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Abstract

This paper describes the method that
Investments AI at AIG (American International
Group, Inc.) submitted to the FinSBD-2019 shared
task (“Sentence Boundary Detection (SBD) in PDF
Noisy Text of the Financial Domain”) to extract
meaningful, well-formed sentences from noisy
unstructured financial text. We approach sentence
boundary detection as a sequence labelling task
to recognise the start and end token boundaries
of sentence(-like) constructs. We evaluated two
neural architectures, namely 1) Bidirectional
Long Short-Term Memory (BiLSTM) and 2)
Bidirectional Encoder Representations from Trans-
formers (BERT). Our extensive experiments on
the official FinSBD-2019 datasets demonstrate
that a fine-tuned BERT model with customised
hyper-parameters (BERT-SBD) outperforms BiL-
STM models in several evaluation metrics. Our
BERT-SBD submission ranked first on the English
test set in terms of MEAN F1 score in the joint
sentence-begin-and-end test condition.

1 Introduction

The sentence is one of the most prominent building blocks
in practical NLP and formal linguistics alike. Many, ulti-
mately leaky, definitions for what a sentence is (not) can be
found in both communities. At the level of informal common
sense, a sentence is taken to represent a “complete thought”!.
In Halliday’s functional-thematic interpretation, the sentence
is a basic unit of information composed of a topic (theme)
and a comment; and the highest graphological unit of punc-
tuation which conventionally begins with an upper-case let-
ter and ends with a full stop [Halliday, 2004]. The sentence
is conventionally the structurally highest construct in formal
syntax (lexicogrammar), typically a clause complex or mini-
mally at least one main clause (a predicator with an internal
subject complement) [Huddleston and Pullum, 2002]. Many
NLP applications and data sets> view sentences as arbitrarily

"For example, academic writing guides (https://www.uts.edu.au/
sites/default/files/article/downloads/sentence.pdf)

For example, the ”Brief one-sentence movie summary” field in
https://www.kaggle.com/PromptCloudHQ/imdb-data
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truncated text snippets which are simply ‘useful’ in practical
terms.

Regardless of how the sentence is defined formally, sen-
tence boundary detection (SBD) (cf. sentence boundary dis-
ambiguation, sentence segmentation, sentence breaking, sen-
tence chunking) is a foundational, critically important up-
stream step in many NLP applications and (sub)tasks, such
as part-of-speech tagging, named entity recognition, depen-
dency parsing, and semantic role labelling, to name a few.
Sentence boundary detection attempts to determine the spans
(bounds, begin/from-end/to token indices) of sentences and
sentence-like constructs below paragraphs, sections, or other
suprasentential structures. Because incorrect sentence spans
can propagate and generate noise (and undesirable compli-
cations) for downstream tasks, SBD plays a critical role in
practical NLP applications.

Despite its importance, SBD has received much less atten-
tion in the last few decades than some of the more popular
subtasks and topics in NLP. On the one hand, (superficially)
high baseline performance levels can be achieved by naive
lookup methods that capture obvious, frequent sentence-final
punctuation characters such as [./?”] in conjunction with
elementary space and case heuristics [Reynar and Ratna-
parkhi, 1997]. Such baselines leave little room for fur-
ther optimisation on traditional test sets derived from formal
news(wire) sources. On the other hand, the long tail of ex-
ceptions in SBD makes the task non-trivial and challenging:
a good majority of potential sentence boundary markers ex-
hibit graphemic (and deeper semantic) ambiguity, particularly
the full stop (period) which occurs in abbreviations, initials,
honorifics, ordinal numbers, email addresses, ellipses, and the
like [Stamatatos and Fakotakis, 1999; Kiss and Strunk, 2006;
Gillick, 2009].

Beyond traditional, well-formed, -edited, and -curated
news data, the snowballing of noisy web and social me-
dia data since the late 1990s has made SBD much harder:
when faced with unstructured user-generated content involv-
ing tweets, extremely complex graphemic devices (e.g. new
emoji, abbreviations, and acronyms), mark-up, and (up to
a point) machine-readable data, traditional (and most off-
the-shelf) sentence breakers that were trained on ‘“bare”
ASCII data in the Penn Treebank (PTB) simply run out of
steam [Gimpel ef al., 2011; Read er al., 2012]. Canonical
SBD approaches optimised for the canonical news genre en-
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counter many complications even in other formal domains
such as the biomedical [Griffis er al., 2016] or legal [Savelka
etal.,2017] ones.

Financial documents which are replete with extremely
complex sentences provide one of the most unforgiving but
also rewarding application domains for any SBD method.
Addressing the lack of SBD research in financial NLP, the
FinBSD-2019 shared task [Ait Azzi et al., 2019] focused on
the specific challenges that come with noisy financial texts,
including impure data extracted and converted automatically
from machine-readable formats (such as PDFs). The main
task was to detect the spans (begin(ning)/from vs. end(ing)/to
token boundaries) of “well-formed sentences” in financial
prospectuses - official PDF documents® published by invest-
ment funds to describe their products to clients.

Datasets for the shared task were released in two lan-
guages, English and French. We participated only in the
English track. Our system, which relies on state-of-the-art
neural models and fine-tuning techniques, approached the
FinBSD-2019 challenge as a generic sequence labelling task.

According to the organisers’ automatic evaluation metrics,
we reached the highest MEAN F'I score in the English subtask
with a 1-point margin over the second-best submission.

2 Task Definition

The majority of past approaches to sentence boundary de-
tection fall into three broad classes: (a) rule-based meth-
ods which typically exploit hand-crafted character and spac-
ing heuristics, lookup patterns (e.g. Stanford CoreNLP*),
or syntactic dependencies (SpaCy?); (b) supervised machine
learning trained on sentence boundary annotations; and (c)
unsupervised machine learning with raw, unlabelled corpora
([Read et al., 2012]).

In practical NLP work, rule-based methods are still popu-
lar as they offer the quickest and cheapest way to achieve rea-
sonable performance levels for many NLP tasks. However, if
labelled boundary annotations are available, supervised ma-
chine learning methods tend to offer greater recall. Previous
supervised methods use various strategies to define SBD as a
form of classification, for example (i) binary classification to
classify each occurrence of [./?] as a valid vs. invalid sen-
tence boundary marker [Reynar and Ratnaparkhi, 1997], or
(ii) sequence labelling over multiple classes to tag each token
(commonly using a BIO (IOB) tagging scheme [Evang et al.,
2013]).

As FinSBD-2019 provided training data with boundary la-
bels (beginning vs. ending) for each token in text, we
opted for classification and evaluated state-of-the-art super-
vised neural models to classify each token in the text to a
given class in conjunction with sequence labelling.

We observed the following in the training and development
sets of FinSBD-2019 data:

e We found 953 distinct beginning tokens, where de-
terminers, prepositions, conjunctions, and particles such

3Sample prospectus: https://bit.ly/2QztxR0 (via Google).

“https://stanfordnlp.github.io/CoreNLP/ssplit.ntm] [Manning et
al., 2014]

Shttps://spacy.io/api/annotation#sentence-boundary
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as A, The, In, For, And cover more than 50% compared
to nouns, pronouns, digits, and miscellaneous single-
character constructs (e.g. Investments, LUXEMBOURG,
a b, 1, 2).

e We found 207 distinct ending tokens, where the full
stop, semicolon, and colon cover more than 90% com-
pared to ordinary nouns, numerical tokens (e.g. (year)
“2014”), and the like. Note that most traditional sen-
tence boundary gold standards do not use such implicit,
structurally opaque tokens as sentence boundary mark-
ers.

Regarding well-formedness, we observe that the majority
of FinSBD-2019 annotations appear to capture sentence
or sentence-like constructs which fall under conventional
definitions (cf. Section 1). However, many exceptions
can be found in the data set, for example constructs de-
void of a main verb or a sentence-final period, and other
largely arbitrary fragments. Some example sentence(-
like) annotations from the training data are shown below.

All Shares will be issued in registered form .
( b ) the legal requirements and

Any member state of the EU .

— bonds and other forms of securitised debt ,

We are not aware of any inter-annotator agreement scores
that would estimate human performance in financial sentence
boundary detection, and shed light on the quality and reliabil-
ity of FinSBD-2019 sentence annotations.

Owing to the fact that 1) both sentence beginning
and ending tokens need to be recognised, and
2) punctuation characters do not alone suffice as
ending tokens, we define the following three (3)
classes for each token to be used in sequence labelling

e S: Start (sentence-initial token)
e E: End (sentence-final token)
e 0: Other (sentence-internal token, neither the start nor the end)

which we use to annotate tokens in sentences such as

The/s company/O made/O £10k/O during/0 2015/0 ./E

3 SBD Systems

Deep neural networks (DNN) have pushed the state of the
art in many areas of NLP. A DNN model learns a hier-
archy of nonlinear feature detectors that can capture more
and more complex syntactic and semantic representations.
Two DNN architectures are particularly popular, namely re-
current neural networks (RNN) with long short-term mem-
ory (LSTM) [Hochreiter and Schmidhuber, 1997] cells or
gated recurrent units (GRU) [Cho er al., 2014], and Trans-
former [Vaswani er al., 2017] which exploits feedforward
neural networks and multi-head self-attention mechanisms.
We chose two open source systems that are variants of
these two architectures for our submission, namely BiLSTM-
CRF [Ma and Hovy, 2016] and BERT [Devlin et al., 2018].
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3.1 BIiLSTM-CRF

An RNN or LSTM [Hochreiter and Schmidhuber, 1997]
maintains a memory based on a history which enables the
model to predict the current output on the basis of past infor-
mation and outputs. Bidirectional LSTM [Schuster and Pali-
wal, 1997] is a variant of unidirectional LSTM which con-
nects two hidden layers of opposite directions to the same out-
put so it can capture information from past and future states
simultaneously. In a sequence labelling task, we can effi-
ciently access both past (via forward states) and future (via
backward states) input representations for a specific time step
t, as shown in Fig. 1.
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Figure 1: A BiLSTM architecture for sequence labelling for SBD.

We can see that each input token is encoded to a hidden
state by the forward and backward LSTM network, respec-
tively, through the integration of previous context informa-
tion. In the output layer, two hidden states from the forward
and backward networks are typically concatenated and then
fed into a softmax function to generate a probability distribu-
tion for a given label set. The label with the highest probabil-
ity is conventionally chosen as the final prediction.

Although the current hidden state in an LSTM network
does exploit a limited history, the previous neighbour tag is
not used when the current tag in the final output layer is pre-
dicted. However, the linear order of tags does matter in many
sequence labelling tasks. For example, in our SBD task, the
sentence-initial start tag (S) has to precede the sentence-final
end tag (E). To account for such constraints, the linear-chain
Conditional Random Fields (CRF) model is often connected
to the output layer of an LSTM network. Fig. 2 shows a hy-
brid BiLSTM-CREF architecture of this kind.

S%O%%%

Figure 2: A BiLSTM-CRF architecture for sequence labelling for
SBD.

forward
—»

backward

The Directors accept responsibility  accordingly
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In Fig. 2, the CRF network is represented by the blue lines
which connect consecutive BILSTM outputs. The CRF layer
is parameterised by a state transition matrix which indicates
the transition probability from one state to another. With such
a layer, we can use past and future tags to predict the current
tag, correspondingly.

The basic input unit for the BILSTM-CRF network is con-
ventionally a word (token) which is converted to a vector rep-
resentation with a fixed dimension. Word vectors are gener-
ally pre-trained using neural networks on large-scale datasets
(e.g. word2vec [Mikolov et al., 20131, GloVe [Pennington
et al., 2014]). Pre-trained word embeddings can be used
as initial values for input words or fine-tuned further during
training. Pre-trained word embeddings, which can provide
a boost for many NLP tasks, are convenient because task-
specific training data sets tend to be relatively small. How-
ever, word-level inputs are not without their own complica-
tions the most prominent of which are 1) out-of-vocabulary
(OOV) items, and 2) necessarily limited representative power
regarding deeper semantics. Therefore, character-level em-
beddings are typically used in conjunction with word-level
embeddings to represent words. Fig. 3 illustrates the use of
a BILSTM network to learn character-level embeddings for
words.
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Figure 3: A BiLSTM network for character-level word representa-
tion.

The final input representation in our BiILSTM system is a
concatenation of word-level embeddings derived from GloVe
and character-level embeddings trained using the BiLSTM
network. The complete architecture of our BiLSTM-CRF
system for SBD is shown in Fig. 4.

The character representation in Fig. 4 is the output from
the BiLSTM network for character-level word representation
(see Fig. 3).

3.2 BERT

Conventional DNN models, which tend to require large
datasets and which can take days to converge, are typically
trained from scratch for a given task. Attention has recently
moved towards more efficient transfer learning paradigms
which first pre-train a DNN model on large datasets, and
then fine-tune them towards a specific domain or task. Re-
cent approaches have opted for pre-trained neural language
models instead of pre-trained embeddings. BERT, which has
achieved state-of-the-art performance in many NLP tasks, is
the most representative pre-trained model in this regard.
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Figure 4: The BILSTM-CREF architecture of our FinSBD-2019 sub-
mission.

BERT uses a multi-layer Transformer encoder [Vaswani et
al., 2017] to pre-train deep bidirectional representations by
jointly conditioning on both left and right context across all
layers [Devlin et al., 2018]. As a result, pre-trained BERT
representations can be fine-tuned conveniently using only one
additional output layer. Fig. 5 illustrates the Transformer and
BERT architectures.
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Figure 5: The Transformer (a) and BERT (b) architectures. NB. Trm
refers to (a).

Transformer makes use of self-attention (instead of RNNs
or CNN5) as its basic computational block. Transformer
uses a combination of self-attention and feed-forward layers
in the encoder. In the standard Transformer model, the en-
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coder is composed of a stack of N, = 6 identical layers,
with each layer having two sublayers, namely a multi-head
self-attention mechanism and a position-wise fully connected
feed-forward network. A residual connection is utilised
around each sublayer, followed by layer normalisation.

An attention function can be described as a way to map
a query and a set of key-value pairs to an output, where the
query, keys, values, and output are all vectors. The output is
computed as a weighted sum of the values, where the weight
assigned to each value is computed by a compatibility func-
tion of the query with the corresponding key [Vaswani er al.,
20171.

For a given token, BERT’s input representation is con-
structed by summing the corresponding token, segment, and
position embeddings. BERT is trained using two unsuper-
vised prediction tasks, Masked Language Model and Next
Sentence Prediction. To fine-tune BERT towards a sequence
labelling task, the final hidden representation 7; for each to-
ken i is fed into a classification layer over the label set. The
predictions are not conditioned on the surrounding predic-
tions.

Since we view our SBD task as a sequence labelling prob-
lem, we configure BERT to instantiate the token tagging ar-
chitecture shown in Fig. 6, where C' is the hidden state for the
first token in the input which corresponds to the special CLS
word embedding.
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Figure 6: BERT fine-tuned towards sequence labelling for SBD.

4 Experiments

We built two neural systems using the official training data,
and tuned their parameters on the validation set. This section
summarises the data we used and the steps we took to build,
fine-tune, test, and evaluate our systems.

4.1 Data

The FinSBD-2019 data set contains financial documents
which had been pre-segmented automatically. The data



Training Validation Testing
#Segment 57,497 2,036 2,505
#Token 904,057 49,859 56,952
#Vocabulary 12,047 2,843 3,539
#Sentence 22,342 1,384 1,265
Max Length 581 303 553
Min Length 1 1 1
Avg Length 15.7 24.5 22.7
Coverage (%) - 89.69 86.89

Table 1: FinSBD-2019: summary statistics.

was provided as a JSON file which contains raw text
(without any sentence boundaries) with accompanying
begin_sentence and end_sentence token indices for
sentence boundaries, respectively. The raw text had been pre-
tokenised using NLTK [Loper and Bird, 2002]. The first to-
ken in the text is indexed 0. Table 1 shows summary statistics
for the official FinSBD-2019 data set.

In Table 1, #Segment indicates the total number of seg-
ments (sequences of words on separate lines); #Vocabulary
is the total number of unique tokens in the text; and #Sen-
tence represents the total number of well-formed sentences in
the text.

Note that the labels for the test set were released after sub-
mission. We can observe that the test set is somewhat differ-
ent from the validation one, with more segments, tokens, and
unique tokens, and fewer well-formed sentences in the for-
mer. This difference implies that the test set may be noisier
or somehow more complicated, or simply of a poorer quality.

Max Length is the maximum length of the segment in the
text, Min Length is the minimum segment length, and Avg
Length is the average length of the segment over the text.
It can be seen that the distribution of segment lengths is
markedly unbalanced.

The Coverage, which indicates how many unique tokens
from the validation or test set appear in the training set, can be
used as a proxy to quantify the presence of out-of-vocabulary
(OOV) or unknown tokens. We can see that the validation set
and the test set are comparable in this regard.

4.2 Text Pre- and Post-Processing

We observe that the segments provided are not always correct
syntactically, for example in cases where a (syntactic) sen-
tence had been split across multiple segments. In such cases,
we cannot use the provided segments as direct inputs to our
SBD systems. We followed a simple text pre-processing strat-
egy as follows:

e We remove all newline symbols in the text, and convert
it to a single continuous token sequence.

e We split the resultant sequences into short(er) sequences
through a sequence length parameter (L). We use L =
60 for our BILSTM-CRF system and L = 250 for our
BERT-SBD system in the submissions.

e We label each sequence using our pre-defined { S, E, O }
label set following the CoNLL2003 BIO (IOB) tagging
scheme [Tjong Kim Sang and De Meulder, 2003].
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Parameter BiLSTM-CRF BERT-SBD
Pre-trained model - bert-base-cased
Max seq length 60 256

Lower case False False

Batch size 20 32
Learning rate 0.001 5e-5
Learning decay 0.9 -

Train epochs 15 5

Dropout 0.5 -
Optimiser Adam -

Hidden size char 100 -

Hidden size SBD 300 -

Char embedding dim 100 -

Word embedding dim 300 -

Table 2: Parameter configurations for our submission.

e Tokens which are in an unsupported encoding or which
cannot be recognised by BERT are tagged as UNK.

We also rely on an additional, simple post-processing strat-
egy to process the outputs from the two SBD systems: for
predictions with only one S or E, we look for simple punctu-
ations and upper-case characters in limited context windows
to reconstruct the missing E or S, correspondingly.

4.3 System Settings

The hyper-parameters are shown in Table 2. Hidden size char
denotes the hidden size of BiLSTM for character-level em-
bedding training while Hidden size SBD indicates the hidden
size of BILSTM-CREF for the SBD task. bert-base-cased has
12 layers with a hidden size of 768 and 12 multi-head atten-
tions, with 110M parameters in total. BERT-SBD uses default
configurations for other parameters.

We use WordPiece [Wu et al., 2016] embeddings with a
30k-token vocabulary, and denote split word pieces with # #.
In terms of pre-trained word embeddings, we use glove.6B°
which is trained with 6B tokens and a 400k vocabulary from
the Wikipedia 2014 + Gigaword 5 corpora. We used pub-
lic domain implementations 7-3 throughout our experiments
which were run on four (4) Tesla M60 GPUs. It takes about
10 minutes to fine-tune the BERT-SBD model, and about 40
minutes to train the BILSTM-CRF model.

4.4 Evaluation Metrics

Because the beginning (BS) and ending (ES) tokens’ of
sentences are evaluated separately, the official FinSBD-2019
evaluation metrics include 1) F/ scores for predicting BS and
ES tokens separately as well as 2) the mean of two separate
F1I scores. We refer to the latter as a soft (lenient) evalua-
tion metric. During training and validation, we used standard
evaluation metrics — Precision (P), Recall (R), and FI score
—to evaluate BS and ES.

Shttp://nlp.stanford.edu/data/glove.6B.zip

"https://github.com/guillaumegenthial/sequence_tagging

8https://github.com/kamalkraj/BERT-NER

°Official FinSBD-2019 annotations use BS for sentence
beginning and ES for sentence ending.
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To extract well-formed sentences, both beginning and
ending tokens need to be predicted accurately. We accord-
ingly propose an additional harsh evaluation metric — PairSE
— based on the use of P, R, and FI in information retrieval.
PairSE considers the predicted boundary to be correct only
when both BS and ES are correct, calculated as:

P {Correct pairs of S and E}
~ {All predicted pairs of S and E }
{Correct pairs of S and E}

R =
{All ground truth pairs of S and E}
2x PXR
Fl = ————
P+ R

Consider the example sentence “The company made £10k
during 2015 .” in Section 2: When “The” is predicted as S
and “.” as E, the pair is counted as a correct prediction for
PairSE ; if either prediction is incorrect or missing, the pair is
counted as an incorrect prediction.

4.5 Results and Analysis

Table 3, which includes both the official and our harsh PairSE
evaluation metric, shows our performance on the validation
set with different parameter settings.

Official PairSE
System Class P 7 F7 g R i
S 843 91.6 878
BiLSTM1 E 889 96.7 92,6 787 856 820
Avg 86.6 94.1 90.2
S 82.8 91.8 87.0
BiLSTM2 E 88.6 983 932 784 871 825
Avg 857 951 90.1
S 89.5 944 918
BERT1 E 91.6 974 944 86.1 916 888
Avg 905 959 93.1
S 894 949 921
BERT2 E 925 983 953 869 924 89.6
Avg 910 96.6 93.7

Table 3: Experimental results on the validation set.

In Table 3, we refer to our systems with different settings
regarding the maximum input length. BiLSTM1 stands for
the BiLSTM-CREF system in which the input length is limited
to 100. The input sequence length is set to 60 for BiLSTM2,
which is also denoted as AIG2 in our submissions. BERT1 is
the BERT-SBD system where the input length is constrained
to 128 while BERT?2 is set to 256 in terms of the input length
(denoted as AIG1 in our submissions). In addition, Avg rep-
resents the MEAN of scores for the corresponding S and E.

On the basis of these results, we conclude that

e Two BERT systems significantly outperformed two
BiLSTM-CREF systems across all evaluation metrics.

e BERT2 dominated in terms of FI scores.

e Although BiLSTM1 and BiLSTM2 achieved similar
scores regarding the official F'/ measure, B1LSTM2 per-
formed better than BiLSTM1 in terms of our harsh
PairSE metric. We therefore chose BiLSTM2 as one
of our submission systems.
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e BiLSTMI1 obtained higher P and lower R levels com-
pared to BiLSTM2, which demonstrates that LSTMs
can learn long-distance dependencies for predicting sen-
tence boundaries correctly given a long (enough) input
sequence.

e For all systems, Recall was higher than Precision - we
suspect our systems are prone to committing to a sen-
tence boundary in ambiguous cases.

o All systems obtained higher scores on E than S which in-
dicates that the ending of a sentence is easier to predict
than the beginning, presumably due to the greater
frequency of sentence-final punctuation characters (such
as the period) and greater diversity of sentence-initial
characters.

Table 4 shows our results on the test set for both the official
evaluation metrics and our harsh PairSE one.

System Official PairSE

BS ES MEAN P R FI
AIG2 083 083 0.855 719 86.6 786
AIG1 088 0.8 0.885 785 90.2 84.0

Table 4: Experimental results on the test set.

ATIG1 is our BERT-SBD system with input length 256, and
AIG2 is our BILSTM-CREF system with input length 60. Our
AIGI1 submission, which is significantly better than AIG2,
ranks first amongst all submitted systems in terms of MEAN
F1 score.

5 Conclusions and Future Work

We have described the entry by Investments Al at AIG
(American International Group, Inc.) to the FinSBD-2019
shared task (English track). We experimented with two neural
systems - BILSTM-CRF and BERT. We approached sentence
boundary detection as a sequence labelling problem, and ap-
plied a BIO (IOB) tagging scheme to sentence-initial, -final,
and -internal tokens to enrich FinSBD-2019 training data and
to train our systems. We fine-tuned our systems with dif-
ferent hyper-parameter settings, and chose BERT-SBD with
input length 256 and BiLSTM-CRF with input length 60 for
our final submission to the shared task.

Our experimental results on the validation set to date show
that our BERT-SBD system performs significantly better than
the BILSTM-CREF variant regarding both the official and our
harsher PairSE metric. AIG Investments Al BERT-SBD sys-
tem achieved the highest MEAN F1 score in the shared task.
Our approach and results motivate further research into the
use of pre-trained language models for sentence boundary de-
tection. In the future, we will explore more detailed error
analyses, evaluate the performance of our SBD systems on
even noisier financial documents.
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