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Abstract

With the advent of conversational assistants
like Amazon Alexa, Google Now, etc., dia-
logue systems are gaining a lot of traction,
especially in industrial settings. These sys-
tems typically include a Spoken Language un-
derstanding component which consists of two
tasks: Intent Classification (IC) and Slot La-
beling (SL). Generally, these two tasks are
modeled together jointly to achieve best per-
formance. However, this joint modeling adds
to model obfuscation. In this work, we first
design framework for a modularization of
joint IC-SL task to enhance architecture trans-
parency. Then, we explore a number of self-
attention, convolutional, and recurrent models,
contributing a large-scale analysis of model-
ing paradigms for IC+SL across two datasets.
Finally, using this framework, we propose a
class of ‘label-recurrent’ models that are non-
recurrent apart from a 10-dimensional repre-
sentation of the label history, and show that our
proposed systems are highly accurate (achiev-
ing over 30% error reduction in SL over the
state-of-the-art on the Snips dataset), as well as
fast, at 2x the inference and 2/3 to 1/2 the train-
ing time of comparable recurrent models, thus
giving an edge in critical real-world systems.

1 Introduction

At the core of task-oriented dialogue systems are
spoken language understanding (SLU) models,
tasked with determining the intent of users’ ut-
terances and labeling semantically relevant words
at each turn of the conversation. Performance on
these tasks, known as intent classification (IC) and
slot labeling (SL), upper-bounds the utility of such
dialogue systems. A large body of recent research
has improved these models through the use of re-
current neural networks, encoder-decoder archi-
tectures, and attention mechanisms. However, for
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Figure 1: A general framework of joint IC+SL, decoupling
modeling tasks to permit the analysis of each component in-
dependently.

production dialogue systems in particular, system
speed is at a premium, both during training and in
real-time inference.

In this work, we propose fully non-recurrent
and label-recurrent model paradigms including
self-attention and convolution for comparison to
state-of-the-art recurrent models in terms of ac-
curacy and speed. To achieve this, we design a
framework for joint IC-SL models that is modu-
larized into different components and makes the
task agnostic to type of neural network used. This,
in turn, makes the model architecture simpler, easy
to understand and renders the task network agnos-
tic, allowing for easier plug and play using existing
components, such as pre-trained contextual word
embeddings (Devlin et al., 2019), etc. This is es-
sential for easier model debugging and quicker ex-
perimentation, especially in industrial settings.

Using this framework, we identify three dis-
tinct model families of interest: fully recurrent,
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label-recurrent, and non-recurrent. Recent state-
of-the-art models fall into the first category, as
encoder-decoder architectures have recurrent en-
coders to perform word context encoding, and pre-
dict slot label sequences using recurrent decoders
that use both word and label information as they
decode (Hakkani-Tiir et al., 2016; Liu and Lane,
2016; Li et al., 2018). In second category, we
have ‘non-recurrent’ networks: fully feed-forward,
attention-based, or convolutional models, for ex-
ample. Lastly, we have a class of label-recurrent
models, inspired by structured sequential mod-
els like conditional random fields on top of non-
recurrent word contextualization components. In
this class of models, slot label decoding proceeds
such that label sequences are encoded by a recur-
rent component, but word sequences are not.
Our contributions are:

e A class of label-recurrent convolutional mod-
els that achieve state-of-the-art performance
on Snips and competitive performance on
ATIS while maintaining faster training and
inference speeds than fully-recurrent models

A new modular framework for joint IC-SL
models that permits the analysis of individ-
ual modeling components that decomposes
these joint models into separate components
for word context encoding, summarization of
the sentence into a single vector for intent
classification, and modeling of dependencies
in the output space of slot label sequences.

In-depth analysis of different word contextu-
alizations for Spoken Language Understand-
ing task (for instance, providing evidence for
the intuition that explicitly focusing on lo-
cal context is a useful architectural inductive
prior for slot labeling)

2 Prior Work

There is a large body of research in applying recur-
rent modeling advances to intent classification and
slot labeling (frequently called spoken language
understanding). Traditionally, for intent classifica-
tion, word n-grams were used with SVM classifier
(Haftner et al., 2003) and Adaboost (Schapire and
Singer, 2000). For the SL task, CRFs (Gorin et al.,
1997) have been used in the past.

Recently, a larger focus has been on joint mod-
eling of IC and SL tasks. Long short-term mem-
ory recurrent neural networks (Hochreiter and
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Schmidhuber, 1997) and Gated Recurrent Unit
models (Cho et al.) were proposed for slot labeling
by Yao et al. (2014) and Zhang and Wang (2016)
respectively, while Guo et al. (2014) used recur-
sive neural networks. Subsequent improvements
to recurrent neural modeling techniques, like bidi-
rectionality and attention (Bahdanau et al., 2014)
were incorporated into IC+SL in recent years as
well (Hakkani-Tiir et al., 2016; Liu and Lane,
2016). Li et al. (2018) introduced a self-attention
based joint model where they used self-attention
and LSTM layers along with the gating mecha-
nism for this task.

Non-recurrent modeling for language has been
re-visited recently, even as recurrent techniques
continue to be dominant. Dilated CNNs (Yu and
Koltun, 2015) with CRF label modeling were ap-
plied to named entity recognition by Strubell et al.
(2017), and earlier were applied to SL by Xu
and Sarikaya (2013). Convolutional and attention-
based sentence encoders have been applied in
complex tasks, including machine translation, nat-
ural language inference, and parsing. (Gehring
et al., 2017; Vaswani et al., 2017; Shen et al.,
2017, Kitaev and Klein, 2018) We draw from both
of these bodies of work to propose a simple yet
highly effective family of IC+SL models.

3 A general framework of joint IC+SL

Intent classification and slot labeling take as input
an utterance x1.7 = {X1,X2,...X7}, composed
of words x; and of length 7. Models construct a
distribution over intents and slot label sequences
given the utterance. One intent is assigned per ut-
terance and one slot label is assigned per word:

)

P(ly.7, ¢ |x1:7)

where ¢ € Z, a fixed set of intents, and /; € L,
a fixed set of slot labels. Models are trained to
minimize the cross-entropy loss between the as-
signed distribution and the training data. To the
end of constructing this distribution, our frame-
work explicitly separates the following compo-
nents, which are explicitly or implicitly present in
all joint IC+SL systems (Figure 1):

3.1 Word contextualization

We first assume words are encoded through an
embedding layer, providing context-independent
word vectors. Overloading notation, we denote the
embedded sequence x;.7, with x; € R,



In this component, word representations are en-
riched with sentential context. Each word x; is
assigned a contextualized representation h;. To
ease layering these components, we keep the di-
mensionality the same as the word embeddings;
h; € R%. Our study consists mainly of vary-
ing this component across models, which are de-
scribed in detail in Section 4. In all models, we
assume independence of intent classification and
slot labeling given the learned representations:

P(ly.7,clhy.r) = P(lir|hir)P(clhir)  (2)

3.2 Sentence representation

In this component, the output of the word contex-
tualization component is summarized in a single
vector,

s = SentenceRepr(hy.7) 3)
where s € R% . For all our experiments, we keep
this component constant, using a simple attention-
like pooling which is the weighted sum of word
contextualization for each position in the sentence.
These weights are computed using softmax over
these individual word contextualizations

While simple, this model permits word con-
textualization components freedom in how they
encode sentential information; for example, self-
attention models may spread full-sentence infor-
mation across all words, whereas 1-directional
LSTMs may focus full-sentence information in the
last word’s vector.

3.3 Intent prediction

In this component, the sentence representation is
used as features to predict the intent of the utter-
ance. For all experiments, we keep this compo-
nent fixed as well, using a simple two-layer feed-
forward block on top of s.

3.4 Slot label prediction

In this component, the output of the word contex-
tualization component is used to construct a distri-
bution over slot label sequences for the utterance.
We decompose the joint probability of the label
sequence given the contextualized word represen-
tations into a left-to-right labeling:

T

P(lirlbhyr) = [ [ Py, o)
i=1

4)
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In our experiments, we explore two models for
slot prediction, one fully-parallelizable because of
strong independence assumptions, the other per-
mitting a constrained dependence between label-
ing decisions that we call ‘label-recurrent’.

Independent slot prediction The first is a non-
recurrent model, which assumes indepdencence
between all labeling decisions once given hj.p,
as well as independence from all word represen-
tations except that of the word being labeled:

P(lilhy.r, l1:i-1) = P(li]hy) (5)
This model is fully parallelizable on GPU archi-
tectures, and the probability of each labeling deci-
sion is modeled according to

P(0fby.7) = softmax(W Opisr. + ) (6)
pist = tanh(WVh; + ) @)

hence, SL prediction features are learned using
each contextualized word independently.

Label-recurrent slot prediction The second
class of slot prediction models we consider lead to
our classification, ‘label-recurrent.’! These mod-
els permit dependence of labeling decisions on the
sequence of decisions made so far, but keep the
independence assumption on the word representa-
tions:

P(li|hy7,l1:i-1) = P(li]l1i-1,h)  (8)
Notably, this family of models excludes traditional
encoder-decoder models, since the decoder com-
ponent uses labeling decisions /q.;_1 and earlier
word representations hy.;_; to influence the pre-
dictor features p; s7,. However, it includes models
such as CNN-CRF.

The space of label sequences in slot labeling is
much smaller than the space of word sequences.
This adds minimal computational burden and per-
mits the model to benefit from GPU parallelism
during hy.7 computation.

For our experiments, we propose a single label-
recurrent model, which encodes labeling histories
l1.—; using only a 10-dimensional LSTM. First,
slot labels are embedded, such that for each | € L,
we have 1 € R%. An initial tag history state, h®,
is randomly initialized. Each tag decision is fed

"We use this term for clarity in language, not to claim that
no such models have been explored in the past.



along with the previous tag history state to the
LSTM, which returns the next tag history state:

lltag

h{"® = LSTM(L;_1, b},

)- ©)

We omit a precise description of the LSTM model
here for space, referring the reader to (Hochreiter
and Schmidhuber, 1997).

The tag history is used at each prediction step
as additional inputs to construct the predictor fea-
tures p; s, replacing Eqn. 7 with:

pis. = tanh(W ) [h;; ¥ + b®))  (10)

where [a;b] denotes concatenation. This model
and other label-recurrent models are not only par-
allelizable more than fully-recurrent models, but
also provide an architectural inductive bias, sepa-
rating modeling of tag sequences from modeling
of word sequences. In our experiments, we per-
form greedy decoding to maintain a high decoding
speed.

4 Word contextualization models

In this section, we describe word contextualization
models with the goal of identifying non-recurrent
architectures that achieve high accuracy and faster
speed than recurrent models.

4.1 Feed-forward model

In this model, we set hy.7 = x1.7 4+ aj.7, where
ay.7 is a learned absolute position representation,
with one vector learned per absolute position, as
used in (Gehring et al., 2017). While extremely
simple, this model provides a useful baseline as
a totally context-free model. It also permits us to
analyze the contribution of a label-recurrent com-
ponent in such a context-deprived scenario.

4.2 Self-attention models

Recent work in non-recurrent modeling has sur-
faced a number of variants of attention-based word
context modeling.

The simplest constructs each h; by incorporat-
ing a weighted average of the rest of the sequence,
x1.7\X;. We use a bilinear attention mechanism
with a residual connection while masking out the
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identity in the attention weights.

h; = relu(V.5(c; +x;)) (11)
T
C; = Z A 5X4 (12)
j=Lii
Tk,
o exp(x; W)x;) (13)

T T expWOy)

In this and all subsequent models, we optionally
stack multiple layers, feeding the word represen-
tations from each layer into the next; in this case
we denote the models ATTN-1L, ATTN-2L, etc.

We also analyze multi-head attention models,
drawing from (Vaswani et al., 2017). For a model
with k£ heads, we construct one matrix of the form
A € R%/* for each head, and transform each
x;, xI = AF'x; for k' € {1,...,k}. These are
passed into the attention equations above, generat-
ing context vectors c}, ey cf € R%/k which are
then concatenated to form a vector in R% . These
context layers are usually sent through a linear
transformation to combine features between the
heads, the output of which is c;, but we found that
omitting this combination transformation leads to
significantly improved results, so we do so in all
experiments. We denote these models K-HEAD
ATTN.

4.2.1 Relative position representations

We found in early experiments that the absolute
position embeddings in self-attention models are
insufficient for representing order. Hence, in all
attention models except when explicitly noted,
we use relative position representations as fol-
lows. We follow Shaw et al. (2018), who improved
the absolute position representations of the Trans-
former model (Vaswani et al., 2017) by learning
vector representations of relative positions and in-
corporating them into the self-attention mecha-
nism as follows:

T
ci= Y (X +Veag) (14)
i'=1,j7i
SO WO; + b))
a; = T
=1 exp(f WOxje + byi )
where vy (; ;) is a learned vector representing how

the relative positions ¢ and j should be incor-
porated, and by(; ;) is a learned bias that deter-
mines how the relative position should affect the



weight given to position j when contextualizing
position ¢. The function f determines which rela-
tive positions to group together with a single rel-
ative position vector. Given the generally small
datasets in IC+SL, we use the following rela-
tive position function, which buckets relative po-
sitions together in exponentially larger groups as
distance increases, following the results of Khan-
delwal et al. (2018), that LSTMs represent posi-
tion fuzzily at long relative distances.

+2,[5 —il € {2,3}
+3,|j —i| € {4.7}

fli,g) = (16)

This is similar to the preprint of Bilan and Roth
(2018), who use linearly increasing bucket sizes;
we found exponentially increasing sizes to work
well compared to the constant bucket sizes of
Shaw et al. (2018).

4.3 Convolutional models

Convolution incorporates local word context into
word representations, where kernel width param-
eter specifies the total size (in words) of local
context considered. Each convolutional layer pro-
duces a vector representation of each word,

hy.7 = relu(v.5 % [CNN(x.7) + x1.7])  (17)

and includes a residual connection, and variance
normalization, following (Gehring et al., 2017).
To maintain the dimensionality of h; as R%, we
use a filter count of d,. We vary the number of
CNN layers as well as the kernel width, and for
all models use a variant known as dilated CNNss.
These CNNs incorporate distant context into word
representations by skipping an increasing number
of nearby words in each subsequent convolutional
pass. We use an exponentially increasing dilation
size; in the first layer, words of distance 1 are in-
corporated; at layer two, words of distance 2, then
4, etc. This permits large contexts to be incorpo-
rated into word representations while keeping ker-
nel sizes and the number of layers low.

4.4 Recurrent models

We also construct a recurrent word contextualiza-
tion model, more or less identical to encoders of
recent state-of-the-art models. We use a bidirec-
tional LSTM to encode word contexts, hy.p
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BiLSTM(x1.7). As with all other models, we re-
port the performance of this model with feed-
forward slot label prediction as well as with label-
recurrent slot label prediction. Though similar to
earlier work, both models are new; though the lat-
ter is recurrent both in word contextualization and
slot label prediction, it is distinct from past mod-
els in that the two recurrent components are com-
pletely decoupled until the prediction step.

5 Datasets

We evaluate our framework and models on the
ATIS data set (Hemphill et al., 1990) of spoken
airline reservation requests and the Snips NLU
Benchmark set (Coucke et al., 2018). The ATIS
training set contains 4978 utterances from the
ATIS-2 and ATIS-3 corpora; the test set consists
of 893 utterances from the ATIS-3 NOV93 and
DEC94 data sets. The number of slot labels is 127,
and the number of intent classes is 18. Only the
words themselves are used as input; no additional
tags are used.

The Snips 2017 dataset is a collection of 16K
crowdsourced queries, with about 2400 utterances
per each of 7 intents. These intents range from
‘Play Music’ to ‘Get Weather’. Training data con-
tains 13784 utterances and the test data consists
of 700 utterances. The utterance tokens are mixed
case unlike the ATIS dataset, where all the tokens
are lowercased. Total number of slot labels are 72.
We use IOB tagging, and split 10% of the train set
off to form a development set. Utterances in Snips
are, on average, short, with 9.15 words per utter-
ance compared to ATIS’ 11.2. However, slot la-
bel sequences themselves are longer in Snips, av-
eraging 1.8 tokens per span to ATIS’ 1.2, making
span-level slot labeling more difficult. For our de-
velopment experiments, we use the casing and tok-
enization provided by Snips. Co, but to compare to
prior work, in one test experiment we use the low-
ercased, tokenized version of (Goo et al., 2018)2.

6 Experiments

We evaluate multiple models from each of our
model paradigms to help determine what model-
ing structures are necessary for SLU, and where
the best accuracy-speed tradeoffs are. First, we
report extensive evaluation across the Snips and
ATIS development sets, tracking inference speed
and time to convergence along with the usual IC

*https://github.com/MiuLab/SlotGated-SLU



Model label IC ace SLFI Inference Epochs to slepoch 4
recurrent ms/utterance converge
Snips | ATIS | Snips | ATIS
FEED-FORWARD No | 98.56 | 97.14 | 53.59 | 69.68 0.61 48 1.82 | 17k
FEED-FORWARD Yes | 98.54 | 97.46 | 75.35 | 88.72 1.82 83 2.52 | 19k
CNN, SKERNEL, 1L No | 98.56 | 98.40 | 85.88 | 94.11 0.82 23 1.90 | 42k
CNN, 5KERNEL, 3L No | 99.04 | 98.42 | 92.21 | 96.68 1.37 55 2.16 | 91k
CNN, 3KERNEL, 4L No | 98.81 | 98.32 | 91.65 | 96.75 1.28 57 2.29 | 76k
CNN, SKERNEL, 1L Yes | 98.85 | 98.36 | 93.12 | 96.39 2.13 51 2.77 | 43k
CNN, 5KERNEL, 3L Yes | 99.10 | 98.36 | 94.22 | 96.95 2.68 59 3.34 | 93k
CNN, 3KERNEL, 4L Yes | 9896 | 98.32 | 93.71 | 96.95 2.60 53 3.43 | 78k
ATTN, 1HEAD, 1L, NO-POS No | 98.50 | 97.51 | 53.61 | 69.31 1.95 25 1.94 | 22k
ATTN, 1HEAD, IL No | 98.53 | 97.74 | 75.55 | 93.22 4.75 117 4.34 | 23k
ATTN, 1HEAD, 3L No | 98.74 | 98.10 | 81.51 | 94.07 7.68 160 432 | 33k
ATTN, 2HEAD, 3L No | 98.31 | 98.10 | 83.02 | 94.61 7.86 79 4.87 | 47k
ATTN, 1HEAD, 1L, NO POS Yes | 98.63 | 97.68 | 74.94 | 88.60 3.24 60 2.66 | 24k
ATTN, 1HEAD, 1L Yes | 98.61 | 98.00 | 86.72 | 94.53 6.12 89 5.53 | 24k
ATTN, 1HEAD, 3L Yes | 98.51 | 98.26 | 88.04 | 94.99 9.03 109 6.06 | 34k
ATTN, 2HEAD, 3L Yes | 98.48 | 98.26 | 89.31 | 95.86 9.17 93 6.54 | 49k
LSTM, 1L No | 98.82 | 98.34 | 91.83 | 97.28 2.65 45 291 | 47k
LSTM, 2L No | 98.77 | 98.20 | 93.10 | 97.36 472 58 5.09 | 77k
LSTM, 1L Yes | 98.68 | 98.36 | 93.83 | 97.37 3.98 54 4.62 | 49k
LSTM, 2L Yes | 98.71 | 98.30 | 93.88 | 97.28 6.03 69 6.82 | 79k

Table 1: Development results on the Snips 2017 and ATIS datasets, comparing models from feed-forward, convolutional,
self-attention, and recurrent paradigms, as well as comparing non-recurrent, label-recurrent, and fully recurrent architectures,
on IC, SL, inference speed, and training time. Inference speed, convergence time, and parameter count are drawn from Snips
experiments, but the trends hold on ATIS. The best IC and SL for each dataset is bolded within each model paradigm to help

compare between paradigms.

accuracy and SL F1. Second, we pick a small num-
ber of our best-performing models to evaluate on
ATIS and Snips test sets, to compare against prior
work.

For each experiment below, we train until con-
vergence, where convergence is defined by an
early stopping criterion with a patience of 30
epochs and an average of development set IC ac-
curacy and token-level SL F1 used as the perfor-
mance metric.

6.1 Modeling study experiments

In our first category of experiments, we evaluate
variants of each word contextualization paradigm
introduced.

We evaluate one feed-forward word contextu-
alization module (labeled as FEED-FORWARD) to
provide a baseline performance. As with all sub-
sequent models, we evaluate this word contextu-
alization module with and without our proposed
label-recurrent decoder. This baseline should help
us determine the extent to which each dataset re-
quires the modeling of context.

We evaluate 3 convolutional word contex-
tualization modules. The first has 1 layer with
a kernel size of 5, and is intended to provide
intuition as to whether a relatively large local

context can sufficiently model SL behavior. We
label this model CNN, SKERNEL, 1L, and name
all other CNN models similarly. The next model
has 3 layers with kernel size 5, and is dilated.
This model incorporates long-distance context
hierarchically, and is shorter and wider-per-layer
than the otherwise-similar 3rd CNN model, with
4 layers and kernel size 3.

We evaluate 4 attention-based word contextual-
ization modules. The first is simple, with 1 atten-
tion head and 1 layer. Unlike all others we analyze,
it does not use relative position embeddings. Thus,
this model is word order-invariant except for a
simple absolute position embedding. If it improves
over FEEDFORWARD, then, it provides strong evi-
dence that semantic information from the context
words, irrespective of order, is useful in making
tagging decisions. We label this model with the
flag NO-POS. To evaluate the utility of relative po-
sition embeddings, we also compare a model with
1 head and one layer, labeled ATTN, 1HEAD, 1L.
We then test two increasingly complex models,
first with 3 layers and 1 head, the second with 3
layers and 2 heads per layer.

We evaluate 2 LSTM-based word contextual-
ization modules; one uses a single LSTM layer,
whereas the other stacks a second on top of the

51




first. As with all other models, we test these two
models both with independent slot prediction and
label-recurrent slot prediction.

6.2 Comparison to prior work

For our second category of experiments, we take
a few high-performing models from our analysis
and evaluate them on the Snips and ATIS test sets
for comparison to prior work. For these models,
we report not only the average IC accuracy and SL
F1 across random initializations, but also the stan-
dard deviation and best model, as most work has
not reported average values. We keep all hyperpa-
rameters fixed across all experiments, potentially
hindering performance but providing a stronger
analysis of robustness.

Note on pre-trained contextual word embed-
ding: Although our framework allows easy inte-
gration of contextual pre-trained embeddings like
BERT (Devlin et al., 2019) and EMLo (Gardner
et al., 2017) by replacing the word contextualiza-
tion component, we exclude them in our exper-
imentation in order to reduce model obfuscation
and have fair comparison against baselines.

7 Results and discussion

In this section, we draw from results reported in
Table 1, on the development sets of Snips and
ATIS. It is easy to see that very little in the way
of modeling is necessary for IC task, so we focus
our analysis on SL task. We emphasize that ATIS
has shorter spans than Snips, averaging 1.2 and 1.8
tokens, respectively, leading to differing modeling
requirements.

7.1 Minimal modeling for SLU

By analyzing three simple models - FEED-
FORWARD, ATTN-1HEAD-1L-NO-POS, and CNN-
S5KERNEL-1L - we conclude that explicitly incor-
porating local features is a useful inductive bias
for high SL accuracy. The purely feed-forward
model achieves 53.59 SL F1 on Snips, whereas
one layer of convolution improves that number to
85.88. The story is similar for ATIS SL. How-
ever, a single layer of attention without position
information fails to improve over the feed-forward
model whatsoever which we believe is due to the
order-invariant nature of self-attention. This also
emphasizes the fact that focusing on local context
is useful inductive prior for SL task.

For each of these simple models, switching
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from independent slot label prediction to label-
recurrent prediction provides large gains on both
datasets. We find an approximate 1.3ms/utterance
slowdown from using label recurrence across all
models. Thus, in terms of accuracy-for-speed, very
simple models can achieve much of the results of
more expensive models as long as they are label-
recurrent and incorporate local context.

7.2 High-performing convolutional models

The larger convolutional models provide very
high accuracy while maintaining fast inference
and training speeds. In particular, our best CNN
model, CNN-5KERNEL-3L, achieves 94.22 SL
F1 on Snips, compared to the two-layer LSTM
with label-recurrence, which achieves 93.88. The
model achieves this modest improvement with
over 2x the inference speed, training in under 1/2
the time, and demonstrating even stronger results
on the test sets, discussed below.

On ATIS, where utterances are longer but slot
label spans are shorter, LSTMs outperform CNNs
on the development sets.

7.3 Issues with self-attention

Our strongest self-attention model underperforms
CNNs and LSTMs on both Snips and ATIS, with a
maximum SL of 89.31 and 95.86 on the datasets,
respectively. Though self-attention models have
seen success in complex tasks with lots of train-
ing data, we suggest in this study that they lack
the inductive biases to perform well on these small
datasets.

Relative position embeddings go a long way in
improving self-attention models; adding them to
a 1l-layer attentional encoder improves ATIS and
Snips SL by approximately 24 and 22 points, re-
spectively. We find that adding attention heads
does not add considerably to the computational
complexity of attention models, while increasing
accuracy; thus in a speed-accuracy tradeoff, it is
likely better to add heads rather than layers as each
layer adds O(n? * d,,) additional computations.

7.4 Word and label recurrence in LSTMs

Our LSTM word contextualization modules show
that with recurrent word context modeling, label-
recurrence is less important. For instance, 2-layer
LSTM achieves only .78 increase in SL with label
recurrence over independent prediction.



Snips
IC Acc SLR F1
Model Recurrence Mean Max Mean Max
16 LSTM* (Hakkani-Tiir et al., 2016) full 96.9 - 87.3 -
’16 seq2seq+attn* (Liu and Lane, 2016) full 96.7 - 87.8 -
LSTM-attn+gates (Goo et al., 2018) full 97.0 - 88.8 -
OUR CNN, 5KERNEL, 3L none 97.651+0.28 | 97.57 | 89.57+0.54 | 90.66
OUR CNN, 5KERNEL, 3L label 97.57£0.41 | 98.29 | 92.30+0.40 | 93.11
OUR LSTM, 2L word 97.2840.36 | 97.57 | 90.66+0.55 | 91.53
OuUR LSTM, 2L full (decoupled) | 97.224+0.32 | 97.14 | 91.53+0.50 | 92.62

Table 2: Test set results on the Snips dataset. (*) indicates numbers reported by (Goo et al., 2018)

ATIS
IC Acc SLR F1

Model Recurrence Mean Max Mean Max
LSTM-attn+gates (Goo et al., 2018) full 94.10 - 95.20 -

18 Two LSTMs (Wang et al., 2018) full - 98.99 - 96.89
’18 self-attn+LSTM (Li et al., 2018) full - 98.77 - 96.52
OUR CNN, 5KERNEL, 3L none 97.044+0.62 | 97.98 | 94.844+0.22 | 94.95
OUR CNN, 5KERNEL, 3L label 97.37+0.57 | 98.10 | 95.274+0.19 | 95.54
OUR LSTM, 2L word 96.844+0.49 | 97.65 | 95.13+0.29 | 95.41
OUR LSTM, 2L full (decoupled) | 97.00+0.44 | 97.98 | 95.154+0.25 | 95.21

Table 3: Test set results on the ATIS dataset, compared to recent recurrent models.

7.5 Best models compared to prior work

We report test set results on Snips and ATIS in
Tables 2 and 3. Our best models from our valida-
tion study, CNN-5KERNEL-3L and LSTM-2L, out-
perform the state-of-the-art on the Snips dataset,
with label-recurrence proving crucial, especially
for Snips. In particular, CNN-5KERNEL-3L with
label recurrence achieves an average SL F1 of
92.30, improving over the previous state-of-the-art
of 88.8, by reducing error rate by 30%, and .57-
point improvement on IC.

On ATIS, our label-recurrent models outper-
form slot-gated LSTM model of Goo et al. (2018)
on both IC and SL tasks.> Wang et al. (2018)
attribute their result to using IC and SL-specific
LSTMs and use 300-dimensional word embedding
and 200-dimensional LSTMs, but with an ATIS
vocabulary of 867 words (suggesting a relatively
simple sequence space), we are unable to deter-
mine the source of the improvement from a model-
ing standpoint. Similar observation was made for
(Lietal., 2018) where 264-dimension embeddings
is used.

We hypothesize that our models perform bet-
ter on Snips because much of Snips slot label-
ing depends on consistency within long spans,

3We note that, since this work was performed, consider-
able efforts have been put into the Snips dataset, including
the use of ELMo (Siddhant et al., 2019), BERT (Chen et al.,
2019b), and capsule networks (Zhang et al., 2019), among
other methods (Chen et al., 2019a).
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Figure 2: Visualization of the weight given to each token
representation by the attention-based pooling for sentence
representation. Lighter colors indicate greater attention.

whereas ATIS slot labels have longer-distance de-
pendencies, for example between to_city and
from_city tags.

7.6 Attention Visualization

We note that anecdotally, few words in each ut-
terance are useful in indicating the intent. In the
example given in Figure 2, presence of possible
departure and arrival cities may be distracting, but
the attention mechanism correctly learns to focus
on words that indicate atis_aircraft intent.

8 Conclusion

We presented a general family of joint IC+SL
neural architectures that decomposes the task into
modules for analysis. Using this framework, we
conducted an extensive study of word contex-
tualization methods (including utility of recur-
rence in the representation and output space)
and determined that label-recurrent models, with
non-recurrent word representation and a recurrent
model of slot label dependencies, are a good fit for



high performance in both accuracy and speed.

With the results of this study, we proposed a
convolution-based joint IC+SL model for SLU
that achieves new state-of-the-art results on Snips
dataset while maintaining a simple design, shorter
training, and faster inference than comparable re-
current methods.

9 Implementation details

All models are implemented in MXNet (Chen
et al., 2015). For all models, we randomly ini-
tialize word embeddings and use d; = 70. We
optimize using Adadelta algorithm (Zeiler, 2012),
with initial learning rate, .01. We clip and pad
all training and development sentences to length
30, with clipping affecting a small number of ut-
terances. Dropout (Srivastava et al., 2014) prob-
ability of .3 is used in all models. We train us-
ing a batch size of 128 split across 4 GPUs on
a p3.8xlarge EC2 instance, and perform inference
using CPUs on same machine.
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