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Abstract
Dialogue systems are increasingly using
knowledge bases (KBs) storing real-world
facts to help generate quality responses. How-
ever, as the KBs are inherently incomplete
and remain fixed during conversation, it lim-
its dialogue systems’ ability to answer ques-
tions and to handle questions involving enti-
ties or relations that are not in the KB. In this
paper, we make an attempt to propose an en-
gine for Continuous and Interactive Learning
of Knowledge (CILK) for dialogue systems to
give them the ability to continuously and inter-
actively learn and infer new knowledge during
conversations. With more knowledge accumu-
lated over time, they will be able to learn bet-
ter and answer more questions. Our empirical
evaluation shows that CILK is promising.

1 Introduction

Dialogue systems, including question-answering
(QA) systems are now commonly used in practice.
Early such systems were built mainly based on
rules and information retrieval techniques (Banchs
and Li, 2012; Ameixa et al., 2014; Lowe et al.,
2015; Serban et al., 2015). Recent deep learn-
ing models (Vinyals and Le, 2015; Xing et al.,
2017; Li et al., 2017c) learn from large corpora.
However, since they do not use explicit knowledge
bases (KBs), they often suffer from generic and
dull responses (Xing et al., 2017; Young et al.,
2018). KBs have been used to deal with the prob-
lem (Ghazvininejad et al., 2018; Le et al., 2016;
Young et al., 2018; Long et al., 2017; Zhou et al.,
2018). Many task-oriented dialogue systems (Eric
and Manning, 2017; Madotto et al., 2018) also use
KBs to support information-seeking conversations.

One major shortcoming of existing systems that
use KBs is that the KBs are fixed once the dialogue
systems are deployed. However, it is almost im-
possible for the initial KBs to contain all possible

knowledge that the user may ask, not to mention
that new knowledge appears constantly. It is thus
highly desirable for dialogue systems to learn by
themselves while in use, i.e., learning on the job
in lifelong learning (Chen and Liu, 2018). Clearly,
the system can (1) extract more knowledge from
the Web or other sources, and (2) learn directly
from users during conversations. This paper fo-
cuses on the latter and makes an attempt to propose
an engine for Continuous and Interactive Learning
of Knowledge (CILK) to give the dialogue system
the ability to acquire/learn new knowledge from the
user during conversation. Specifically, it focuses on
learning new knowledge interactively from the user
when the system is unable to answer a user’s WH-
question. The acquired new knowledge makes the
system better able to answer future user questions,
and no longer be limited by the fixed knowledge
provided by the human developers.

The type of knowledge that the CILK engine
focuses on is the facts that can be expressed as
triples, (h, r, t), which means that the head entity h
and the tail entity t can be linked by the relation r.
An example of a fact is (Boston, LocatedInCoun-
try, USA), meaning that Boston is located in USA.
This paper only develops the core engine. It does
not study other dialogue functions like response
generation, semantic parsing, fact extraction from
user utterances, entity linking, etc., which have
been studied extensively before and are assumed to
be available for use. Thus, this paper works only
with structured queries (h, r, ?), e.g., (Boston, Lo-
catedInCountry, ?) meaning “In what Country is
Boston located ?,” or (?, r, t), e.g., (?, PresidentOf,
USA) meaning “Who is the President of USA?” It
assumes that a semantic parser is available that can
convert natural language queries from users into
query triples. Similarly, it assumes an information
extraction tool like OpenIE (Angeli et al., 2015) is
employed to extract facts as triples (h, r, t) from
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user’s utterances during conversation. Building a
full-fledged dialogue system that can also learn dur-
ing conversation is a huge undertaking and is out
of the scope of this paper. We thus only investigate
the core knowledge learning engine here. We also
assume that the user has good intentions (i.e., user
answers questions with 100% conformity about the
veracity of his/her facts)1; but is not omniscient
(opposed to the teacher-student learning setup).

Problem Definition: Given a user query / ques-
tion (h, r, ?) [or (?, r, t)], where r and h (or t)
may not be in the KB (i.e., unknown), our goal is
two-fold: (i) answering the user query or rejecting
the query to remain unanswered in the case when
the correct answer is believed to not exist in the
KB and (ii) learning / acquiring some knowledge
(facts) from the user to help the answering task.
We only focus on the setting where the query can-
not be answered directly with the current KB and
need inference over existing facts, as considering
structured query, it’s trivial to retrieve the answer
if the answer triple is already in KB. We further
distinguish two types of queries: (1) closed-world
queries, where h (or t) and r are known to the KB,
and (2) open-world queries, where either one or
both h (or t) and r are unknown to the KB.

It is easy to see that the problem is essentially
a lifelong learning problem (Chen and Liu, 2018),
where each query to be processed is a task and the
knowledge gained is retained in the KB. To process
a new query/task, the knowledge learned and accu-
mulated from the past queries can be leveraged.

For each new open-world query, the proposed
approach works in two steps:

Step 1 - Interact with the user: It converts
open-world queries (2) to closed-world queries (1)
by asking the user questions related to h (or t) and
r to make them known to the KB (added to KB).
The reason for the conversion will be clear below.
The user answers, called supporting facts (SFs), are
the new knowledge to be added to KB. This step is
also called interactive knowledge learning. Note,
closed-world queries (1) do not need this step.

Step 2 - Infer the query answer: It solves
closed-world queries (1) by inferring the query an-
swer. The main idea is to use each entity e in the
KB to form a candidate triple (h, r, e) (or (e, r, t)),

1We envision that the proposed engine is incorporated into
a dialogue system in a multi-user environment. The system
can perform cross-verification with other users by asking them
whether the knowledge (facts) from a user is correct.

USER: (Boston, LocatedInCountry, ?) “In what
Country is Boston located?” [Query]

CILK: I do not know what “located in Country”
means? Can you provide me an example?

[Ask for Clue]
USER: (London, LocatedInCountry, UK). “London

is located in UK.” [SF1]
CILK: Got it. Can you tell me a fact about

“Boston”? [Ask for Entity Fact]
USER: (Harvard University, UniversityLocatedIn,

Boston). “Harvard university is located in
Boston.” [SF2]

CILK: (Boston, LocatedInCountry, USA) “Boston is
located in USA.” [Answer]

Figure 1: An example of interactive learning and inference.
Note that CILK only works with triples. Each triple above
is assumed to be extracted from the sentence after it. Ask
for Clue and Ask for Entity Fact are interaction query types,
discussed in Sec. 3. SF denotes supporting fact.

which is then scored. The entity e with the highest
score is predicted as the answer of the query.

Scoring each candidate is modeled as a knowl-
edge base completion (KBC) problem (Lao and Co-
hen, 2010; Bordes et al., 2011). KBC aims to infer
new facts (knowledge) from existing facts in a KB
and is defined as a link prediction problem: Given
a query triple, (e, r, ?) [or (?, r, e)], it predicts a
tail entity ttrue [head entity htrue] which makes the
query triple true and thus should be added to the
KB. KBC makes the closed-world assumption that
h, r and t are all known to exist in the KB (Lao
et al., 2011; Bordes et al., 2011, 2013; Nickel et al.,
2015). This is not suitable for knowledge learning
in conversations because in a conversation, the user
can ask or say anything, which may contain entities
and relations that are not in the KB. CILK removes
the closed-world assumption and allows all h (or
t) and/or r to be unknown (not in the KB). Step 1
above basically asks the user questions to make h
(or t) and/or r known to the KB. Then, an exist-
ing KBC model as a query inference model can be
applied to retrieve an answer entity from KB.

Figure 1 shows an example. CILK acquires sup-
porting facts SF1 and SF2 to accomplish the goal
of knowledge learning and utilizes these pieces of
knowledge along with existing KB facts to answer
the user query (i.e., to infer over the query relation
”LocatedInCountry”). CILK aims to achieve these
two sub-goals. The new knowledge (SFs) is added
to the KB for future use2. We evaluate CILK using
two real-world KBs: Nell and WordNet and obtain
promising results.

2The inferred query answer is not added to the KB as it may
be incorrect. But it can be added in a multi-user environment
through cross-verification (see footnote 1 and Sec. 4).
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2 Related Work

To the best of our knowledge, no existing system
can perform the proposed task. We reported a pril-
iminary research in (Mazumder et al., 2018).

CILK is related to interactive language learning
(Wang et al., 2016, 2017), which is mainly about
language grounding, not about knowledge learning.
Li et al. (2017a,b) and Zhang et al. (2017) train
chatbots using human teachers who can ask and
answer the chatbot questions. Ono et al. (2017), Ot-
suka et al. (2013), Ono et al. (2016) and Komatani
et al. (2016) allow a system to ask the user whether
its prediction of category of a term is correct or
not. Compared to these works, CILK performs in-
teractive knowledge learning and inference (over
existing and acquired knowledge) while convers-
ing with users after the dialogue system has been
deployed (i.e., learning on the job (Chen and Liu,
2018)) without any teacher supervision or help.

NELL (Mitchell et al., 2015) updates its KB
using facts extracted from the Web (complementary
to our work). We do not do Web fact extraction.

KB completion (KBC) has been studied in recent
years (Lao et al., 2011; Bordes et al., 2011, 2015;
Mazumder and Liu, 2017). But they mainly handle
facts with known entities and relations. Neelakan-
tan et al. (2015) work on fixed unknown relations
with known embeddings, but does not allow un-
known entities. Xiong et al. (2018) also deal with
queries involving unknown relations, but known
entities in the KB. Shi and Weninger (2018) han-
dles unknown entities by exploiting an external
text corpus. None of the KBC methods perform
conversational knowledge learning like CILK.

3 Proposed Technique

As discussed in Sec. 1, given a query (e, r, ?) [or
(?, r, e)]3 from the user, CILK interacts with the
user to acquire supporting facts to answer the query.
Such an interactive knowledge learning and infer-
ence task is realized by the cooperation of three pri-
mary components of CILK: Knowledge base (KB)
K, Interaction Module I and Inference Model
M. The interaction module I decides whether
to ask or not and formulates questions to ask the
user for supporting facts. The acquired supporting
facts are added to the KBK and used in training the
Inference ModelM which then performs inference
over the query (i.e., answers the query).

3Either e or r or both may not exist in the KB

In the following subsections, we formalize the
interactive knowledge learning problem (Sec. 3.1),
describe the Inference Model M (Sec. 3.2) and
discuss how CILK interacts and processes a query
from the user (Sec. 3.3).

3.1 Problem Formulation

CILK’s KBK is a triple store {(h, r, t)} ⊆ E×R×
E , where E is the entity set andR is the relation set.
Let q be a query of the form (e, r, ?) [or (?, r, e)]
issued to CILK, where e is termed as query entity
and r as the query relation. If e /∈ E and/or r /∈ R
(we also say e, r /∈ K), we call q an open-world
query. Otherwise, q is referred to as a closed-world
query, i.e., both e and r exist in K. Given K and
a query q, the query inference task is defined as
follows: If q is of the form (e, r, ?), the goal is to
predict a tail entity ttrue ∈ E such that (e, r, ttrue)
holds. We call such q a tail query. If q is of the
form (?, r, e), the goal is to predict a head entity
htrue ∈ E such that (htrue, r, e) holds. We call
such q a head query. In the open-world setting, it’s
quite possible that the answer entity ttrue (for a tail
query) or htrue (for a head query) does not exist in
the KB (in E). In such cases, the inference model
M cannot find the true answer. We thus further
extend the goal of query inference task to either
finding answer entity ttrue (htrue) for q or rejecting
q to indicate that the answer does not exist in E .

Given an open-world (head / tail) query q from
user u, CILK interacts with u to acquire a set of
supporting facts (SFs) [i.e., a set of clue triples Cr

involving query relation r and/or a set of entity
fact triples Fe involving query entity e] for learn-
ing r and e (discussed in Sec 3.3). In Figure 1,
(London, LocatedInCountry, UK) is a clue of query
relation “LocatedInCountry” and (Harvard Univer-
sity, UniversityLocatedIn, Boston) is an entity fact
involving query entity “Boston”. In this interaction
process, CILK decides and asks questions to the
user for knowledge acquisition in multiple dialogue
turns (see Figure 1). This is step 1 as discussed in
Sec. 1 and will be further discussed in Sec. 3.3.

Once SFs are gathered, it uses (K ∪ Cr ∪ Fe) to
infer q, which is step 2 in Sec. 1 and will be de-
tailed in Sec. 3.2. We refer to the whole interaction
process involving multi-turn knowledge acquisition
followed by the query inference step as a dialogue
session. In summary, CILK is assumed to operate
in multiple dialogue sessions with different users
and acquire knowledge in each session and thereby,
continuously learns new knowledge over time.
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3.2 Inference Model
Given a query q, the Inference ModelM attempts
to infer q by predicting the answer entity from
E . In particular, it selects each entity ei ∈ E and
forms |E| number of candidate triples {d1, ..., d|E|},
where di is of the form (e, r, ei) for a tail query [or
(ei, r, e) for a head query] and then score each di
to quantify the relevancy of ei of being an answer
to q. The top ranked entity ei is returned as the
predicted answer of q. We deal with the case of
query rejection byM later.

We use the neural knowledge base embedding
(KBE) approach (Bordes et al., 2011, 2013; Yang
et al., 2014) to designM. Given a KB represented
as a triple store, a neural KBE method learns to
encode relational information in the KB using low-
dimensional representations (embeddings) of enti-
ties and relations and uses the learned representa-
tions to predict the correctness of unseen triples. In
particular, the goal is to learn representations for
entities and relations such that valid triples receive
high scores (or low energies) and invalid triples
receive low scores (or high energies) defined by
a scoring function S(.). The embeddings can be
learned via a neural network. In a typical (linear)
KBE model, given a triple (h, r, t), input entity
h, t and relation r correspond to high-dimensional
vectors (either “one-hot” index vector or “n-hot”
feature vector) xh, xt and xr respectively, which
are then projected into low dimensional vectors vh,
vt and vr using an entity embedding matrix WE

and relation embedding matrix WR as given by-
vh =WE xh, vr =WR xr and vt =WE xt. The
scoring function S(.) is then used to compute a
validity score S(h, r, t) of the triple.

Any KBE model can be used for learning M.
For evaluation, we adopt DistMult (Yang et al.,
2014) for its state-of-the art performance over many
other KBE models (Kadlec et al., 2017). The scor-
ing function of DistMult is defined as follows:

S(h, r, t) = vT
h diag(vr)vt =

N∑
i=1

vh[i]vr[i]vt[i] (1)

where diag(vr) is the diagonal matrix in vr.
The parameters of M, i.e., WE and WR, are

learned by minimizing a margin-based ranking ob-
jective L, which encourages the scores of positive
triples to be higher than those of negative triples:

L =
∑

d∈D+

∑
d′∈D−

max{S(d′)− S(d) + 1, 0} (2)

where, D+ is a set of triples observed in K, treated
as positive triples. D− is a set of negative triples

obtained by corrupting either head entity or tail en-
tity of each +ve triple (h, r, t) inD+ by replacing it
with a randomly chosen entity h′ and t′ respectively
from K such that the corrupted triples (h′, r, t), (h,
r, t′) /∈ K. Note, M is trained continuously by
sampling a set of +ve triples and correspondingly
constructing a set of -ve triples as the KB expands
with acquired supporting facts to improve its infer-
ence capability over new queries (involving new
query relations and entities). Thus, the embedding
matrices WE and WR also grow linearly over time.

Rejection in KB Inference. For a query with
no answer entity existing in K, CILK attempts to
reject the query from being answered. To decide
whether to reject the query or not, CILK maintains
a threshold buffer T that stores entity and rela-
tion specific prediction thresholds and updates it
continuously over time, as described below.

Besides the dataset for trainingM, CILK also
creates a validation dataset Dvd, consisting of a
set of validation query tuples of the form (q, E+,
E−). Here, q is either a head or tail query involving
query entity e and relation r, E+ ={e+1 , .., e+p } is
the set of p positive (true answer) entities in K and
E− ={e−1 , .., e−n } is the set of n negative entities
randomly sampled fromK such that E+∩E− = ∅.

Let De
vd = {(q, E+, E−) | (q, E+, E−) ∈

Dvd, e ∈ q} be the validation query
tuple set involving entity e and Dr

vd =
{(q, E+, E−) | (q, E+, E−) ∈ Dvd, r ∈ q} be
the validation query tuple set involving relation r.
Then, we compute T [z], (i.e., prediction threshold
for z, where z is either e or r) as the average of
the mean scores of triples involving +ve entities
and mean scores of triples involving -ve entities,
computed over all q in Dz

vd, given by-

T [z] = 1

2|Dz
vd|

∑
(q,E+,E−)∈Dz

vd

µ+
E + µ−E (3)

where µ+E = 1
|E+|

∑
e+i ∈E+ S(q, e

+
i ) and µ−E =

1
|E−|

∑
e−i ∈E−

S(q, e−i ). Here, S(q, e+i ) =

S(e, r, e+i ) if q is a tail query and S(e+i , r, e) if
q is a head query. S(q, e−i ) can be explained in a
similar way.

Given a head or tail query q involving query
entity e and relation r, we compute the prediction
threshold µq for q as µq = max{T [e], T [r], 0}.

Inference Decision Making. If ẽ ∈ E is the
predicted answer entity by M for query q and
S(q, ẽ) > µq, CILK responds to user with answer
ẽ. Otherwise, q gets rejected.
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Algorithm 1 CILK Knowledge Learning and Inference

Input: query qj = (e, r, ?) or (?, r, e) issued by user at
session-j; Kj : CILK’s KB at session-j; Pj : Performance
Buffer at session-j; Tj : Threshold Buffer at session-j;Mj :
trained Inference Model at session-j; α: probability of
treating an acquired supporting fact as training triple; ρ: % of
entities or relations in Kj that belong to the diffident set.
Output: ẽ : predicted entity as answer of query qj in
session-j.

1: if r /∈ Kj or IsDiffident(r, Pj , ρ) then
2: Cr ← AskUserforCLUE(r) {acquire supporting

facts to learn r’s embedding}
3: end if
4: if e /∈ Kj or IsDiffident(e, Pj , ρ) then
5: Fe ← AskUserforEntityFacts(e) {Acquire

supporting facts to learn e’s embedding}
6: end if
7: if Cr 6= ∅ then
8: K(j+ 1

2
) ← Add clue triples from Cr into Kj and ran-

domly mark α% of Cr as training triples and (1-α)%
as validation triples respectively in Kj .

9: end if
10: if Fe 6= ∅ then
11: Kj+1 ← Add fact triples from Fe into K(j+ 1

2
) and

randomly mark α % of these triples as training triples
and (1-α) % as validation triples.

12: end if
13: Dr

tr , Dr
vd ← SampleTripleSet(Kj+1, r)

14: De
tr , De

vd ← SampleTripleSet(Kj+1, e)
15: Mj+1 ← TrainInfModel(Mj , Dr

tr ∪De
tr)

16: Pj+1, Tj+1 ← UpdatePerfandThreshBuffer
(Mj+1, (Dr

vd ∪De
vd), Pj , Tj)

17: ẽ← PredictAnswerEntity(Mj+1, qj , Tj+1)

3.3 Working of CILK

Given a query q involving unknown query entity
e and/or relation r, CILK has to ask the user to
provide supporting facts to learn embeddings of e
and r in order to infer q. However, the user in a
given session can only provide very few supporting
facts, which may not be sufficient for learning good
embeddings of e and r. Moreover, to accumulate
a sufficiently good validation dataset for learning
T [e] and T [r], CILK needs to gather more triples
from users involving e and r. But, asking for SFs
for any entity and/or relation can be annoying to the
user and also, is unnecessary if CILK has already
learned good emmbeddings of that entity and/or re-
lation (i.e., CILK has performed well in predicting
true answer entity for queries involving that entity
and/or relation in past dialogue sessions with other
users). Thus, it is more reasonable to ask for SFs
for the known entities and/or relations for which
CILK is not confident about performing inference
accurately, besides the unknown ones.

To minimize the rate of user interaction and jus-
tify the knowledge acquisition process, CILK uses
a performance buffer P to store the performance

statistics of CILK in past dialogue sessions. We
use Mean Reciprocal Rank (MRR) to measure the
performance of M (discussed in Sec. 4.1). In
particular, P[e] and P[r] denote the avg. MRR
achieved byM while answering queries involving
e and r respectively, evaluated on the validation
dataset Dvd. At the end of each dialogue session,
CILK detects the set of bottom ρ% query relations
and entities in P based on MRR scores evaluated
on the validation dataset. We call these sets the
diffident relation and entity sets respectively for
the next dialogue session. If the query relation
and/or entity issued in the next session belongs to
the diffident relation or entity set, CILK asks the
user for supporting facts4. Otherwise, it proceeds
with inference, answering or rejecting the query.

Algorithm 1 shows the interactive knowledge
learning and inference process of CILK on a query
qj = (e, r, ?) or (?, r, e) in a given dialogue
session-j. Let Kj , Pj , Tj andMj be the current
version of KB, performance buffer, threshold buffer
and inference model of CILK at the point when
session-j starts. Then, the interactive knowledge
learning and inference proceeds as follows:

• If r /∈ Kj or r is diffident inPj , the interaction
module I of CILK asks the user to provide clue(s)
Cr involving r [Line 1-3]. Similarly, if e /∈ Kj or e
is diffident in Pj , I asks the user to provide entity
fact(s) Fe involving e [Line 4-6].
• If the user provides Cr and/or Fe, I augments
Kj with triples from Cr and Fe respectively and
Kj expands to Kj+1 [Line 7-12]. In this process, α
% of the triples in Cr and Fe are randomly marked
as training triples and rest (1−α)% are marked as
validation triples while storing them in Kj .
• Next, a set of training triples Dr

tr, De
tr and

a set of validation triples Dr
vd, De

vd are sampled
randomly from Kj+1 involving r and e respec-
tively [Line 13-14] for training and evaluatingMj .
While sampling, we set the ratio of number of train-
ing triples to that of validation triples as α to main-
tain a fixed training and validation set distribution.
The size for (Dr

tr ∪De
tr) is set at most Ntr (tuned

based on real-time training requirements).
• Next, Mj is trained with (Dr

tr ∪ De
tr) and

gets updated toMj+1 [Line 15]. Note that, train-
ingMj with (Dr

tr ∪De
tr) encouragesMj to learn

the embeddings of both r and e before inferring qj .

4Note, if (unknown) e or r appears the first time in a user
query, then it cannot be in the diffident set. But the system has
to ask the user question by default.
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Table 1: Dataset statistics [kwn = known, unk = unknown]

KB Statistics WordNet Nell
# Relations (Korg / Kb ) 18 / 12 150 / 142
# Entities (Korg / Kb) 13, 595 / 13, 150 11, 443 / 10, 547
# Triples (Korg / Kb) 53, 573 / 33, 159 66, 529 / 51,252
# Test relations (kwn / unk) 18 (12 / 6) 25 (17 / 8)
# initial Train / intial valid /
test (or query) triples (Dq)

29846 / 3323 / 1180 46056 / 5196 / 1250

Test (or query) triples (Dq) statistics [(e, r, ?) or (?, r, e)]
% triples with only e unk 8.05 19.36
% triples with only r unk 30.25 21.84
% triples both e and r unk 5.25 10.16

Then, we evaluateMj+1 with (Dr
vd ∪ De

vd) in or-
der to update the performance buffer Pj into Pj+1

and threshold buffer Tj into Tj+1 [Line 16]. Fi-
nally,Mj+1 is invoked by CILK to either infer qj
for predicting an answer entity ẽ from Kj+1 [Line
17] or reject qj to indicated that the true answer
does not exist in Kj+1. Note, CILK trainsMj and
infers q [Line 13-17] only if e, q ∈ Kj+1.

4 Experiments

As indicated earlier, the proposed CILK system is
best used in a multi-user environment, so it nat-
urally observes many more query triples (hence,
accumulates more facts) from different users over
time. Presently CILK fulfills its knowledge learn-
ing requirement by only adding the supporting facts
into the KB. The predicted query triples are not
added as they are unverified knowledge. However,
in practice, CILK can store these predicted triples
in the KB as well after checking their correctness
through cross-verification while conversing with
other users in some future related conversations
by smartly asking them. Note that CILK may not
verify its prediction with the same user who asked
the question/query q because he/she may not know
the answer(s) for q. However, there is no problem
that it acquires the correct answer(s) of q when it
asks q to some other user u′ in a future related con-
versation and u′ answers q. At this point, CILK
can incorporate q into its KB and also, train itself
using triple q. We do not address the issue here.

4.1 Evaluation Setup
Evaluation of CILK with real users in a crowd-
source based setup would be very difficult to con-
duct and prohibitively time-consuming (and expen-
sive) as it needs a large number of real-time and
continuous user interaction. Thus, we design a sim-
ulated interactive environment for the evaluation.

We create a simulated user (a program) to inter-
act with CILK, where the simulated user issues a
query to CILK and CILK answers the query. The

(simulated) user has (1) a knowledge base (Ku) for
answering questions from CILK, and (2) an query
dataset (Dq) from which the user issues queries
to CILK.5 Here, Dq consists of a set of structured
query triples q of the form (e, r, ?) and (?, r, e)
readable by CILK. In practice, the user only issues
queries to CILK, but cannot evaluate the perfor-
mance of the system unless the user knows the an-
swer. To evaluate the performance of CILK on Dq

in the simulated setting, we also collect the answer
set for each query q ∈ Dq (discussed shortly).

As CILK is supposed to perform continuous on-
line knowledge acquisition and learning, we evalu-
ate its performance on the streaming query dataset.
We assume that, CILK has been deployed with
an initial knowledge base (Kb) and the inference
modelM has been trained over all triples in Kb for
a given number of epochs Ninit. We call Kb the
base KB of CILK which serves as its knowledge
base at the time point (teval) when our evaluation
starts. And the training process ofM using triples
in Kb is referred to as the initial training phase of
CILK onwards. In the initial training phase, we ran-
domly split Kb triples into a set of training triples
Dtr and a set of validation triples Dvd with 9:1 ra-
tio (we use α = 0.9) and trainM with Dtr. Dvd is
used to tune model hyper-parameters and populate
initial performance and threshold buffers P and
T respectively. Dtr, Dvd, P , and T get updated
continuously after teval in the online training and
evaluation phase (with new acquired triples) dur-
ing interaction with the simulated user.

The relations and entities in Kb are regarded
as known relations and known entities to CILK
till teval. Thus, the initial inference modelM is
trained and validated with triples involving only
known relations and known entities (in Kb). Dur-
ing the online training and evaluation phase, CILK
faces queries (from Dq) involving both known and
unknown relations and entities. More specifically,
if a relation (entity) appearing in a query q ∈ Dq

exists inKb, we consider that query relation (entity)
as known query relation (entity). Otherwise, it is
referred to as unknown query relation (entity).

We create simulated user’s KB Ku, base KB
(Kb) and query dataset Dq from two standard KB
datasets: (1) WordNet (Bordes et al., 2013) and (2)
Nell (Gardner et al., 2014). From each KB dataset,

5UsingKu and Dq , we can create simulated dialogues as
well. Utterances in a dialogue can be created using a language
template for each triple. Likewise, extraction of triples from
utterances can be done using templates as well.
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Table 2: Comparison of predictive performance of various versions of CILK. For each KB dataset, we compare the first four
(Threshold) variants denoted ase“X-BTr” and last three (dataset sampling strategy) variants denoted as “MaxTh-X” and marked
the highest H@1 and H@10 values (among each of the groups of four and three) in bold. Thus, some columns have at max. two
values marked bold (due to the two comparison groups). MaxTh-BTr in the table is the version of CILK proposed in Sec. 3.

Rel - K / Ent -K Rel - K / Ent -UNK Rel - UNK / Ent - K Rel - UNK / Ent -UNK Overall
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

WordNet
EntTh-BTr 0.46 34.57 57.23 0.04 3.50 4.38 0.20 16.21 25.80 0.07 4.83 8.06 0.33 25.03 40.89
RelTh-BTr 0.45 12.71 16.32 0.04 7.89 7.89 0.21 12.30 16.51 0.07 9.67 9.67 0.33 12.09 15.39
MinTh-BTr 0.45 33.81 57.99 0.03 2.63 3.50 0.22 15.93 28.05 0.07 4.84 8.06 0.33 24.43 41.91
MaxTh-BTr 0.45 34.72 56.87 0.04 5.26 6.14 0.20 15.92 25.79 0.07 6.45 9.67 0.33 25.27 40.95
MaxTh-EntTr 0.42 26.07 42.74 0.26 19.29 22.80 0.19 11.79 15.17 0.23 17.74 20.96 0.33 20.77 31.60
MaxTh-RelTr 0.45 34.48 55.93 0.003 2.63 3.51 0.13 11.25 18.01 0.11 8.06 16.13 0.30 23.46 38.09

Nell
EntTh-BTr 0.37 26.80 47.28 0.06 4.47 7.22 0.15 9.58 19.97 0.04 1.64 7.36 0.22 16.18 29.78
RelTh-BTr 0.37 17.01 25.05 0.06 3.78 4.13 0.16 8.72 17.67 0.03 3.28 4.92 0.23 11.35 17.49
MinTh-BTr 0.37 26.63 47.30 0.06 5.33 8.60 0.15 10.24 23.21 0.03 1.64 5.72 0.23 16.41 30.57
MaxTh-BTr 0.37 27.57 47.58 0.06 4.30 7.57 0.16 10.69 19.61 0.03 4.92 8.20 0.23 17.16 30.03
MaxTh-EntTr 0.34 21.82 42.65 0.13 3.95 7.91 0.22 16.48 20.56 0.06 4.06 4.06 0.24 15.46 27.44
MaxTh-RelTr 0.37 26.60 47.07 0.04 3.44 5.85 0.20 12.18 17.67 0.06 3.28 10.67 0.23 16.67 29.29

we first build a fairly large triple store and use it
as the original KB (Korg) and then, create Ku of
user, base KB (Kb) of CILK and Dq from Korg, as
discussed below (Table 1 shows the results).

Simulated User, Base KB Creation and Query
Dataset Generation. In Nell, we found 150 rela-
tions with ≥ 300 triples, and we randomly selected
25 relations for Dq. We shuffle the list of 25 rela-
tions, select 34% of them as unknown relations and
consider the rest (66%) as known relations.

For each known relation r, we randomly shuffle
the list of distinct triples for r, choose (maximum)
250 triples and randomly select 20% as test and add
a randomly chosen subset of the rest of the triples
along with the leftovers (not in the list of 250), into
Kb and the other subset are added toKu (to provide
supporting facts involving poorly learned known
relations and/or entities, if asked [see Sec 3.3]).

For each unknown relation r, we remove all
triples of r from Korg, randomly choose 20%
triples among them and reserve them as query
triples for unknown r. Rest 80% triples of un-
known r are added to Ku (for providing clues). In
this process, we also make sure that the query in-
stances involving unknown r are excluded fromKu.
Thus, the user cannot provide the query triple itself
as a clue to CILK (during inference) and also, to
simulate the case that the user does not know the
answer of its issued query. Note, if the user cannot
provide a clue for an unknown query relation or a
fact for an unknown query entity (not likely), CILK
will not be able to correctly answer the query.

At this point, Dq consists of query triples in-
volving both known and unknown relations, but all
known entities. To create queries in Dq having un-
known entities, we randomly choose 20% of the

Table 3: Performance of CILK Threshold variants on Rejec-
tion and prediction decisions. Here, AE (¬AE) means true
answer entity exists (does not exist) in KB. “Pr(pred|AE)”
means the probability of predicting an answer, given the true
answer exists in KB. “Pr(Reject| ¬AE)” means probability of
rejecting the query, given true answer does not exist in KB.

WordNet Nell

Pr(pred|AE)
Pr(Reject |
¬AE)

Pr(pred|AE)
Pr(Reject |
¬AE)

EntTh-BTr 0.85 0.24 0.82 0.15
RelTh-BTr 0.20 0.92 0.26 0.72
MinTh-BTr 0.90 0.18 0.86 0.10
MaxTh-BTr 0.83 0.33 0.72 0.31

entities in Dq triples, remove all triples involving
those entities from Korg and add them to Ku. Now,
Korg gets reduced to Kb (base KB). Next, for each
query triple (h, r, t) ∈ Dq, we convert the triple
into a head query q =(?, r, t) [or a tail query q =(h,
r, ?)] by randomly deleting the head or tail entity.
We also collect the answer set for each q ∈ Dq

based on observed triples in Korg for CILK evalua-
tion. Note, the generated query triples (with answer
entity) in Dq are not directly in Kb or Ku.

The WordNet dataset being small, we use all its
18 relations for creatingDq,Ku,Kb following Nell.
As mentioned earlier, the triples inKb are randomly
split into 90% training and 10% validation datasets
for simulating initial training phase of CILK.
Hyper-parameter Settings. Embedding dimen-
sions of entity and relations are empirically set as
250 for WordNet and Nell, initial training epochs
Ninit as 100 for WordNet (140 for Nell), train-
ing batch size 128, Ntr as 500, |Dr

vd ∪ De
vd| as

50, α = 0.9, ρ = 20%, random seed as 1000, 4
negative triples generated per positive triple, online
training epoch as 5 (2) for each closed (open) world
query processing, and learning rate 0.001 for both
KB datasets. L2-regularization parameter set as
0.001. Adam optimizer is used for optimization.
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Table 4: Overall Performance of MaxTh-BTr (CILK), vary-
ing the maximum number of clues (#C) and entity facts (#EF)
acquired from user per dialogue session (if asked by the inter-
action module I).

(#C,
#EF)

WordNet Nell
MRR H@1 H@10 MRR H@1 H@10

(1, 1) 0.30 22.09 37.83 0.23 16.89 31.14
(1, 2) 0.32 23.00 39.25 0.25 18.11 31.30
(1, 3) 0.33 25.27 40.95 0.23 17.16 30.03
(1, 3)-U 0.31 23.52 38.15 0.21 15.77 28.64
(2, 2) 0.32 23.43 39.05 0.23 16.82 30.33

Compared Models. Since there is no existing
work that solves our proposed problem, we com-
pare various versions of CILK, constructed based
on different types of prediction threshold µq for
query rejection (Sec. 3.2) and various online train-
ing Dtr = (Dr

tr ∪ De
tr) and validation dataset

Dvad = (Dr
vd∪De

vd) sampling strategies [see Line
13-14 of Algorithm 1] as discussed below:

• CILK variants based on prediction thresh-
old types, namely EntTh-BTr, RelTh-BTr, MinTh-
BTr and MaxTh-BTr (see Table 2). For EntTh-BTr,
we use µq = max{T [e], 0}, for RelTh-BTr, we
use µq = max{T [r], 0}, for MinTh-BTr, we use
µq = max{min{T [e], T [r]}, 0} and MaxTh-BTr
uses µq = max{T [e], T [r], 0} as proposed in Sec
3.2. Here, “BTr” indicates that the CILK variant
samples triples involving both query entity and re-
lation from KB to build Dtr and Dvd.
• CILK variants based on dataset sampling

strategies: MaxTh-BTr (as explained above),
MaxTh-EntTr and MaxTh-RelTr (see Table 2).
Given the query entity e and query relation r,
MaxTh-EntTr only samples triples involving e and
MaxTh-RelTr samples only triples involving r to
build Dtr and Dvd. Note, if the sampled dataset
Dtr (Dvd) is ∅, CILK skips online training (valida-
tion) steps for that session.

Evaluation Metrics. We use two common KBE
evaluation metrics: mean reciprocal rank (MRR)
and Hits@k (H@k). MRR is the average inverse
rank of the top ranked true answer entity for all
queries (Bordes et al., 2013). Hits@k is the propor-
tion of test queries for which the true answer entity
has appeared in top-k (ranked) predictions. Higher
MRR and Hits@k indicate better performance.

4.2 Results and Analysis

For evaluation on a given KB (WordNet or Nell),
we randomly generate a chronological ordering of
all query instances in Dq, which are fed to the
trained CILK (after the initial training phase is
over) in a streaming fashion, and then evaluate

Table 5: Performance of MaxTh-BTr (CILK) on test queries
observed over time, given the model has made a prediction.

% Test Data
Observed

WordNet Nell
MRR H@1 H@10 MRR H@1 H@10

Overall Performance
50% 0.37 27.50 47.19 0.29 20.77 38.87

100% 0.37 27.67 46.71 0.29 20.82 38.65
On Open-word Queries

50% 0.16 11.87 20.11 0.09 4.81 16.47
100% 0.18 12.90 22.91 0.13 8.58 19.54

CILK on the overall query dataset. The avg. test
query processing time of CILK is 1.25 sec (on a
Nvidia Titan RTX GPU). While evaluating a query
qj , if the true answer of qj does not exist in KB
Kj+1 andMj+1 rejects qj , we consider it as a cor-
rect prediction. For such qj , Reciprocal Rank (RR)
cannot be computed. Thus, we exclude qj while
computing MRR, but consider it in computing Hits.

Table 2 shows the performance of CILK variants
on the query dataset, evaluated in terms of MRR,
H@1 and H@10 for both KBs. We present the
overall result on the whole query dataset as well
as results on subsets of query datasets, denoted as
(Rel-X, Ent-Y), where X and Y can be either known
(‘K’) or unknown (‘UNK’) and ‘Rel’ denotes query
relation and ‘Ent’ denotes query entity. So, here,
(Rel-K, Ent-UNK) denotes the subset of the query
dataset that contains query triples involving only
known query relations and unknown query enti-
ties (with respect to Kb). For all variants, we fix
the maximum number of clue triples and entity
fact triples provided by the simulated user for each
query (when asked) as 1 and 3 respectively.

From Table 2, we see that, MaxTh-BTr (version
of CILK in Sec. 3) achieves the overall best results
compared to other variants for both KB datasets.
Among different threshold versions, MaxTh-BTr
and MinTh-BTr perform better than the rest. The
relatively poor result of RelTh-BTr shows thresh-
old strategy plays a vital role in performance im-
provement. Considering different dataset sampling
strategies, again we see MaxTh-BTr performs bet-
ter than other versions. As the triples involving
both query entity and relation are selected for on-
line training in MaxTh-BTr, CILK gets specifically
trained on relevant (query-specific) triples before
the query is answered. For other variants, either
triples involving query relation (for MaxTh-EntTr)
or triples involving query entity (for MaxTh-RelTr)
are discarded, causing a drop in performance.

In Table 3, we compare different CILK threshold
variants based on how often it predicts (or rejects)
the query, when the true answer exists (does not
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exist) in its current KB, given by Pr(pred | AE)
[ Pr(Reject | ¬AE) ]. For both datasets, EntTh-
BTr has a tendency to predict more and reject less.
Whereas, RelTh-BTr is more precautious in predic-
tion. MinTh-BTr is the least precautious in predic-
tion among all. MaxTh-BTr adopts the best of both
worlds (EntTh-BTr and RelTh-BTr), showing mod-
erate strategy in prediction and rejection behavior.

Table 4 shows comparative performances of
MaxTh-BTr on varying the maximum number of
clue triples and entity fact triples provided by the
user (when asked). Comparing (1, 1), (1, 2), (1,
3) we see a clear performance improvement in
MaxTh-BTr with the increase in (acquired) entity
fact triples (specially, for WordNet). This shows
that if user interacts more and provides more in-
formation for a given query, CILK can gradually
improve its performance over time [i.e., with more
accumulated triples in its KB]. For Nell, perfor-
mance improves for both (1, 2) and (1, 3) compared
to that in (1, 1), (1, 2) variant being the best over-
all. Comparing (1, 3) and (2, 2) for both KBs, we
see that acquiring more entity facts dominates the
overall performance improvement compared to ac-
quiring more clues. This is because, as a past query
relation is more probable to appear in future query
compared to a past query entity, CILK can gradu-
ally learn the relation embedding with less clues
per query unlike that for an entity. (1, 3)-U denotes
the set up, where CILK asks for clues or entity facts
only if the query triple has unknown entity and/or
relation, i.e. we disable the use of performance
buffer P (see Sec 3.3). Due to lack of sufficient
training triples to learn an unknown query rela-
tion and entity, the overall performance degrades.
This shows the importance and effectiveness of the
performance buffer in improving performance of
CILK with limited user interactions.

In Table 5, we show the performance of MaxTh-
BTr on (predicted) test queries over time. Con-
sidering overall performance, the improvement is
marginal. However, for open-world queries, there
is a substantial improvement in performance as
CILK relatively acquires more facts for open-world
queries than that of closed-world ones.

5 CILK: Use Cases in Dialogue Systems
There are many applications for CILK. Conver-
sational QA systems (Kiyota et al., 2002; Bor-
des et al., 2014), conversational recommendation
systems (Anelli et al., 2018; Zhang et al., 2018),
information-seeking conversational agents (Yang

et al., 2018), etc., that deal with real-world facts,
are all potential use cases for CILK.

Recently, (Young et al., 2018; Zhou et al., 2018)
showed that dialogue models augmented with com-
monsense facts improve dialogue generation perfor-
mance. It’s quite apparent that continuous knowl-
edge learning using CILK can help these models
grow their KBs over time and thereby, improve
their response generation quality.

The proposed version of CILK has been de-
signed based on a set of assumptions (see Sec. 1)
to reduce the complexity of the modeling. For ex-
ample, we do not handle the case of intentional or
unintentional false knowledge injection by users
to corrupt the system’s KB. Also, we do not deal
with fact extraction errors of the peripheral infor-
mation extraction module or query parsing errors
of the semantic parsing modules, which can affect
the knowledge learning of CILK. We believe these
are separate research problems and are out of the
scope of this work. In future, we plan to model an
end-to-end approach of knowledge learning where
all peripheral components of CILK can be jointly
learned with CILK itself. We also plan to solve the
cold start problem when there is little training data
for a new relation when it is first added to the KB.

Clearly, CILK does not learn all forms of knowl-
edge. For example, it does not learn new concepts
and topics, user traits and personality, and speaking
styles. They also form a part of our future work.

6 Conclusion

In this paper, we proposed a continuous (or life-
long) and interactive knowledge learning engine
CILK for dialogue systems. It exploits the situa-
tion when the system is unable to answer a WH-
question from the user (considering its existing KB)
by asking the user for some knowledge and based
on it to infer the query answer. We evaluated the
engine on two real-world factual KB data sets and
observed promising results. This also shows the po-
tentiality of CILK to serve as a factual knowledge
learning engine for future conversational agents.
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