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Abstract

Learning an efficient manager of dialogue
agent from data with little manual intervention
is important, especially for goal-oriented dia-
logues. However, existing methods either take
too many manual efforts (e.g. reinforcement
learning methods) or cannot guarantee the di-
alogue efficiency (e.g. sequence-to-sequence
methods). In this paper, we address this prob-
lem by proposing a novel end-to-end learn-
ing model to train a dialogue agent that can
look ahead for several future turns and gener-
ate an optimal response to make the dialogue
efficient. Our method is data-driven and does
not require too much manual work for inter-
vention during system design. We evaluate our
method on two datasets of different scenarios
and the experimental results demonstrate the
efficiency of our model.

1 Introduction

Research for dialogue system attracts a lot of at-
tentions recently due to its potential huge value
of reducing human cost in many commercial do-
mains, such as restaurant reservation (Henderson
et al., 2014b), travel planning (Peng et al., 2017)
and retail service (Zhang et al., 2019). The major-
ity of dialogue agents with goals are expected to
be efficient to complete tasks with as few as pos-
sible dialogue turns, in contrast with those chit-
chat counterparts (Ritter et al., 2011). The follow-
ing two examples show the comparison of efficient
and inefficient cases respectively. The senarios is
restaurant reservation and the agent’s goal is to re-
serve a table at noon.

Efficient example:

“Human: We don’t have empty tables at
11 o’clock tomorrow. All are reserved.”
“Agent: How about 12 o’clock? We are
also okay then.”

*Xian-Ling Mao is the corresponding author.

133

Inefficient example:

“Human: We don’t have empty tables at
11 o’clock tomorrow. All are reserved.”
“Agent: What else time is available?”
“Human: 12 o’clock is ok.”

“Agent: All right. We want that time.”

For expressing the same opinion, the inefficient
example consumes four turns while the efficient
example only needs two. As it can be seen, the
efficiency is important for goal-oriented dialogue
systems to achieve goals in a rapid way.

Usually, a dialogue system consists of a pipeline
of natural language understanding (NLU), dia-
logue management (DM) and natural language
generation (NLG), where the DM part is treat as
two separate components: dialogue state tracking
(DST) and dialogue control (DC, i.e. dialogue pol-
icy selection). The DM part is widely considered
to be relevant to the dialogue’s efficiency, because
it makes decisions on what to say for the next turn.
Recently, methods based on reinforcement learn-
ing are proposed for the policy selection compo-
nent to build efficient dialogue systems. However,
there are some drawbacks of reinforcement learn-
ing based methods. For example, they requires
lots of human work to design the learning strat-
egy. Also a real-world environment which is es-
sential for the agent to learn from is expensive,
such as from domain experts. Moreover, training
the dialogue manager as a two separate compo-
nents could lead to error propagation issue (Ras-
togi et al., 2018).

In addition to reinforcement learning based
methods, sequence-to-sequence based methods
are also popular recently, because they can learn a
dialogue agent purely from data and almost with-
out too many human efforts. The error prop-
agation issue can also be reduced because they
are end-to-end, and they have better scalability
for different scenarios. However, it is difficult to
build efficient dialogue agents by those methods
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since their objective functions for training mod-
els are usually inclined to general responses, such
as I don’t know, yes and OK, or often generate
the same response for totally different contexts
because the contextual information is not well-
modeled by those methods (Dodge et al., 2015).

In this paper, we address the problem of learn-
ing an efficient dialogue manager from the per-
spective of reducing manual intervention and er-
ror propagation, and propose a new sequence-to-
sequence based approach. The proposed end-to-
end model contains a novel looking-ahead module
for dialogue manager to learn the looking-ahead
ability. Our intuition is that by predicting the fu-
ture several dialogue turns, the agent could make a
better decision of what to say for current turn, and
therefore goals could be sooner achieved in a long
run.

More specifically, our model includes three
modules: (1) encoding module, (2) looking-ahead
module, and (3) decoding module. At each dia-
logue turn, three kinds of information, the goals,
historical utterances and the current user utterance,
are utilized. First they are encoded by three sepa-
rate Bidirectional Gated Recurrent Units (BiGRU)
models. Then the three encoded embeddings are
concatenated to one vector, which is then sent to
a new bidirectional neural network that can look
ahead for several turns. The decoding module will
generate utterances for each turn through a learned
language model. At last, by considering all the
predicted future utterances, a new real system ut-
terance for the next turn is re-generated by us-
ing an attention model through the same language
model.

Our proposed approach has several advantages.
First, it is an end-to-end model and does not take
too many human efforts for system design. Al-
though the goals should be handcrafted for spe-
cific scenario, the number of goals is small and
it is a relatively easy work. Moreover, compared
with naive sequence-to-sequence based models,
our agent can make the dialogue more efficient by
modeling the looking-ahead ability. Experimental
results show that our model performs better than
baselines on two datasets from different domains,
which could suggest that our model is also scal-
able to various domains.

The contributions in this paper include:

e We identify the problem that how to make di-
alogues efficient by exploiting as little as pos-
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sible manual intervention during system de-
sign from the perspective of end-to-end deep
learning.

e We propose a novel end-to-end and data-
driven model that enables the dialgoue agent
to learn to look ahead and make efficient de-
cisions of what to say for the next turn.

Experiments conducted on two datasets
demonstrate that our model performs better
over baselines and can be applied to different
domains.

2 Related Work

In most situations, the dialogue systems require
handcrafted definition of dialogue states and dia-
logue policies (Williams and Young, 2007; Hen-
derson et al., 2014a; Asheret al., 2012; Chen et al.,
2017). Those methods make the pipeline of dia-
logue systems clear to design and easy to main-
tain, but suffer from the massive expensive human
efforts and the error propagation issue (Henderson
et al., 2014c; Liu and Lane, 2017).

Reinforcement learning based methods for di-
alogue policy selection are widely studied re-
cently (Lipton et al., 2018; Dhingra et al., 2017;
Zhao and Eskenazi, 2016; Su et al., 2016). These
methods only need human to design the learn-
ing strategies and do not require massive training
data. However, the expensive domain knowledge
and human expert efforts for agents to learn from
are necessary (Liu et al., 2018; Shah et al., 2018).
Therefore, hybrid methods that integrate super-
vised learning and reinforcement learning are pro-
posed recently (Williams et al., 2017; Williams
and Zweig, 2016). Thus, collecting massive train-
ing data becomes another manual work.

More recently, end-to-end dialogue systems at-
tract much attention because almost no human
efforts are required and they are scalable for
different domains (Wen et al., 2017; Li et al.,
2017; Lewis et al., 2017; Luo et al., 2019), es-
pecially with sequence-to-sequence based mod-
els (Sutskever et al., 2014). Although those mod-
els have been proved to be effective on chit-chat
conversations (Ritter et al., 2011; Li et al., 2016a;
Zhang et al., 2018), how to build agents that
are goal-oriented with efficient dialogue managers
through end-to-end approaches still remains ques-
tionable (Bordes et al., 2017; Joshi et al., 2017),
and we investigate the question in this paper.
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Figure 1: End-to-end model for learning looking-ahead ability.

Our idea of enabling the agent to be efficient by  of the looking-ahead module, and they are used to
modeling looking-ahead ability is inspired by the  predict several future turns. At last the predicted
Al Planning concept, which is a traditional search- ~ future turns are merged by an attention model and
ing technology in the field of Al and is suitable for ~ the new real system utterance is generated for the
goal-based tasks, such as robotics control (Norvig  next turn.
and Russell, 1995). Recently, the concept is bor-
rowed to dialogue system communities and inte-
grated into deep learning models. For example,
a trade-off method for training the agents neither
with real human nor with user simulators is pro-
posed, in order to obtain better policy learning re-
sults (Peng et al., 2018). In addition, at earlier
time, the planning idea has been utilized for im-
proving the dialogue generation task (Stent et al.,
2004; Walker et al., 2007).

Suppose for each dialogue session we have T’
turns, and we do not distinguish whether it is
user’s turn or system’s turn. If the agent has S
goals that are denoted as g = {g1, g2, ..., gs }, each
goal is formalized as a binary vector. For exam-
ple in the restaurant reservation scenario, we can
define that each variate in the vector [1, 0] corre-
sponds to a yes-no condition, such as the 1 means
agent accepts bar table and the 0 means agent does
not want to change time. As to the utterance in-
3 End-to-end Dialogue Model formation, imagine at turn ¢ € {1,...,T'}, we dej—

note utterances {uy,...,us—1} € U for histori-
We propose an end-to-end model that contains  cal ones and u; € U for current user utterance.
three modules: (1) encoding module, (2) looking-  Our model predicts the system and user utterances
ahead module, and (3) decoding module. Figure 1 {uts1, ury2, ..., upy i } for the next K turns and
shows the model architecture. We leverage Bidi-  then a new w1 is generated as the system utter-
rectional GRU models (Bahdanau et al., 2014) to  ance after considering all the predicted turns. The
encode agent goals, historical and current utter-  model separates the current user utterance from
ances. Then the obtained representations by en-  historical ones in order to highlight the user’s cur-
coding goals and utterances are regarded as inputs ~ rent states. In general, the model is end-to-end and
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needs little human intervention or domain knowl-
edge.

3.1 Encoding Module

In this module, the agent goals, historical utter-
ances within the dialogue session, and the current
user utterance are encoded by using three GRU
models which is expected to learn long-range tem-
poral dependencies (Cho et al., 2014). GRU)
is defined to encode agent’s goals g and the final
hidden state 2(9) is taken as the representation of
goals. The input of GRU9) is a one-hot binary
vector with length S. GRU™ is used to encode
the historical utterances, and GRU is used to
encode the current user utterance. h(*) and h(®)
are denoted as the final encoded representations of
GRU®™ and GRU ) respectively.

To get the i-th hidden state for the three GRUs,
respective inputs include the previous hidden state
hl@l, hgﬁ)l or hgi)l, and the embeddings of cur-
rent observations, E(g;), E(u;) or E(z;), where
g; 1s a goal, u; is an utterance and zx; is a token.
For the textual tokens, we use the Word2vec em-
beddings as their representations (Mikolov et al.,
2013). Then the token embeddings are averaged
to represent utterances. The formal denotation of
the hidden states for the three GRU models is:

b9 = GRUD (1Y, B(g)), M
W = GRU@ (W™, E(w)), (@
W = GRUCO MY, B(z), ()

where E(-) represents the embeddings.

The final output of the encoding module is a
concatenation of h(9), h(*) and h(%), which is de-

— —

noted as b = [h9), AW h(I]. bl serves as the
input of the following looking-ahead module. The
right arrow means the initial direction to train the
looking-ahead module is from the current to the
future.

3.2 Looking-ahead Module

With the input of hl_f, this module predicts sev-
eral future dialogue turns. Since the process is se-
quential, we propose a recurrent neural network
to model the process. In order to exploit the pre-
dicted information for later generating a real sys-
tem utterance, another recurrent neural network is
used to backtrack the information from future to
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current. To reduce the computing cost, the two
neural networks share the same parameters, and
the whole looking-ahead module looks similar to
a bidirectional GRU as shown in Figure 1.

We denote the module as GRU (. {h,(cl) |k >0}

represent the predicted hidden states for future

(@)
k

— “—
rections, hkl and hkl , are concatenated. To calcu-

turns. To get h;’, the hidden states from two di-

late each hz or h;l_, their inputs include the previ-
ous hidden state and the previously-predicted hid-
den state. Formally, suppose we look ahead for
K turns, the hidden state of h,(cl) is calculated as
following:

7 7,7 (1)
hk:l - GRUl (h’kl—17th;—1)’ (4)
T _ T (1)
-
=l md (©)

where W is a weight parameter and Wh,(j) is the
hidden state for predicting future turns. If K =1,
it means our model has no looking-ahead ability
and it degrades to a naive goal-based sequence-to-
sequence model.

3.3 Decoding Module

For generating the real system utterance, as seen
in Figure 1, the green hidden states {Wh,(f)|k: >
0} are combined through an attention based
model (Wang et al., 2016). The formal denotation
is:

ex = tanh(W@OWh], 7
exp (ex)
k= o )
2521 eXp(ek)
K
r= Z vkhg), 9
k=1

where W (%) is the attention weight parameter and
r is the input representation for generating a new
ug41 that is regarded as the real system utterance.

Given the hidden state Wh,(f), the decoding
module can also generate the corresponding utter-
ance for learning the looking-ahead ability. We
share the parameters of decoding with those in the



encoding module, in order to reduce the comput-
ing cost (Vinyals and Le, 2015). The token se-
quence in w4 is generated from left to right by
selecting the tokens with the maximum probabil-
ity distribution through a language model learned
by the following equation:

t+k
o 59

3.4 Model Training

To train the proposed model, we define a loss
function to maximize three terms: (1) a language
model for predicting tokens in language genera-
tion, (2) the probability distribution of predicting
utterances of future dialogue turns, and (3) a bi-
nary classifier to predict if the dialogue will be
complete or not. The final joint loss function is
formally denoted as:

Z Zlogpt‘)(xi’xl,...,i—
u i

language model loss

—a Y SN logpe(y L,

ug ki

(y ”’“| ) o exp(ETWAY). (10)

L) = - 1)

9)

looking ahead prediction loss

- ﬂ Zlogp(ZC’ca ut+1) )
C

dialog state prediction loss
(11)
where

U1 = argmazypy(y|r), (12)

log p(zcle, utt1) = 2 log(g(c, ue+1))
+ (1 = ze) log(1 — gle,ues)).
(13)
g(+) is a sigmoid function and z. is the label of
the dialogue that current user utterance c belongs
to, where 1 means the dialogue ends up with goals
achieved while 0 means the goals are not achieved.
The three terms are weighted with two hyper-
parameters o and 3. We adopt stochastic gradient
descent method to minimize L(6).
In the looking-ahead module, the hidden state
Wh,(cl) is used to generate an utterance y**+%), and

is also used to calculate hZH and h;l__l. We design
an EM-like algorithm to optimize the loss func-
tion, as described in Algorithm 1. Line 3-4 op-
timize the language model, i.e. the first term of
L(6). Line 5-16 optimize the looking-ahead mod-
ule, i.e. the second term, among which Line 7-
14 are for E-step and Line 15-16 are for M-step.
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In E-step the language model is fixed for updating
all the hidden states hg) in looking-ahead module,
and in M-step all the hidden states are fixed for up-
dating the language model. Line 17-18 optimize
the third term of L(#), which is a binary classifier.

Algorithm 1: Learning algorithm for L(#)

input : Dialogue utterances U, Agent goals g,
Looking-ahead turns K
output: Agent model 0
1 Randomly initializing parameters;
2 for ¢ € U, g and historical utterances {u} do
3 for z; € cdo

4 | Optimizing po (|1
he = [h® B B
upy1 = arg maxypo(y|r);

E-Step: Update h;ﬁ with fixed language model;
fork=1: K do

K

,,,,,

5
6

Utk = alg mazype(y \h,(f));

9 F = W)
— —

10 hi = hi;

11 fork—Kfl 1do

L hk = [hk+1,Wth;
fork=1: K do
O _ 1.
[ w0 =l )
M-Step: Update language model with fixed h;cl);
fork=1: K do
L Optimizing ps (y

Ut4+1 = argmazype (y|7“)’
Optimizing p(zc|c, ui41);

AAAAA

17
18

19 return 0;

4 Experiments

4.1 Data Collection

We use two datasets for two different scenarios to
evaluate our model. Table 1 shows the statistics of
two datasets.

4.1.1 Dataset 1 - Object Division

Dataset 1 contains crowd-sourced dialogues be-
tween humans collected from Amazon Mechani-
cal Turk platform (Lewis et al., 2017). The dataset
is for object division task and both sides have sep-
arate goals of each object’s value. We use the tex-
tual data and transform their goals to yes-no ques-
tions as our binary vectors. The information of
each dialogue session’s final state, agree or dis-
agree, is used for training the agent.

4.1.2 Dataset 2 - Restaurant Reservation

To the best of our knowledge, there is no other
public dataset for goal-oriented dialogues where



Metric Dataset 1 | Dataset 2
Number of Dialogues 5,808 1,613
Average Turns per Dialogue 6.6 6.3
Average Words per Turn 7.6 8.9
Number of Words 566,779 98,726
% Goal Achieved 80.1% 71.5%

Table 1: Statistic on the two datasets.

the two sides have different goals. To this end, we
construct the Dataset 2 to testify the scalability of
our model. The common scenario of restaurant ta-
ble reservation is chosen.

In this dataset, the two agents are expected to
have different goals and they dialogue with each
other for looking for the intersection of their goals.
We denote Agent A as the role of a customer and
Agent B as the restaurant server side. At the be-
ginning of each dialogue session, Agent A is given
the available time slot, the number of people, and
several other constraints (e.g. can sit at bar or not).
All the constraints are regarded as its goals rep-
resented by a binary vector. Similarly, Agent B
has itself constraints (e.g. whether bar tables are
available or not), which are also treat as goals rep-
resented by a binary vector. We predefine a pool of
‘goals’ and at the beginning of each dialogue ses-
sion, the goals for two sides are randomly sampled
separately from the pool. The two agents cannot
see each other’s goals and they dialogue through
natural language until a final decision, agreement
or disagreement, is reached. In summary, the ob-
jective of constructing this dataset is to see if our
model can reach the intersection of the two agents’
goals in a more efficient way.

To generate dialogues for Dataset 2, we resort to
arule-based method via Al planning search (Ghal-
lab et al., 2016; Jiang et al., 2019). Watson Al
platform ! is leveraged for natural language un-
derstanding by defining intents and entities with
examples. A planner is designed for the dia-
logue manager by defining several states and ac-
tions. The goals are represented as part of the
states, and the STRIPS algorithm is used to search
the shortest path to goals at each turn and return
the first planned action for generating the next re-
sponse. Each action has several handcrafted utter-
ances since the diversity of utterances is not our
focus in this paper. Table 2 shows a sample dia-
logue.

'https://www.ibm.com/watson/ai-assistant/

Alice: May I reserve a table for 6 people at 17 tomorrow?
Bob: Sorry, we don’t have a table at this point.
Alice: Can we sit at the bar then?

Bob: We don’t have a bar in the restaurant.

Alice: Can I have more expensive tables then?
Bob: My apologies, we are required not to do that.
Alice: In this case, can I reserve a bigger table?
Bob: Yes, we have VIP rooms but more expensive.
Alice: I want that.

Bob: OK.

Alice: Bye.

Table 2: Sample of Dataset 2.

4.2 Training Sample Preparation

For each dialogue session with 7' turns, we re-
organize the utterances into 7' samples. For each
turn ¢t = {1,2,..., T}, we can get the current user
utterance c¢, and a training sample is created with
a historical utterance sequence {u1,ug, ..., U1},
and the goals g are consistent with the same dia-
logue session. The future K turns of utterances
{41, Ury2, ..., ury i + are used as the supervised
information. In total, we get 38,333 and 10,162
samples including training set and test set for the
two datasets respectively.

4.3 Baselines

Since our model is based on purely data-driven
learning, we compare our model with the super-
vised counterparts. Our baselines include:

e Seq2Seq(goal):  This is a naive base-
line by adapting the sequence-to-sequence
model (Sutskever et al., 2014) and encod-
ing goals, which removes the looking-ahead
module and the supervised information of fi-
nal state prediction from our model.

e Seq2Seq(goal+state): This is a baseline
model by removing the looking-ahead mod-
ule from our proposed model. The parameter
« 1s set to zero.

e Seq2Seq(goal+look): This is a baseline
model by removing the supervised informa-
tion of final state prediction from our model.
The parameter [ is set to zero.

o Seq2Seq(goal+look+state): This is our pro-
posed model that includes all the modules
and supervised information.

4.4 Evaluation Criteria

In a dialogue system, it could be treat as efficient if
it obtains more final goal achievement with as few
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as possible dialogue turns. Thus we set two crite-
ria for evaluating and comparing models adopted
in our experiments: (1) the goal achievement ratio
that means the ratio of the number of goal achieved
dialogue over the number of attempted dialogues),
and (2) the average dialogue turns.

4.5 Evaluator

Our experiments are to achieve goals through con-
versations, and it is difficult to directly adopt exist-
ing simulators (Asri et al., 2016). We refer to the
work (Li et al., 2016b) and fine-tune it to our task.
For each dataset, a naive sequence-to-sequence
model that encodes goals is regarded as the user
simulator. We run 1000 times of dialogue sessions
using the simulator.

Apart from using the simulator, we also invite
humans to dialogue with the agents for 100 times
each person for each dataset and we report the av-
erage results.

4.6 Training Settings

All the baselines are implemented by PyTorch.
One-hot input tokens are embedded into a 64-
dimensional space. The goals are encoded by
GRUY with a hidden layer of size 64. The
sizes of hidden states in input utterance en-
coder GRU™, GRU®) and looking-ahead mod-
ule GRU (l), h,(cl), are all set to 256. A stochas-
tic gradient descent method is employed to opti-
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mize the model with a mini-batch size of 32 for
supervised learning, an initial learning rate of 1.0,
momentum with g 0.1, and clipping gradi-
ents 0.5 in L? norm. The best model is chosen
from the processing of training the model for 400
epochs. After that, the learning rate decays by
a factor of 2 for every epoch. The initial hyper-
parameters setting in the loss function (Equation
(11)) is @ = 0.05 and 5 = 1.0. Words that ap-
pear in the training dataset for less than 5 times
are replaced with the ‘unknown’ ({(unk)) token. A
validation dataset is employed to choose the opti-
mal hyper-parameters.

4.7 Results and Analysis

Table 3 shows the performance of baselines
against user simulator and human on the two
datasets. Both reveal that models that learn
looking-ahead ability can achieve better perfor-
mance and deliver more efficient dialogues in
terms of both goal achievement ratio and dialogue
turns. However, in the table, the dialogue turns
of Seq2Seq(goal+look+state) are larger than those
of Seq2Seq(goal+look), which may suggest that
more dialogue turns lead to more achievement.
In spite of this, the looking-ahead ability learned
by our model is demonstrated to be effective on
the two different scenarios. Moreover, the super-
vised information of final states (the third term of
Equation (11)) is also proven effective in deliver-

139



Dataset 1 Dataset 2
Model vs. Simulator vs. Human vs. Simulator vs. Human
% Achieved # Turns | % Achieved # Turns | % Achieved # Turns | % Achieved # Turns
Seq2Seq(goal) 76.00 4.74 67.74 7.87 67.10 7.38 54.1 7.56
Seq2Seq(goal+state) 79.41 4.74 70.97 6.35 67.37 7.42 58.1 8.04
Seq2Seq(goal+look) 80.64 6.54 74.19 541 83.54 5.82 60.3 6.94
Seq2Seq(goal+look+state) 85.07 4.10 77.42 5.02 83.58 6.36 61.2 7.30

Table 3: Performance on two datasets against the user simulator and human.

Seq2Seq(goal) Model:

Seq2Seq(goal) Model:

Alice: i just want the book

Bob: no way i have the book and you can take others
Alice: bye

< Conversation end>

Seq2Seq(goal+look+state) Model:

Alice: i keep the book you can have the hat and two balls
Bob: i will take the book and you can have others
Alice: can we make a deal?

Bob: ok deal

Alice: okay

Bob: bye

< Conversation end >

Table 4: Example that tends to achieve goals on Dataset
1, vs. simulator.

ing more achievement, which can be seen from the
second and last rows of Table 3. Compared to the
human evaluation, the results with the simulator
generally are better. It is probable that human eval-
uators tend to be more rigorous and more turns are
necessary to achieve goals.

We also evaluate the models’ performance
with different parameters. Figure 2 and Fig-
ure 3 show the results of using different looking-
ahead turns K in the looking-ahead module on
Dataset 1 and Dataset 2 respectively. In most
cases, Seq2Seq(goal+look+state) is better than
Seq2Seq(goal+look). Setting the number to 3 is
the recommended value, since our scenarios are
relatively simple and it is enough for the agents to
look ahead for 3 dialogue turns. The results are
consistent with those in Table 3.

The performance on different dimension sizes
of hidden states used in all the baselines is evalu-
ated and the results are shown in Figure 4 and Fig-
ure 5. We find that setting the size to 512 yields
the optimal results by balancing the performance
and the computing cost in most cases.

In addition, we take some case studies for di-
alogue examples between the agents trained by
Seq2Seq(goal+look+state) (proposed model) and
the simulator (Seq2Seq(goal)) for the two datasets.
Alice denotes the agent and Bob denotes the sim-
ulator. Table 4 is a case where our model with the
looking-ahead ability (Seq2Seq(goal+look+state))
tends to achieve goals while consume more dia-

Alice: can you help me book a table for 2 people at 6pm?
Bob: sorry, we dont have a table at this point

Alice: can i reserve the seats at the bar instead?

Bob: yes you can

Alice: can i book a table for us

Bob: sure i have written down your reservation

Alice: ok

Bob: bye

< Conversation end>

Seq2Seq(goal+look+state) Model:

Alice: can you help me book a table for 2 people at 6pm?
Bob: sorry we dont have a table at this point

Alice: can i reserve the seats at the bar instead?

Bob: sure i have written down your reservation

Alice: bye

<Conversation end>

Table 5: Example that costs less dialogue turns under
the same goals on Dataset 2, vs. simulator.

logue turns. Table 5 gives an example where our
model not only tends to achieve goals but also
takes fewer dialogue turns. Based on our obser-
vation, the language models for natural language
generation is learned well in spite of that confused
utterances are generated sometimes.

5 Conclusion

In this paper, we propose an end-to-end model to-
wards the problem of how to learn an efficient
dialogue manager without taking too many man-
ual efforts. We model the looking-ahead ability
for foreseeing several turns and then the agent can
make a decision of what to say that leads the con-
versation to achieve goals with as few as possible
dialogue turns. Experiments on two datasets from
different domains demonstrate that our model is
efficient in terms of goal achievement ratio and av-
erage dialogue turns. Our method is also scalable
and can reduce error propagation due to the nature
of end-to-end learning.

For the future work, we expect to investigate
whether other kinds of abilities, such as reason-
ing ability, can be modeled for agent towards the
problem. In addition to the efficiency issue, the
quality of natural language generation should also
be paid attention in order to guarantee the quality
of overall dialogue system.
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