Dialogue Act Classification in Team Communication
for Robot Assisted Disaster Response

Tatiana Anakina and Ivana Kruijff-Korbayova
German Research Institute for Artificial Intelligence (DFKI) / Saarbriicken, Germany
tatiana.anikina@dfki.de,

Abstract

We present the results we obtained on the
classification of dialogue acts in a corpus of
human-human team communication in the do-
main of robot-assisted disaster response. We
annotated dialogue acts according to the ISO
24617-2 standard scheme and carried out ex-
periments using the FastText linear classifier
as well as several neural architectures, includ-
ing feed-forward, recurrent and convolutional
neural models with different types of embed-
dings, context and attention mechanism. The
best performance was achieved with a ”Divide
& Merge” architecture presented in the paper,
using trainable GloVe embeddings and a struc-
tured dialogue history. This model learns from
the current utterance and the preceding context
separately and then combines the two gener-
ated representations. Average accuracy of 10-
fold cross-validation is 79.8%, F-score 71.8%.

1 Introduction

Disaster response teams operate in high risk situa-
tions and face critical decisions despite partial and
uncertain information. First responders increas-
ingly deploy mobile robotic systems to mitigate
risk and increase operational capability. In order
for robotic systems to provide optimal support for
mission execution, they need mission knowledge,
i.e., run-time awareness and understanding of the
mission goals, team composition, the tasks of the
team(s), how and by whom they are being car-
ried out, the state of their execution, etc. Since
first responders typically operate under high cog-
nitive load and time pressure, it is paramount to
keep the burden of entering mission knowledge
into the system at a minimum. The goal of our
research thus is to develop methods for extracting
run-time mission knowledge from the verbal com-
munication in the response team. The acquired
mission knowledge can also be used to assist the
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first responders during or after the mission, for ex-
ample, by supporting the real-time coordination of
human and robot actions or by mission documen-
tation generation (Willms et al., 2019).

In this paper we address one particular sub-
problem: dialogue act (DA) recognition. DAs
are needed for a better understanding of the team
communication and how the mission tasks are be-
ing executed. For example, Requests communi-
cate task assignments and thus allow us to dis-
tinguish task assignments from other task-relevant
information exchange; Informs often report task
progress; and Questions indicate what was unclear
and required additional explanations. These dis-
tinctions are also useful for providing assistance,
including compiling mission documentation.

We use the corpus of human-human team com-
munication in robot-assisted disaster-response
collected in the TRADR project (Kruijff-
Korbayova et al., 2015). The TRADR team
communication is task-oriented, focused on col-
laborative execution of a mission by a structured
team using mobile robots to remotely gather situ-
ation awareness in a complex, dynamic, unknown
physical environment. In this the communication
differs from that in well-known existing corpora
annotated with DAs.

We annotated our corpus with DAs following
the ISO 24617-2 scheme (Bunt et al., 2012, 2017)
and experimented with several machine learning
approaches to DA classification. We explored var-
ious models, including different ways of taking di-
alogue context into account.

We overview previous work on DA classifica-
tion and existing corpora with DA annotations in
§2. We present our corpus in §3 and provide statis-
tics for DA and speaker role distribution. In §4 we
describe the classification models tested in our ex-
periments and report the evaluation results. We
conclude with a discussion and future plans in §5.
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2 Related Work

There is a body of research on teamwork and in-
formation sharing in disaster response, with and
without robots, e.g., (Casper and Murphy; Burke
et al.; Burke and Murphy; Johnson et al., 2017;
Toups et al., 2016; Carver and Turoff, 2007).

There has been very little work on dialogue pro-
cessing in this domain so far. In the pioneering
project TRIPS a decision-support dialogue system
was developed for the planning of an island evac-
uation in the event of a natural disaster. Focus was
on semantic parsing and task-specific interpreta-
tion. This approach was further developed to han-
dle various more complex emergency tasks cov-
ered in the Monroe corpus (Stent, 2000). This
work focused on mission planning (not execution),
data was collected in lab (not real disaster environ-
ment) and the participants were students (not real
first responders). DAs were annotated using the
DAMSL scheme (Core and Allen, 1997).

Some works on human-robot collaboration for
disaster response address the interpretation of ver-
bal commands to robots (Kruijff et al., 2014; Yaz-
dani et al., 2018), but not the overall team commu-
nication.

In (Martin and Foltz, 2004) automatic analy-
sis of the semantic content of team communica-
tion and automatic verbal behavior labeling was
used to assess team performance in a command
and control task with an unmanned aerial vehicle
in a simulated environment. A corresponding syn-
thetic team-member agent is described in (Cooke
et al., 2016). Since the corpus is not available and
the publications do not provide details on the task
and communication complexity, a closer compari-
son to our work is not possible. Communication
analysis was used also in (Burke et al.). They
designed and manually applied a team communi-
cation coding scheme, in order to examine robot
operator situation awareness and technical search
team interaction during a high-fidelity disaster re-
sponse drill with teleoperated robots. DAs are re-
flected in their annotation of the forms and func-
tions of communication contributions.

Corpora with DA annotations include also well-
known human-human dialogue corpora, such as
MapTask (Anderson et al., 1991; Carletta et al.,
1997); TRAINS (Allen, 1991); Switchboard
(Godfrey et al., 1992); Meeting Recorder Dia-
logue Act (Shriberg et al., 2004) and the AMI
Meeting Corpus (Carletta et al., 2005), and re-
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cent large corpora, e.g., Maluuba Frames (Schulz
etal., 2017) and MultiWOZ (Budzianowski et al.,
2018)). These corpora cover different domains
and the goals the participants follow in their in-
teraction are quite different from what is going on
in the team communication in our domain.

Despite the differences it would be interesting
to see how DA classification models developed on
other exiting corpora perform on our corpus. The
challenge of such endeavor is, however, that dif-
ferent and sometimes very task-specific schemes
have been applied to annotate DAs. For instance,
some of the DAs in the Maluuba Frames corpus in-
clude domain-specific labels such as Canthelp and
No _result as well as Thankyou and Moreinfo.

The ISO 24617-2 standard for DA annotations
introduced in (Bunt et al., 2012) and further de-
fined in (Bunt et al., 2017) was proposed to over-
come this. To date several corpora have been an-
notated accordingly and made available through
the DialogBank (Bunt et al., 2016). Although the
mapping of DA labels from other annotations to
the ISO standard is quite straightforward in some
cases (e.g., for Inform or Request), in other cases
the specificity of the domain prevents from fur-
ther generalizations, as discussed in (Chowdhury
et al., 2016). These issues lead us to postpone
transfer learning for future work and start tradi-
tionally by experiments on our own corpus.

Previous work on automatic DA classification
includes the use of Hidden Markov models (Stol-
cke et al., 2000), Maximum Entropy (Choi et al.,
1999), Generative and Conditional Bayesian Net-
works (Ji and Bilmes, 2005), and Support Vec-
tor Machines (Quarteroni and Riccardi, 2010).
Recent papers also explored neural architectures
(Kumar et al., 2017; Liu et al., 2017) and com-
pared word embeddings (Cerisara et al., 2018).

Only few works to date systematically tested
different kinds of context for DA classification.
Several experiments on the Switchboard corpus
are described in (Ribeiro et al., 2015), which tested
untagged and index-tagged n-grams as well as
context presented in the form of dialog act anno-
tations for the previous segments. Index-tagged
n-grams (n-grams tagged with the distance to the
current segment) improved accuracy significantly,
from 70.6% to 75.1%, and the DA annotations for
the preceding segments even to 76.4%.

(Liu et al., 2017) tested different kinds of con-
text for DA classification using deep neural mod-



els. They present hierarchical models based on
convolutional neural networks (CNN) for sentence
representations which they combine with dialogue
history. They encode context as previous DA la-
bels and as probabilities for system predictions,
and experiment with dialogue history of varied
length. Including context information in their
models evaluated on the Switchboard corpus re-
sulted in significant increase of accuracy from
77% to almost 80%. These results indicate that
context should be taken into account when pro-
cessing structured conversations.

3 The Corpus

We use the corpus of robot-assisted disaster-
response team communication collected during
joint exercises with first responders in the TRADR
project (Kruijff-Korbayovd et al., 2015).! The
TRADR corpus contains audio recordings and
transcriptions of the speech communication in a
team of firefighters using robots in the aftermath
of an incident, e.g., an explosion, at an industrial
site. The team members have various roles: mis-
sion commander (MC), team leader (TL), oper-
ators (OP) of multiple ground (UGV) and aerial
(UAV) robots. They explore the site, searching for
persons, hazard sources, fires and other relevant
points of interest. The MC and the TL lead the
mission. They request situation information from
the OPs, who report back with updates and can
also share photos taken by the robot camera (see
the example in Appendix A).

The recordings were collected during several
field tests in 2015, 2016 and 2017. They amount
to approximately 10 hours and contain almost 3k
speech turns (see Table 1 for details). The 2015
and 2016 recordings are in German, the 2017 ones
in English. For the experiments presented in this
paper we used the original English data as well as
English translations from German. We started on
English because of available resources.

Before annotating DAs following the ISO
24617-2 scheme (Bunt et al., 2012, 2017). we
segmented the data into utterances; we split and
merged some turns to obtain appropriate spans for
assigning DAs. This resulted in 2469 utterances.

The ISO scheme defines several dimensions
and for each of them a hierarchy of commu-

'The TRADR team communication corpus is
available online from www.tradr-project.eu/
resources/datasets/ or talkingrobots.dfki.
de/resources/tradr/
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Recording | Mission | Duration Turns
Tlex 2015 374
Day 1 48:21 min 201
Day 2 33:21 min 173
TEval 2015 1165
Day 1 58:23 min 289
Day 2 65:04 min 299
Day 3 57:15 min 219
Day 4 53:22 min 358
TEval 2016 421
Day 1 n.a. 311
Day 2 n.a. 110
TEval 2017 822
Day 1 64:02 min 240
Day 2 149:20 min 408
Day 3 56:36 min 174
Total: 2782
Table 1: Corpus composition
ISO Annotation Label Classification
Label
Turn Management Contact
Inform, Promise, Offer, Address- | Inform
Suggestion
PositiveFeedback, AcceptRequest, | Affirmative
AcceptOffer, AcceptSuggestion,
Agreement
Request Request
CheckQuestion, SetQuestion, | Question
ChoiceQuestion, Question
Confirm Confirm
Disconfirm Disconfirm
Negative Feedback, DeclineOffer, | Negative
Disagreement

Table 2: Mapping of ISO annotation labels to labels
for automatic classification

nicative functions (a.k.a. DAs). The first au-
thor and another annotator independently anno-
tated each utterance with one of the dimensions
and a corresponding DA. Inter-annotator agree-
ment was x=.77 for dimension assignment and
k=.55 (weighted x=.66) for the generic commu-
nicative functions in the Task dimension. For the
experiments in this paper we used the first au-
thor’s annotations as a golden reference. We fo-
cused on the classification of DAs from the dimen-
sions Task, Feedback and Turn Management (see
Table 2 for the used labels).

We annotated the corpus in full compliance with
the ISO scheme. Since some DAs had too few oc-
currences in the corpus we used a simplified set
of DA labels in the experiments (see §4.1). The
simplified labels are a result of a direct mapping
from the ISO scheme labels (see Table 2), mak-
ing it easy to compare DA classification results.
In most cases the simplified labels can be seen as


www.tradr-project.eu/resources/datasets/
www.tradr-project.eu/resources/datasets/
talkingrobots.dfki.de/resources/tradr/
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Dialogue Act | MC | TL | OP | Total
Contact 32 350 | 360 | 742
Inform 19 132 | 476 | 627
Affirmative 8 217 | 127 | 352
Request 9 262 | 3 274
Question 12 150 | 84 246
Confirm 2 28 131 | 161
Disconfirm 0 4 49 53
Negative 0 6 8 14

Table 3: Dialogue act distribution

generalized ISO DAs which were selected based
on their utility for the disaster response domain.
The mission interactions consist of threads,
which are dialogue sequences where two (occa-
sionally multiple) team members talk about a task
or situation update, e.g., the TL talks to an OP
as illustrated in the example in Appendix A. A
new thread is initiated by establishing contact fol-
lowing the standard radio communication proto-
col. The threads are a good candidate for dialogue
context and we used thread history in some exper-
iments as we will describe in the next sections.

4 Experiments

4.1 Pre-processing

Before running the experiments we pre-processed
the data as follows.

First, we collapsed DA labels which had very
low frequency in the corpus with more frequent
ones. For instance, there were only 2 cases of Ad-
dressSuggestion and 9 cases of AcceptOffer in to-
tal. Low frequency labels would introduce noise
and prevent the classifier from learning reliable
patterns. Moreover, there were some ambiguous
cases with several possible annotations (e.g. In-
form and Promise for "I’ll send it over to you”)
and we decided to retain the most frequent label
to reduce the perplexity. Table 2 shows the map-
ping of the manually annotated ISO scheme labels
to the DA labels used for the automatic classifi-
cation. The resulting distribution of DA labels is
shown in Table 3.

Second, we removed all punctuation. Although
punctuation can be a good clue for some DAs (e.g.,
“?” usually indicates Question) we removed it,
because the ASR software often does not provide
punctuation reliably. We also transformed all texts
to lower case and padded sequences when using
neural networks. For 10-fold cross-validation we
split the 2469 utterances into 2222 for training and
247 for testing in each fold partition.
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4.2 Baselines

We implemented three baselines. The majority
baseline assigned each utterance the most fre-
quent label for the given role, i.e., all MC/TL utter-
ances were annotated as Contact and all OP utter-
ances as Inform. This resulted in accuracy 34.8%

The fact that all TL utterances were classified
as Contact was an obvious drawback. We there-
fore tried a relative-frequency baseline as an al-
ternative, using the relative frequencies for each
DA on the complete corpus (cf. Table 3). Each ut-
terance was assigned a random class based on the
relative frequencies. This baseline had accuracy
24.7%?. The majority baseline which used solely
the role was substantially better compared to the
frequency-based random baseline.

The third mixed baseline was based on the as-
sumption that all instances of Contact are identi-
fied correctly and for all other utterances we used
the majority baseline. Therefore, the third base-
line assigned Request to all MC/TL utterances and
Inform to all OP utterances which were not labeled
as Contact. This baseline had accuracy 47.2%.
Since these three baselines had such a low perfor-
mance we considered the results of the FastText
classifier as a baseline for evaluating the perfor-
mance of the neural models.

4.3 FastText

As the first model for DA classification we tested
FastText?, an open-source library for text classifi-
cation and representation using supervised learn-
ing with multinomial logistic regression. Al-
though it can represent input text in the form of
embeddings it belongs to the family of linear clas-
sifiers. We ran FastText using the parameters rec-
ommended for a small training set (10 dimen-
sions, 0.5 learning rate, 20 epochs). The aver-
age accuracy over a 10-fold cross-validation was
74.0%. It was consistent across the folds (see Ta-
ble 4). Because of the strong correlation between
the speaker role and the DA distribution, as shown
in Table 3, we also experimented with including
the role as a special token at the beginning of each
utterance. This additional information improved
the average accuracy to 75.6% and also the ac-
curacy in most folds (see Table 4). Finally, we
tested the effect of adding the dialogue thread con-

>We also tested a baseline based on DA relative frequen-
cies per role, but the accuracy was even lower, 21%.
‘https://fasttext.cc/
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Fold | Accuracy Accuracy Accuracy
without with Role with Role
Role + Thread
History
1 0.656 0.668 0.628
2 0.607 0.684 0.583
3 0.668 0.696 0.583
4 0.745 0.757 0.583
5 0.834 0.858 0.692
6 0.761 0.741 0.640
7 0.794 0.773 0.709
8 0.781 0.785 0.660
9 0.769 0.794 0.676
10 0.785 0.801 0.650
Avg: | 0.740 0.756 0.640

Table 4: FastText 10-fold cross-validation

text: we appended the corresponding thread his-
tory to each utterance and trained FastText on this
extended input. Accuracy dropped for all folds, to
64.0% on average as shown in Table 4.

4.4 Neural Networks

Neural networks have already shown great po-
tential in tackling various NLP tasks, including
DA classification (Chen et al., 2018; Liu et al.,
2017). We therefore also tested various neu-
ral architectures to classify DAs in our corpus:
Feed-Forward Neural Networks (FFNN); Recur-
rent Neural Networks (RNN), in particular Long-
Short Term Memory (LSTM) and bidirectional
LSTM models; Convolutional Neural Networks
(CNN). We experimented with attention and dif-
ferent kinds of embeddings (including Word2Vec,
GloVe and FastText). We also tested the effect of
the dialogue context in the form of the preceding
thread history concatenated with the current utter-
ance. We present the models and the DA classifi-
cation results in the next sections.

Feed-Forward Neural Networks

We implemented a simple FENN using the Keras*
library with one Embedding layer (we experi-
mented with 100, 200 and 300 dimensions) and
applied global average pooling to average the em-
beddings of all words in the utterance before send-
ing them through the Dense layer. The architec-
ture is shown in Figure 1.

We set the minibatch size to 8, trained the net-
work for 5 epochs and used Adam as an optimizer.
We trained several models using the Embedding
layer provided by Keras as well as pre-trained
GloVe embeddings obtained from the Stanford

*nttps://keras.io/
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Embeddings Type Accuracy
Keras 100 0.755
Keras 200 0.761
Keras 300 0.762
GloVe 100, frozen 0.685
GloVe 200, frozen 0.711
GloVe 300, frozen 0.722
GloVe 100, trainable | 0.759
GloVe 200, trainable | 0.768
GloVe 300, trainable | 0.771

Table 5: DA classification results for FFNNs with dif-
ferent types of embeddings

NLP group website,” which were learnt on the
data from Wikipedia 2014 and Gigaword 5 (6B
tokens, 400K vocabulary). We also experimented
with both frozen and trainable embeddings. The
results were consistently better with trainable em-
beddings compared to the frozen version. Table 5
shows the evaluation results with accuracy scores
averaged across 10 folds.

input: | (None, 100)
input_1: InputLayer
output: | (None, 100)
Y
input: (None, 100)
embedding_1: Embedding
output: | (None, 100, 200)
A
global_average_poolingld_1: input: | (None, 100, 200)
GlobalAveragePooling 1D output: (None, 200)
input: None, 200
dense_1: Dense P ( )
output: (None, 8)

Figure 1: Feed-Forward Network with embeddings ©

Convolutional Neural Networks

Inspired by the results on DA classification with
CNNs in (Liu et al., 2017) we also tested CNNs
with varying number of convolutional layers and
filter sizes on our data. Figure 2 shows a sample
architecture with two convolutions and 128 filters
of size 5. We also tested CNNs with different em-
beddings. The best performance (average accu-
racy 72.1%) was achieved by the model with one
convolutional layer, filter size 10 and embeddings

Shttps://nlp.stanford.edu/projects/
glove/

®None is a dynamic length dimension which means that a
corresponding layer can have variable-length sequences as an
input.
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Embeddings Type | Conv. | Filter Size | Accuracy Model Embeddings Type | Accuracy
Keras 100 2 5 0.685 LSTM Embedding 200 0.745
Keras 200 2 5 0.697 LSTM GloVe 200 0.775
Keras 100 1 10 0.721 LSTM GloVe 300 0.768
Keras 200 1 10 0.712 LSTM Embedding 200 0.676
GloVe 100 2 5 0.695 +Attention, -Thread
GloVe 200 2 5 0.694 LSTM GloVe 200 0.767
GloVe 100 1 10 0.703 +Attention, -Thread
LSTM GloVe 200 0.780
. . . -Attention, +Thread
Table 6: DA classification results for CNN models ISTM GloVe 200 07945
+Attention, +Thread
trained on our data with dimensionality 100. An Table 7: RNN performance
overview of the results obtained with various CNN SToda T <
. . . . ode mbeadings 1ype ccuracy
architectures is in Table 6 Interestingly, more 10 LSTM GloVe 200 0784
complex models resulted in worse scores. Con- LSTM for turn & thread | GloVe 200 0.768
volutions appear not very useful for the relatively LSTM for turn GloVe 200 0.798
short texts of dialogue utterances LSTM for turn Word2Vec 100 0.769
g : LSTM for turn Word2Vec 200 0.773
LSTM for turn Word2Vec 300 0.767
LSTM for turn FastText 300 0.770

input: | (None, 100)
input_1: InputLayer
output: | (None, 100)
4
input: (None, 100)
embedding_1: Embedding
output: | (None, 100, 100)
input: | (None, 100, 100)
convld_1: ConvlD
output: | (None, 96, 128)
input: | (None, 96, 128)

max_poolingld_1: MaxPooling1D

output: | (None, 19, 128)

4

input:

(None, 19, 128)
(None, 15, 128)

convld_2: ConvIlD

output:

input: | (None, 15, 128)

(None, 3, 128)

max_poolingld_2: MaxPooling1D

output:

input: | (None, 3, 128)
flatten_1: Flatten
output: (None, 384)
y
input: None, 384
dense_1: Dense P ( )
output: | (None, 128)
input: None, 128
dense_2: Dense P ( )
output: (None, 8)

Figure 2: Convolutional Neural Network ¢
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Table 8: Divide&Merge performance

Recurrent Neural Networks

We tested RNNs with Long Short Term Mem-
ory (LSTM) cells, both LSTMs and bidirectional
LSTMs. We also applied an attention mechanism
and experimented with various embeddings and
regularization parameters. In some experiments
we concatenated all previous utterances from the
same thread with the current utterance in order to
give more context to the classifier. We inserted
a #START# symbol between the current utterance
and the thread text as a separator.

Figure 3 shows the RNN architecture with bidi-
rectional LSTM and attention mechanism. The at-
tention layer follows the idea proposed in (Raffel
and Ellis, 2015). We passed the generated word
vectors through bidirectional LSTM and multi-
plied the input with the attention vector at each
time step. The result was passed through the
Dense layer with ReLU as an activation function.
Dropout 0.25 was applied to the function output
before it went through the final Dense layer. We
tested this model with single utterances as well
as with utterances concatenated with their corre-
sponding thread history, with and without atten-
tion. The results of different RNN architectures
are in Table 7. The best accuracy of 78.0% was
achieved by the model which used the thread his-
tory and pre-trained GloVe embeddings with train-
able weights, no attention.

In the experiments described above we noticed



input: | (None, 100)
input_1: InputLayer
output: | (None, 100)
A
input: (None, 100)
embedding_1: Embedding
output: | (None, 100, 200)

input: | (None, 100, 200)

(None, 100, 400)

bidirectional_1(Istm_1): Bidirectional(LSTM)
output:

input: | (None, 100, 400)

attention_1: Attention

output: (None, 400)
input: None, 400
dense_1: Dense P ( )
output: | (None, 100)
input: | (None, 100)
dropout_1: Dropout
output: | (None, 100)
input: | (None, 100)
dense_2: Dense
output: (None, 8)

Figure 3: RNN with attention ©

that simple concatenation of the current utterance
with the previous context gives us a very small
improvement in accuracy compared to the model
which does not use the thread history (accuracy in-
creased from 77.5% to 78.0%). The network treats
the current utterance and the thread history as a
single input, and this might result in a sub-optimal
representation. Hence, we designed a model that
learns from the current utterance and from the pre-
vious context separately and then combines the
two generated representations into one. Because it
first separates the current utterance from the con-
text and then puts the representations together we
call this new model Divide & Merge (D&M). Fig-
ure 4 shows the D&M model architecture we im-
plemented. 10-fold cross-validation yielded the
best average accuracy of 79.8% using pre-trained
GloVe embeddings with 200 dimensions and train-
ing for 5 epochs. Detailed results of the D&M
model evaluation are in Tables 8 and 9.

Table 8 shows the results for various experimen-
tal settings. First, we report the accuracy scores
obtained by the D&M model without LSTM,
D&M which uses LSTM for encoding both turn
and thread utterances and D&M which uses LSTM
only for turns while the thread information is en-
coded using one Embedding layer and global av-
erage pooling as shown in Figure 4. The model

405

with turn-only LSTM achieved the best accuracy
79.8%. Second, we also compared different word
embeddings (GloVe, Word2Vec and FastText) and
found that pre-trained GloVe embeddings with
200 dimensions work best on our data.

Fold | Accuracy
1 0.733
2 0.717
3 0.765
4 0.794
5 0.834
6 0.826
7 0.858
8 0.810
9 0.818
10 0.829

Avg: 0.798

Table 9: Divide&Merge 10-fold cross-validation

4.5 Discussion

To compare the performance of the D&M model
(accuracy 79.8%) against that of the FastText clas-
sifier (accuracy 75.6%) we applied a randomized
test with 10,000 trials. The resulting p-value of
0.0001 indicates a significant difference. The ac-
curacy of both FastText and D&M is also signifi-
cantly better than that of the baselines (24.7% for
the relative-frequency baseline, 34.8% for the ma-
jority baseline and 47.2% for the mixed baseline).
Table 10 contains the results for precision, recall
and F-score per DA.

FastText Divide&Merge
Category Prec. | Rec. | F1 Prec. | Rec. | F1
Contact 094 1096 [ 0951096 |0.98 | 097
Inform 0.70 | 0.77 | 0.74 ]| 0.75 | 0.78 | 0.76
Affirmative | 0.78 | 0.80 | 0.79 || 0.81 | 0.82 | 0.82
Request 0.69 | 0.68 | 0.68 || 0.75 | 0.76 | 0.75
Question 0.58 |0.54 | 0561071 |0.61 | 0.65
Confirm 040 | 0.28 | 0.33 || 0.48 | 0.50 | 0.49
Disconfirm | 0.60 | 0.51 | 0.55 || 0.60 | 0.55 | 0.57
Average
(w/o Neg.): | 0.67 | 0.65 | 0.66 || 0.72 | 0.71 | 0.72
Average
(with Neg.): | 0.59 | 0.57 | 0.57 || 0.63 | 0.62 | 0.63

Table 10: FastText and D&M results per DA

We also compared the performance of the D&M
model with threads to the same model without
thread information. The results are in Table 11.
Note that Tables 10 and 11 show average preci-
sion, recall and F1 score for two cases: with and
without the category Negative. Negative turned
out to be very difficult to classify because of the



input: | (None, 100) input: | (None, 250)
input_1: InputLayer input_2: InputLayer
output: | (None, 100) output: | (None, 250)
A Y
. . input: (None, 100) . . input: (None, 250)
embedding_1: Embedding embedding 2: Embedding
output: | (None, 100, 200) output: | (None, 250, 200)
Y
input: | (None, 100, 200) input: [ (None, 250, 200)
Istm_1: LSTM global_average_poolingld_1: GlobalAveragePooling 1D
output: (None, 200) output: (None, 200)
input: | [(None, 200), (None, 200)]
concatenate_1: Concatenate
output: (None, 400)
dense_I: Dense input: | (None, 400)
output: (None, 8)
Figure 4: Divide&Merge architecture ¢
following reasons. First, there is a data spar- D&M no threads || D&M with threads
. . Category Prec. | Rec. | F1 Prec. | Rec. | F1
sity problem, because Negative has only 14 occur- Contact 095 1096 10951096 1098 097
rences in the whole corpus. Second, Negative is Inform 0.74 | 0.73 [ 0.73 || 0.75 | 0.78 | 0.76
very similar to Disconfirm and in many cases they Affirm. 0.80 | 0.76 | 0.78 || 0.81 | 0.82 | 0.82
. . Request 0.73 | 0.74 | 0.74 || 0.75 | 0.76 | 0.75
can be used interchangeably. However, Negative Question 064 1060 10621071 061|065
was omitted only in the precision and recall cal- Confirm 037 | 0.47 | 0.41 || 048 | 0.50 | 0.49
: : _ Disconfirm | 0.62 | 0.59 | 0.60 || 0.60 | 0.55 | 0.57
culations showing perf.orme?nce per DA. All accju Negative 025 | 007 | o11 I aco | 000 |ooo
racy scores presented in this paper take Negative Average
into consideration. (w/o Neg.): | 0.69 | 0.69 | 0.69 || 0.72 | 0.71 | 0.72
) Average
Table 11 shows that F1 score increases when (with Neg.): | 0.64 | 0.61 | 0.62 || 0.63 | 0.62 | 0.63

the thread information is provided as an additional
input to the model. For all DAs except for Dis-
confirm and Negative we observe an improvement
in terms of precision, recall and F1 score. The
poor performance of D&M model on categories
Negative and Disconfirm could be due to the fact
that some threads are interconnected and Negative
is often a response to the previous thread.For in-
stance, in one thread the OP says "I will put snap-
shots in ...” And in the next thread the TL says "/
don’t have snapshots” which should be interpreted
as Negative with respect to the previous statement.
However, D&M classifies the utterance as Inform
because it does not see the connection between
two different threads.

Further manual checking of the classification
results confirmed that the D&M model could han-
dle DAs which depend on the context better. Ta-
ble 12 illustrates this: In Thread 1 FastText al-
most always picked Inform as the most likely la-
bel, whereas D&M assigned more DAs correctly.
In Thread 2 FastText assigned Contact for ”Yeah,

Table 11: D&M results with and without threads

Speak. | Text | FastText | D&M
Thread 1
TL UGV 1 to team leader. Contact | Contact
OP I am coming. Inform Contact
TL Can you find out whats | Inform Question
standing in all this
smoke?
OoP Yes. I could. You should | Inform Confirm
have a picture of that.
TL I’ll check that. Inform Affirm.
Thread 2
TL Can you get closer to | Request | Request
the blue barrel, so that
we can see the label?
OP Yeah, 1 am driving | Contact Affirm
closer now.

Table 12: Sample DA classification results by FastText
and D&M. Correctly assigned DAs are typeset in bold.

I am driving closer now”. Although there were
some instances of Contact in the training corpus
starting with ”yeah”, Contact is not a good candi-
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date in this case given that the previous utterance
was labeled as Request. This shows that thread
history has an impact on the output of the D&M
model. The D&M model makes better use of the
thread history than FastText and seems to offer a
better model for structured conversations.

In general, the independence assumption made
by FastText impairs the classification perfor-
mance. However, adding thread history resulted in
an accuracy drop from 75.6% to 64.0% (cf. §4.3).
This means that it is not only thread information
that is important for correct classification but also
the way this information is encoded and processed
by the classifier. Whereas FastText treats the cur-
rent utterance and the thread history in a bag-of-
words fashion, the D&M model treats them as two
independent inputs which are being processed by
two different parts of the network and their repre-
sentations are concatenated only at the final stage.

We also tested several models on the part of
the Switchboard Corpus available in DialogBank
(Bunt et al., 2016). After pre-processing similar
to what we did for our corpus we had 443 utter-
ances. We split them into 333 (75%) for training
and 110 (25%) for testing. FastText achieved ac-
curacy 60%. Among the neural models a simple
FFNN using the Embedding layer initialized with
pre-trained GloVe embeddings with 100 dimen-
sions achieved best accuracy 73.6%. The D&M
model could not be applied to the DialogBank-
Switchboard data because there are no clearly de-
limited threads. It would be interesting to test the
D&M approach on other corpora with dialogues
structured into threads similarly to our corpus.

5 Conclusions

We presented the results of dialogue act classi-
fication in robot-assisted disaster response team
communication. We experimented with a FastText
classifier and various neural models using FFNNss,
RNNs and CNNs with different types of embed-
dings and context information, with and without
attention. We found that including the speaker role
is beneficial whereas adding the previous sentence
as dialogue context leads to lower accuracy. This
might be due to the fact that dialogues in our cor-
pus consist of threads and concatenating an utter-
ance with a preceding one from a different thread
causes erroneous predictions. We then designed
the Divide&Merge model, where we added thread
history in a separate layer and concatenated not
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texts but their vector representations. This resulted
in a significant improvement with average accu-
racy 79.8%. Using LSTM cells was beneficial for
utterance encodings but the thread history was bet-
ter encoded using the Embedding layer and global
average pooling. Pre-trained GloVe embeddings
with dimensionality 200 performed best on our
data and the results were slightly better with train-
able embeddings. This could be due to the fact
that in our corpus some words have non-standard
interpretations based on the communication pro-
tocol (e.g., “roger that”), which are learned from
the corpus when we use trainable embeddings.

Incorporating thread information significantly
improved DA classification. In the future we wish
to investigate more the nature and importance of
threads in team communication, e.g., whether to
model threads implicitly (as we did) or explic-
itly; how to best segment them; how important is
it to represent intertwined threads; is information
throughout a thread used for interpretation or is the
influence more local at the thread boundary.

In future work we will also apply the models
presented here on the German data in the TRADR
corpus; test their performance on the outputs of
ASR without any editing by human annotators;
look for ways to further improve performance,
e.g., by enlarging the corpus by adding relevant di-
alogues from other corpora. We will develop mod-
els for the recognition of mission tasks and dis-
tinguishing task requests and commitments by the
team members from other task mentions. We will
then combine dialogue act and task recognition in
a single model. We will release the corpus with
the ISO dialogue act annotations later this year.

The models we develop are being integrated
as part of the speech processing pipeline in a
mission-support system that provides process as-
sistance and facilitates the creation of mission doc-
umentation (Willms et al., 2019). It will be evalu-
ated in practice with and by first responders.
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Appendix A

Team Communication Example

TL

OP

OP

TL

(0]

TL

(0]

TL

OP

TL

OP

TL

OP

TL

(0]

TL

OoP
TL

Andreas, Andreas from Markus, come
in.

ves, Andreas come in.

<...>

ves, for information, I am ready
[EHM] shall I go ahead with my
search command, or begin?

Yes, begin immediately without pos-
sible — least possible time delay, to
[E H M] have a higher chance for per-
son rescue.

ves, understood, 1 begin with the
search.

<...>

Andreas from Markus, come in. [ent =
unk.skippable]

Yes, Andreas, come in.

[ent = unk.skippable] are there al-
ready any noteworthy findings? [ent =
unk.skippable]

Negative.  No noteworthy findings.
[ent = unk.skippable]

Yes, understood. [ent =
unk.skippable]  Daniel, Daniel
from Markus, come in. [ent =
unk.skippable] Andreas  from
Markus, come in.

<...>

Andreas, Markus from Andreas, come
in.

Andpreas, come in.

On first floor in the smoke found a bar-
rel, green, labeled as environmentally
hazardous material.

Yeah, can you [unintelligible] whether
anything is leaking?

Yeah. It is a 200 liter barrel, whether
anything is leaking I cannot currently
tell.

[EH M) Any thermal emission?

No thermal emission.

Okay. Priority on continuing person
search. Andreas from Markus, priority
on continuing person search.
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