Georgila et al., 2005),
Georgila:COMMUNICATOR, which includes an-
notations from the original corpus plus additional
user-intent and task level annotations automati-
cally added by a system they designed. The com-
plete COMMUNICATOR corpus includes data for
all systems evaluated as part of the DARPA pro-
gram. As in Henderson et al. (2007) we use only
the data from the ATT, BBN, CMU and SRI sys-
tems. The ATIS corpus is a collection of spon-
taneous speech and associated annotations, col-
lected in a Wizard-of-Oz setup. The corpus was
included in the software released by Hakkani-Tur
et al. (2016) and we used it to for a comparison to
their work. The number of unique labels for each
task as well as the train, dev and test data splits for
each corpus are listed in Table 1.

3.1 Preprocessing

We used the common IOB (in-out-begin) format to
annotate slot-tags for each token. In this schema,
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for each input sequence X tokens t1, ...., tn are
assigned a slot label s1, ..., sn and multi-token
values are labeled with B (begin) and I (inside)
to indicate the extent of the tokens that fill that
slot. Tokens that are not relevant to any slot
are tagged with O (outside). Some turns in the
Frames and COMMUNICATOR corpora were la-
beled with duplicate user-intent labels and system
action labels. One option was to ignore these du-
plicate labels, however these duplicates occurred
frequently enough to be considered informative;
therefore when more than one class label exists
for a single input utterance, we concatenated all of
the labels into a single label. For example, if the
system dialogue act was annotated with negate,
negate, and inform the labels are concatenated to
create a single negate#negate#inform label.

4 Experiments

We completed three sets of experiments: two base-
line experiments and a final experiment with the
multi-task architecture. Each of these experiments
included three tasks: slot-filling, framed as se-
quence prediction, user-intent classification, and
system dialogue act selection. In the first base-
line experiment the models described in Hakkani-
Tur et al. (2016) were extended to new corpora
and new tasks using the software released by the
authors. In the second baseline experiment we
trained single-task models for each of the three
tasks individually, on each corpus. Following the
methodology suggested in Caruana (1998), these
models were tuned for each corpus and architec-
ture. The Maluuba Frames and DARPA COM-
MUNICATOR Corpora were used in baseline and
multi-task experiments; the ATIS corpus does not
contain annotations for system dialogue act selec-
tion and was therefore only used in the baseline
experiments.

4.1 Architectures

Baseline A: Hakkani-Tur et al. (2016) describe a
recurrent neural network (RNN) architecture for
simultaneous learning of slot-filling, domain clas-
sification, and user intent classification. They treat
joint learning as a sequence labeling task and use
a modification of the encoder-decoder model. To
represent the data they use the IOB style annota-
tions for slots and for each utterace U associate
the sentence final token with a single label gener-
ated by concatenating the associated domain d and

(a) BLSTM1

(b) CNN1

(c) CNN2

Figure 1: Model architectures for the multi-task exper-
iments.

user-intent u labels. In this framework the input
and output utterances become:

X = t1, . . . , tn, < EOS >

Y = s1, . . . , sn, du uu

The model weights are learned by maximizing
the conditional likelihood of the training set labels.

In our first baseline experiment we use this ar-
chitecture to jointly learn user-intent classifica-
tion, slot-filling, and system dialogue act selection
(replacing domain classification) on the Frames
and COMMUNICATOR corpora. In our experi-
ments the sentence final token is created by con-
catenating the user-intent and system dialogue act
labels.

Baseline B: Next we trained Bi-directional
LSTM (BLSTM) and Convolutional Neural Net-
work (CNN) single-task models to perform each
task individually. The BLSTM consisted of an in-
put layer, hidden layer, and output layer. Softmax
is used to produce a distribution (pt) of likely la-
bels at each time-step . The final output is then
argmax(pt). The CNN network consists of two
convolutional layers, connected in series, each fol-
lowed by max pooling layers. A dense layer con-
nects the output of the final convolutional layer to
the softmax layer. For slot-filling the models pre-
dict a label for each word in the input sequence.
For user-intent and system dialogue act selection
the models predict a single label for the input utter-
ance. The BLSTM architecture was used to train
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individual models for all three tasks. The CNN ar-
chitecture was used to train individual user-intent
and system dialogue act selection models only.

Multi-Task Models: Lastly, we created multi-
task models with BLSTMs and CNNs, and a com-
bination of the two. In these architectures each
task has a separate output, and all tasks share hid-
den layers. We implemented three BLSTM ver-
sions. BLSTM1 consists of two stacked BLSTMs
and the slot-filling output layer is positioned as an
auxiliary output at the first BLSTM. For BLSTM1
the loss for slot-filling is backprogagated through
the first BLSTM. The loss for user-intent and
system dialogue act selection is backprogagated
through both BLSTM layers. Figure 1a illustrates
this architecture. BLSTM2 uses the BLSTM1 ar-
chitecture plus a skip connection from the em-
bedding layer to the second BLSTM layer. In
BLSTM3 the first BLSTM layer weights are ini-
tialized with the weights learned when training
slot-filling alone. The intent was to explore the
possible benefit of transfer learning from a previ-
ously trained model. Experiments on the subsets
of the COMMUNICATOR corpus with BLSTM3
include model training where the weights of the
first BLSTM layer are initialized with the weights
learned on the Frames data (BLSTM3b). Finally,
ablation testing was also done to explore the in-
fluence of each auxiliary task. The BLSTM1
model was trained on all three tasks simultane-
ously (BLSTM1a), on slot-filling and the primary
task alone (BLSTM1b), and on user-intent classi-
fication and the primary task alone (BLSTM1c).

The CNN1 network design was inspired by
Yoon (2014) and is illustrated in Figure 1b. This
network uses 4 filters of different widths each fol-
lowed by max pooling over time. Filter widths,
the number of feature maps, and the number of
nodes in the fully connected layer were chosen
based on the suggestions of Zhang and Wallace
(2015). Early experiments on the BLSTM net-
works showed a potential benefit to using user-
intent classification alone as an auxiliary task,
therefore these experiments used only user-intent
classification as the auxiliary task.

We also conducted experiments with net-
works inspired by Google’s Inception architecture
(Szegedy et al., 2014). This is a general purpose
architecture where the output from multiple con-
volutional layers is passed to a single convolu-
tional layer, called a bottle-neck, which constrains

Corpus best F Avg F
ATIS 95.48% 94.70%

Frames 74.26% 73.05%
COMMUNICATOR ATT 48.17% 45.98%
COMMUNICATOR BBN 50.34% 48.77%
COMMUNICATOR CMU 53.96% 52.59%
COMMUNICATOR SRI 59.74% 58.55%

Table 2: The best F-measure and average F-measure on
slot-filling alone for each corpus using the architecture
released by Hakkani-Tur et al. (2016).

the number of features that subsequent layers take
as input, keeping the number of parameters low
while retaining the expressive power of the net-
work. Our architecture is illustrated in Figure 1c.
This network uses 5 convolutional layers of differ-
ent filter widths followed by a single bottle-neck
convolutional layer. The CNN2b network is com-
posed of three CNN2a networks concatenated to-
gether.

The final multi-task network is a hybrid CNN
+ BLSTM architecture. In this network the in-
put is connected to a CNN network of three con-
volutional layers with different filter widths each
followed by max pooling. This is then con-
nected to the BLSTM1 architecture. The goal
was to explore the possibility of extracting fea-
tures with a CNN layer that could then be used
by the BLSTM1 network.

4.2 Training

All network development and training was done
in Keras (Chollet et al., 2015) and the code will
be released with the final version of this paper.
We experimented with batch sizes of 15, 25, 50
and 100, hidden layers of 25, 50 and 100 units,
and drop-out ratios of 0,0.25, and 0.5 on the fully-
connected layers. GloVe (Pennington et al., 2014)
word embeddings were used as pre-trained word
embeddings. The Adam optimizer was used with
a learning rate of 0.001. All weights were initial-
ized with glorot uniform. The BLSTM layers used
tanh as the activation function. During training the
validation loss was monitored and early stopping
was used to prevent over-fitting.

5 Evaluation

Table 2 shows the best and average F-measure
for slot-filling alone on each corpus using the ar-
chitecture released by Hakkani-Tur et al. (2016).
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Model Frames ATT BBN CMU SRI
Baseline A 34.77% 52.55% 40.59% 36.11% 57.72%

BLSTM Baseline 36.26% 52.56% 43.52% 37.06% 57.36%
BLSTM1a 36.08% 52.52% 43.71% 37.49% 58.12%
BLSTM1b 35.88% 52.31% 42.52% 38.06% 57.32%
BLSTM1c 37.93%* 53.12% 42.96% 36.58% 57.21%
BLSTM2 36.29% 51.74% 43.56% 37.55% 58.61%
BLSTM3 37.49%* 52.13% 42.27% 37.34% 58%
BLSTM3b NA 52.29% 43.19% 38.01% 58.30%

CNN Baseline 35.37% 46.93% 43.93% 36.44% 57.39%
CNN1 34.59% 51.90%* 43.93% 36.73% 59.09%
CNN2a 32.78% 52.62%* 43.29% 37.59% 56.09%
CNN2b 32.80% 53.28%* 43.74% 38.47%* 56%

CNN+BLSTM 36.82%* 51.38%* 43.73% 38.53%* 58.49%

Table 3: The best F-measure achieved for each multi-task model on the system action classification task. Results
in bold indicate an improvement over the associated single-task baseline (BLSTM or CNN baseline). An asterisk
indicates a statistically significant improvement over the respective baseline.

Both best and average F-measure were calculated
on the held-out test set, where the average was
calculated over 10 different weight initilizations.
Hakkani-Tur et al. (2016) experimented with mul-
tiple LSTM and BLSTM models, but noted that
comparable results were achieved on each and
therefore only report results on the BLSTM mod-
els. We do the same and only report on experi-
ments with their BLSTM architecture. The results
on the ATIS corpus are the metrics reported by the
authors (and confirmed by us).

For each corpus many of the multi-task models
achieved a higher metric score than the Baseline
B models on the test data, however significance
testing showed not all of these improvements were
statistically significant. Significance testing was
done with randomized approximation (Yeh, 2000).
Table 3 lists the best F-measure values for each
model for the primary task of system action selec-
tion.

The majority of the multi-task models, as well
as the Baseline B models on the Frames, BBN,
and SRI corpora, achieved a higher F-measure
than the Baseline A models. (We did not test for
statistical significance between the MTL models
and the Baseline A). The multi-task CNN mod-
els showed statistically significant improvement
on three data sets and were faster to train than the
BLSTM models, even when larger. Half of the
BLSTM models achieved significant improvement
on the Frames corpus, but improvement was more
sporadic on the COMMUNICATOR corpus. In
the Frames corpus most input utterances are much
longer since the user provides significant context
at each turn. In the COMMUNICATOR corpus af-
ter the initial request most user utterances are lim-

ited to one or two word responses to questions pre-
sented by the system. This creates a dialogue that
looks more like a system initiative dialogue, as
compared to the more unconstrained Frames cor-
pus. The CNN+BLSTM network improved per-
formance on three data sets and is the largest of
the proposed models.

6 Conclusion

We present multi-task BLSTM and CNN models
that use slot-filling and user-intent classification
as auxiliary tasks for the primary task of system
dialogue act selection as part of dialogue policy
initialization. The models bootstrap dialogue pol-
icy optimization without the need for hand-written
rules, as done, e.g., in (Li et al., 2017). We also
empirically evaluate multiple RNN and CNN ar-
chitectures on multiple data sets against two base-
lines architectures. Our MTL models improve
over the performance achieved on single task base-
line models (Baseline B) as well as the jointly
trained BLSTM model released by Hakkani-Tur
et al. (2016).

A dialogue manager that is initialized from cor-
pus data is not flexible enough for new user in-
teractions, therefore additional training is neces-
sary. Future work will include deploying our MTL
models as part of a complete dialogue system and
continued training with RL. This will allow us to
explore the performance of MTL models exper-
imentally on end-to-end systems. Additionally,
future work will incorporate additional dialogue
context into system dialogue act selection, and
model the scenario where more than one system
dialogue act may be valid at a given point in the
dialogue.
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