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Abstract

In this work, we give a description of
the TALP-UPC systems submitted for the
WMT19 Biomedical Translation Task. Our
proposed strategy is NMT model-independent
and relies only on one ingredient, a biomedi-
cal terminology list. We first extracted such a
terminology list by labelling biomedical words
in our training dataset using the BabelNet API.
Then, we designed a data preparation strat-
egy to insert the terms information at a to-
ken level. Finally, we trained the Transformer
model (Vaswani et al., 2017) with this terms-
informed data. Our best-submitted system
ranked 2nd and 3rd for Spanish-English and
English-Spanish translation directions, respec-
tively.

1 Introduction

Domain adaptation in Neural Machine Transla-
tion (NMT) remains one of the main challenges
(Koehn and Knowles, 2017). Domain-specific
translations are especially relevant for industrial
applications where there is a need for achieving
both fluency and terminology in translations. Cur-
rent state-of-the-art NMT systems achieve high
performances when trained with large-scale par-
allel corpora. However, most of the time, large-
scale parallel corpora are not available for spe-
cific domains. Consequently, NMT models per-
form poorly for domain-specific translation when
trained in low-resource scenario (Chu and Wang,
2018). Several works have been proposed to over-
come the lack of domain parallel data by lever-
aging on both monolingual domain data (Domhan
and Hieber, 2017; Currey et al., 2017) and paral-
lel out-of-domain data (Wang et al., 2017; van der
Wees et al., 2017) to improve the performance of
domain-specific systems. Furthermore, some at-
tempts have been made to directly insert exter-
nal knowledge into NMT models through termi-

nology (Chatterjee et al., 2017) and domain in-
formation (Kobus et al., 2016). In this work, we
designed a data preparation strategy for domain-
specific translation systems to enrich data with ter-
minology information without affecting the model
architecture. The approach consists on two main
steps: 1) Retrieve a biomedical terms list from
on our training data 2) use terms to add a do-
main feature on the source side and define a
terminology-aware segmentation. The data prepa-
ration is a model-independent process which gen-
erates terms-informed token representations that
can be used to train any NMT model. For the
Biomedical WMT19 task, we decided to train one
of the state-of-the-art neural models, the trans-
former (Vaswani et al., 2017). In our knowledge,
this is the first attempt to design a domain-specific
text segmentation based on a given terminology
list. The rest of the paper is organized as follows.
In Sec. 2, we described how terminology is ex-
tracted from BabelNet; in Sec. 3 and 4, we de-
fined the terminology-aware segmentation and the
domain feature approach, respectively; in Sec. 5,
we described the experiments performed, the per-
formance evaluation and the results of the WMT19
competition. Finally, Sec. 6 describes the conclu-
sion and future works.

2 BabelNet

In our work, in order to collect biomedical terms,
the domain category of each word was detected
with the help of BabelNet (Navigli and Ponzetto,
2012). Specifically, we extracted a list of biomed-
ical terms from our training data using the Ba-
belNet API. To capture biomedical-related do-
mains, we refer to the ”biomedical” definition
in the BabelNet as stated, ”The science of deal-
ing with the maintenance of health and the pre-
vention and treatment of disease”. Moreover,
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a biomedical word has BabelNet relations with
bio-science, technology, medical practice, medi-
cal speciality, neurology and orthopaedics. Con-
sequently, we identified related BabelNet domains
to the ”biomedical” domain which are: Health
and Medicine, Chemistry and Mineralogy, Biol-
ogy and Engineering and Technology. Based on
these domains, we then used the BabelNet API
to find the domain of each word in the training
dataset by searching through the BabelNet multi-
lingual dictionary. Since a word can have multiple
Babel synsets and domains, we collected a domain
according to the key concept of a word. For our
experiments, we created a list of 10,000 biomedi-
cal terms for both English and Spanish.

3 Terminology-aware segmentation

We propose the so-called ”bpe-terms segmenta-
tion” consisting of both subwords and terms to-
kens. The idea is to overcome the open-vocabulary
problem with subwords and at the same time have
the ability to add domain features for terms at the
word level. The procedure is rather simple. Af-
ter learning the bpe codes (Sennrich et al., 2015),
they are applied to segment the sentences by ex-
plicitly excluding terms belonging to a given do-
main terminology list. The resulting sentence is
a mixture of both subwords and term tokens. In
Table 1, we show the differences between stan-
dard bpe-segmentation and our bpe-terms segmen-
tation. Unlike general domain words, biomedical
terms are not divided into subwords producing a
shorter sequence of tokens. It is also important
to notice that all the terms that are not present
in the terminology list, like ”hypertension” and
”clot” in the examples, might be split into sub-
words. These examples show how the effective-
ness of bpe-term segmentation depends entirely on
the size and quality of the terminology list.

4 Domain features

Following the domain control approach (Kobus
et al., 2016), we enrich the data with a word-level
binary feature by means of the biomedical termi-
nology. Every word belonging to the terminol-
ogy list has been labelled as biomedical, while
all others as a general domain. The resulting bi-
nary feature is then embedded into a dense vec-
tor and combined with the word vector. The most
common combination strategy consists in concate-
nating the feature embedding with the word em-

bedding. However, we introduced an additional
Multi-Layer perception with one hidden layer af-
ter the concatenation. This operation maps the re-
sulting embedding into a new vector that might be
more useful for the translation task. More pre-
cisely, given the word embedding xw ∈ Rn and
the feature embedding xf ∈ Rm, the resulting vec-
tor x̂ ∈ Rd is computed as:

x̂ = g([xw,xf ]W + b)

where W ∈ Rn+m,d is the weight matrix, b ∈ Rd

is the bias term and g is a nonlinear functions for
the hidden layer that is applied element-wise. In
our experiments, due to the binary nature of the
domain feature, we set m = 3 as its embedding
dimension. The word embedding dimension is set
to n = 512 instead.

5 Experiments

This section describes the experiments we per-
formed. We first start with the data collection
and preprocessing processes. Then, we describe
trained systems and their evaluations. Finally, we
present the results of the competition in terms of
BLEU score. (Papineni et al., 2002).

5.1 Data collection
We gathered data from the resources provided in
the official WMT19 web page and from the OPUS
collection. For our submissions, all the available
biomedical parallel sentences for en/es are chosen
both in plain text and Dublin Core format. Then,
data have been parsed and merged to create the
training and validation sets. Finally, we cleaned
the datasets by removing empty sentences and du-
plicates. In particular, we selected Scielo (Soares
et al., 2018), (Neves et al., 2016), UFAL, Pubmed,
Medline, IBECS (Villegas et al., 2018) and EMEA
(Tiedemann, 2012) sources for the training set and
Khresmoi (Dušek et al., 2017) for the validation
set.

5.2 Data preprocessing
Data are preprocessed following the standard
pipeline by normalizing punctuation, tokeniza-
tion and true-casing. We also removed sentences
longer than 80 tokens and shorter than 2 tokens.
For the previous steps, we used the scripts found
in the Moses distribution (Koehn et al., 2007).
Eventually, we trained shared byte-pairs encoding
(BPE) (Sennrich et al., 2015) on both source and
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Segmentation Sentence
Bpe ”the intr@@ ig@@ u@@ ing pro@@ ble@@ m of

cal@@ ci@@ fic@@ ation and os@@ s@@ ific@@ ation ;
ne@@ ed to un@@ der@@ st@@ and it for
the comp@@ re@@ h@@ ens@@ ion of
b@@ one phys@@ io@@ path@@ ology .”

”inhibition of T@@ AF@@ I activity also resulted in a tw@@ of@@ old
increase in clot lysis whereas inhibition of both factor XI
and T@@ AF@@ I activity had no additional effect . ”

”a 5@@ 7-@@ year-old male with hepatos@@ plen@@ omegaly ,
p@@ ancy@@ topenia and hypertension .”

Bpe-terms ”the intr@@ ig@@ u@@ ing pro@@ ble@@ m of
calcification and ossification ;
ne@@ ed to un@@ der@@ st@@ and it for
the comp@@ re@@ h@@ ens@@ ion of
bone physiopathology .”

inhibition of TAFI activity also resulted in a tw@@ of@@ old
increase in clot lysis whereas inhibition of both factor XI
and TAFI activity had no additional effect .

”a 5@@ 7-@@ year-old male with hepatosplenomegaly ,
pancytopenia and hypertension .”

Table 1: Different segmentation for some sample sentences extracted from the training data. Biomedical terms are
in bold type to highlight the effect of the segmentation on them.

Training set Validation set
es/en 2812577 500

Table 2: The total number of parallel sentences in the
training and validation sets after the preprocessing step.

target data with a number of maximum BPE sym-
bols of 50k. The statistics of the final datasets in
terms of the total number of lines are shown in Ta-
ble 2.

5.3 Training with data enriched with terms
information

Our strategy involves a data preparation designed
to enrich the sentences with terminology informa-
tion at the token level before the actual training
takes place. There are two important components,
the bpe-terms segmentation and the domain fea-
ture approach as explained in Sec. 3 and Sec.
4. Both of them are based on the terminology

list that was created using the BabelNet API as
described in Sec 2. The bpe-terms segmentation
is applied to both the source and target side. In-
stead, the domain feature approach is applied only
on the source side. After that, the resulting terms-
informed data are used to train the NMT Trans-
former model. (Vaswani et al., 2017). Thereafter,
three different experiments have been performed:

1. The first experiment combined both the
terminology-aware segmentation and the do-
main feature.

2. The second, instead, make just use of the bpe-
terms segmentation.

3. The third experiment combined both the
terminology-aware segmentation and the do-
main feature. Additionally, both the vocabu-
laries among source and target and the em-
bedding weights between encoder and de-
coder are shared during the training.
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en2es es2en
System WMT18 WMT18
baseline 40.84 43.70
bpe-terms src-tgt + domain feature 44.26 43.49
bpe-terms src-tgt + shared vocab & embs 44.04 43.84
bpe-terms src-tgt 44.09 44.84

Table 3: The BLEU scores calculated on the WMT18 test set for the three systems compared with the baseline.

en2es es2en
System WMT19 (All) WMT19 (OK) WMT18 (All) WMT19 (OK)
bpe-terms src-tgt 43.40 46.09 37.92 43.55
bpe-terms src-tgt + domain feature 43.01 45.68 37,21 42.70
bpe-terms src-tgt + shared vocab & embs 43.92 46.83 39.41 45.09

Table 4: The BLEU scores calculated on the WMT19 test set for the three systems.

Furthermore, we trained a baseline model with
standard BPE segmentation to make a comparison
with the three proposed experiments. All the mod-
els have maximum vocabulary size of 50k tokens.
However, the final vocabulary size is affected by
both the bpe-terms segmentation and the shared
vocabularies between source and target side. It
turns out that only the baseline and the third exper-
iment had a vocabulary size of 50k tokens. For the
training, we used the Transformer (Vaswani et al.,
2017) implementation with its default parameters
found in the OpenNMT toolkit (Klein et al.).

5.4 Evaluation and results

We evaluated all the models calculating the BLEU
score on the WMT18 test set with the ’multi-bleu-
detok.sh’ script in the Moses distribution (Koehn
et al., 2007). For the WMT19 competition, we
first calculated the averages of the training check-
points that achieved the highest BLEU scores on
the validation set. Then, we submitted these av-
erages as our best models. The results for both
WMT18 and WMT19 test sets are shown in ta-
ble 3 and 4. In Table 5, we also calculated how
many biomedical terms are found in the validation
and WMT18/WMT19 test sets to have an idea of
the coverage of the terminology list on the out-of-
training data. On the WMT18 test set, our pro-
posed models performed better than the baseline,
indicating that the Transformer model (Vaswani
et al., 2017) took advantages from the bpe-terms
segmentation. On the contrary, the domain fea-
ture approach overall hurts the test set perfor-
mances. The best performing system evaluated on
the WMT19 test set is the one with bpe-terms seg-

mentation plus shared vocabulary and embedding
layers for both source/target and encoder/decoder
layers, respectively, showing consistency across
both es/en direction. As a result, we placed 2nd
for es2en and 3rd for en2es in the WMT19 com-
petition.

Validation set WMT18 WMT19
es 713 355 399
en 831 363 502

Table 5: The number of biomedical terms from the
terminology list found in the validation set and the
WMT18 and WMT19 test sets.

6 Conclusions and future works

In this article, we described the TALP-UPC
systems submitted to the WMT19 Biomedical
Translation Task. Our experiments show an
NMT model-independent approach that benefits
from terminology to improve translations in the
biomedical domain. The future efforts will be
devoted to extending our bpe-terms segmentation
by taking into account multi-word terms extracted
from available biomedical glossaries and collect-
ing a terminology list independent from training
data.
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