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Abstract

Automatic post-editing (APE) can be reduced
to a machine translation (MT) task, where the
source is the output of a specific MT system
and the target is its post-edited variant. How-
ever, this approach does not consider context
information that can be found in the original
source of the MT system. Thus a better ap-
proach is to employ multi-source MT, where
two input sequences are considered – the orig-
inal source and the MT output.

Extra context information can be introduced
in the form of extra tokens that identify cer-
tain global properties of a group of segments,
added as a prefix or a suffix to each segment.
Successfully applied in domain adaptation of
MT as well as on APE, this technique de-
serves further attention. In this work we inves-
tigate multi-source neural APE (or NPE) sys-
tems with training data which has been aug-
mented with two types of extra context tokens.
We experiment with authentic and synthetic
data provided by WMT 2019 and submit our
results to the APE shared task. We also experi-
ment with using statistical machine translation
(SMT) methods for APE. While our systems
score bellow the baseline, we consider this
work a step towards understanding the added
value of extra context in the case of APE.

1 Introduction

Automatic post-editing (APE) aims at improving
text that was previously translated by Machine
Translation (MT). An APE system is typically
trained on triplets composed of: a segment in the
source language, a translation hypothesis of that
segment by an MT system, and the edited version
of that hypothesis, created by a human translator.

Currently, neural machine translation (NMT)
systems are the state-of-the-art in MT, achieving
quality beyond that of phrase-based statistical MT
(SMT) (Bentivogli et al., 2016; Shterionov et al.,

2018). NMT output is more fluent but may con-
tain issues related to accuracy. However, auto-
matic post-editing of NMT output has proved to
be a challenging task (Chatterjee et al., 2018).

In terms of post-editing technology, neural
methods as well represent the current state-of-
the-art (do Carmo et al., 2019). And while neu-
ral post-editing (NPE) has shown substantial im-
provements when applied on PBSMT output, it
has not been as effective in improving output from
NMT systems. One of the reasons is that NMT and
NPE typically use similar approaches, which can
make the latter redundant, as it can be assimilated
by the former, e.g., in some cases, by increasing
the number of layers of the network. One alterna-
tive is to explore features of the data not available
while training MT systems. In this paper, we ex-
plore the effect of adding tokens that identify par-
titions in the training data which may be relevant
to guide the behaviour of the NPE system. Ex-
amples of such tokens are related to basic source
and/or target sentence length or to more sophisti-
cated analyses of the text. In this work, we explore
two features: sentence length and topic.

2 Related Work

Adding a token to the input of a sequence model to
shape its behaviour is not a new idea. Mikolov and
Zweig (2012) aim at improving neural language
models and avoid the data fragmentation in mul-
tiple datasets by using Latent Dirichlet Allocation
(Blei et al., 2003) to construct context vectors and
represent topics. Sennrich et al. (2016a) call the
added token a ’side constraint’, which informs the
system about target side features, such as honorific
forms of treatment, tense, number, gender, or other
grammatical or discourse features, which may not
exist or be different in the source side. The authors
use an automatic annotator of politeness in the tar-
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get sentences in the training set, which places a
token at the end of each sentence to control the
politeness level of the output of an NMT model.
Yamagishi et al. (2016) also use target side an-
notations during training to control active versus
passive voice in the output. Vanmassenhove et al.
(2018) used prefixed tokens identifying the gen-
der of the author to aid the MT system in correctly
presenting gender features in discourse.

Special input tokens have also been used to aid
training of single models on multilingual transla-
tion tasks: Johnson et al. (2017) prefix each source
sentence in an NMT system with a token to in-
dicate the target language, training a multilingual
model on a scenario with multiple source and tar-
get languages. This approach is at the background
of the research on zero-shot translation. In the
context of low-resource languages, Mattoni et al.
(2017) add two tokens, one to specify the source
language and another to specify the target lan-
guage. In their case, the source-language token
is used for language specific tokenisation. Sim-
ilarly, Zhou et al. (2018) found that adding to-
kens that encode the source and target language
family, e. g. source-family:Germanic and
target-family:Slavic for English-Czech
translation, may improve the accuracy of the NMT
outputs for low-resource languages.

Added tokens in APE were used in a scenario
where SMT and NMT outputs were trained jointly
in a single model (Pylypenko and Rubino, 2018).
An artificial token was added to the data to indi-
cate the system the segments had been produced
from. However, this strategy was not very suc-
cessful, especially when editing NMT output.

Our current work further explores the strat-
egy of adding such tokens about data partitions
in NPE. Partitions are derived according to topic
models or sentence lengths. Topic models are
trained separately on the provided data and aim to
identify the topic of each segment of the data.

3 Data and Labels

While the shared task is open to using addi-
tional data sources, we only use the data sets
linked on the shared task website, aiming at bet-
ter result reproducibility: i. e. (a) the authentic
English-German WMT 2018 APE shared task data
(Turchi et al., 2018), (b) the synthetic English-
German data of the WMT 2016 AmuNMT sys-
tem (Junczys-Dowmunt and Grundkiewicz, 2016),

(c) the NMT part of the synthetic English-German
data of the eSCAPE corpus (Negri et al., 2018),
(d) the authentic English-Russian data new in the
WMT 2019 APE shared task provided by Mi-
crosoft1 and (e) the synthetic English-Russian data
of the eSCAPE corpus.

3.1 Training Data
For the EN-DE experiments, we used the 500k
and 4M triplets defined in (Junczys-Dowmunt and
Grundkiewicz, 2016). For EN-RU, we used the
8M triplets from the eSCAPE project. Table 1 and
Table 2 show statistics about the data used to train
our systems.

Size EN-DE EN-RU
small 268 840 301 780
medium 795 208 N/A
large 4 660 020 8 037 141

Table 1: Number of SRC-NMT-PE triplets distributed
over three data sets used in our experiments.

3.2 Induction of Topic Clusters
We induce ten topic clusters for each language
pair using Scikit-Learn’s implementation of Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). We
use the English side of the data. The data is the
concatenation of the authentic and a sample of the
synthetic data. For English-German, we sample
50k segments each of AmuNMT (500k) and eS-
CAPE data (7M). For English-Russian, we sam-
ple 100k of eSCAPE data. The data was cleaned
of stop words and words that occur less than five
times or in more than 90% of segments.

3.3 Topic Classification
We split the data for training the LDA models,
into ten files according to the induced topics and
then label each sentence of all data according to
the most similar topic file. We measure similar-
ity with cosine similarity on character n-gram tf-
idf vector representations (n = 5, 6, 7). Before
n-gram extraction, segments are lowercased and
e-mail addresses, URL numbers and characters re-
peated more than three times are normalised. For
tf-idf values, we use plus one smoothing and we
avoid zero and negative idf values by adding two
to the number of documents. To represent topic
clusters, we use the average of its segment vectors.

1http://www.statmt.org/wmt19/ape-task.
html accessed during the task and last 2019-04-30

http://www.statmt.org/wmt19/ape-task.html
http://www.statmt.org/wmt19/ape-task.html
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Size EN-DE EN-RU
SRC NMT PE SRC NMT PE

small 10 771 15 477 18 088 9 125 14 783 15 761
medium 48 227 48 257 48 869 N/A
large 50 327 50 538 50 790 53 030 50 646 52 970

Table 2: Vocabulary sizes (after applying BPE on the train data set).

3.4 Length Partitions

Another way of partitioning the data is by sen-
tence length. We use the length of the source side
of each segment, i. e. the English side to create a
partitioning of the data according to the number
of tokens. We choose the partition boundaries as
thresholds on the number of tokens keeping each
partition similar in size within the sample data.
Size is measured as

∑
i s

e
i where si is the number

of tokens in the ith segment and e = 0.5. This is
a compromise between counting segments (e = 0)
and counting tokens (e = 1).

3.5 Pre-processing for APE Training

We use the available authentic and synthetic data
as is. The authentic data, the synthetic AmuNMT
data and the synthetic EN-RU eSCAPE data used
for training are already tokenised, thus no further
tokenisation is conducted. We do not apply lower-
nor true-casing, aiming to learn how to correct er-
rors related to the casing. We learn a byte-pair en-
coding (Sennrich et al., 2016b) of 50 000 opera-
tions from our training data which we then apply
to split each data set into subword units. After that,
the corresponding partition tokens are attached to
each segment. In particular, the partition labels are
attached to both source and MT segments, i.e., the
two sources in our multi-source NPE systems.

4 Experiments

4.1 Objectives

Our experiments aim at two objectives: (i) to in-
vestigate the effect of extra information in the
form of prefix tokens for NPE; and (ii) to assess
whether monolingual SMT2, can be effective for
post-editing of NMT output. The latter is driven
by the idea of added benefits from interleaving dif-
ferent MT technologies.

2In this work, we use the term monolingual to define an
MT system where the source and the target are in the same
language, e.g. the source is a translated sentence in German
and the target is its post-edited variant.

We conduct three types of NPE experiments –
(a) baseline experiments, using no extra tokens to
build a set of baseline systems; (b) length tokens
– prefixed with tokens stating the data partition
based on the length and (c) topic tokens – data
is prefixed with tokens stating the data partition
based on the LDA clustering. For the SMT exper-
iments no additional tokens were attached to the
text. We assumed that such augmentation of the
source side would increase the difference with re-
spect to word alignment and thus it would have a
negative impact on the quality of the system.

4.2 Models

NPE We trained 15 NPE systems: small,
medium and large for EN-DE and small and large
for EN-RU, on the data discussed in Section 3.1,
for the three different prefix token settings – no
token, topic token, length token. For all of
them, we employed Marian-NMT3 to train multi-
source sequence-to-sequence models (multi-s2s)
with LSTM units.4 The two sources are the actual
source-side data (EN) from the training corpus and
its translation (DE or RU). We used cross-entropy
as validation metric and the max-length was 150
tokens. The training stops after 5 epochs with no
improvement, i.e., early stopping.

SMT We trained 5 SMT models (small, medium
and large for EN-DE and small and large for EN-
RU) using Moses (Koehn et al., 2007) release 4.0,
Giza++ (Och and Ney, 2003) for word alignment
and a 5-gram KenLM language model (Heafield,
2011). Models are tuned with Mert (Och, 2003).
We ought to stress that these models are monolin-
gual, i.e., trained only on the original MT output
as source and its post-edited variant as target.

3https://marian-nmt.github.io/
4Options: –mini-batch-fit, –workspace 9000, –layer-

normalization, –dropout-rnn 0.2 –dropout-src 0.1 –dropout-
trg 0.1, –early-stopping 5, –max-length 150 –max-length-
crop, –valid-freq 2000 –save-freq 2000 –disp-freq 1000

https://marian-nmt.github.io/
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4.3 Evaluation and selection for WMT
submission

We evaluated our models using BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006). For
the former, we used the multi-bleu implementation
provided alongside Moses; and for the latter we
used the script provided by the WMT organisation.

We computed BLEU and TER using the human
PE side of the data as reference, and the NPE out-
put as hypothesis, e.g. TER(npe,pe). We also
computed BLEU and TER scores for the original
data, i.e. in this case the reference again is the
human PE but the hypothesis is the NMT part of
the training data: TER(nmt,pe). We present our
results on the development set in Tables 3 and 4
for EN-DE and EN-RU, respectively. We denote
the scores for the original (baseline) MT output
with MT. Scores are scaled between 0 and 100.

Model Prefix BLEU ↑ TER ↓
MT Baseline N/A 76.94 15.08
NPE small N/A 63.28 24.09

medium N/A 70.57 18.81
large N/A 70.29 19.89
small topic 60.41 28.59
medium topic 73.08 17.81
large topic 75.82 15.89
small length 62.56 26.91
medium length 73.74 17.26
large length 75.85 15.91

SMT small N/A 76.82 15.33
medium N/A 77.04 15.17
large N/A 76.82 15.26

Table 3: BLEU and TER scores for the EN-DE NPE
and SMT models (dev set). Rows in bold indicate sub-
mitted system results.

For submission to the shared task, we selected the
best models, according to TER, available at the
submission deadline. For EN-DE, these are: the
NPE-large-topic (primary), the NPE-large-length
and the SMT-medium; for EN-RU these are the
NPE-large-length (primary) and the SMT-small.
In the result tables these are marked in bold.

5 Results and Analysis

5.1 Development Observations

Table 3 and Table 4 show the evaluation scores
(BLEU and TER) on the development set results.
In our experiments, the ranking of the systems’

Model Prefix BLEU ↑ TER ↓
MT Baseline N/A 80.22 13.13
NPE small N/A 50.76 34.45

large N/A 59.01 28.01
small topic 48.30 41.19
large topic 75.39 16.18
small length 44.68 44.57
large length 73.67 19.74

SMT small N/A 79.40 13.68

Table 4: BLEU and TER scores for the EN-RU NPE
and SMT models (dev set). Rows in bold indicate sub-
mitted system results.

performance scores is always the same, no matter
if we use TER or BLEU.

We can see that all NPE systems in our experi-
ments, whether or not they are augmented with in-
formative tokens, are unable to perform as well as
the original NMT translations. So, our NPE sys-
tems are not fulfilling their main function. Still,
it is worth analysing the evolution of scores from
system to system.

As expected, in general, the larger the systems,
the better the results. This is most visible in the
EN-DE experiments, for which we trained systems
in a three-size scale. Systems with small amounts
of training data deteriorate the scores very much,
which makes them not viable. For augmented sys-
tems, in both languages, the addition of more data
has a very visible effect, with the largest systems
having the best results. The same is not true for the
systems with no tokens, in which medium-sized
systems achieve better scores than large ones. For
the SMT systems, size of the training data was
the only factor we tested, but the scores are very
close for all systems, with medium-sized systems
achieving slightly better results.

The addition of the tokens also has a positive
effect in the scores, especially for systems trained
with medium-sized and large-sized datasets. For
EN-DE, in the systems trained with a small vol-
ume of data, the highest scores are for systems
with no tokens. But for medium-sized trained sys-
tems, the addition of the token length achieves
the best results. For large systems, the scores are
much closer to each other, but augmented systems
beat the system with no tokens. In EN-RU, the ad-
vantages of adding the tokens is also more visible
for the larger datasets, with topic as the token that
enables the highest scores.
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Surprisingly, the APE systems using SMT are
the best performing ones, beating all neural ones.
In fact, their scores are very close to the original
ones, and very consistent, seeming not to be sensi-
tive to the increase in the volumes of training data.

5.2 Final Systems

As noted in Section 4.3 we submitted three
systems for EN-DE: the NPE-large-topic (as
primary), the NPE-large-length and the SMT-
medium. Only the SMT system scores above the
original MT system, and only in terms of BLEU.
For EN-RU, we submitted two systems: NPE-
large-length (as primary) and the SMT-small.
None of the system improved on the original MT
data, but the SMT system was close. The baseline
scores compared to our systems’ scores are pre-
sented in Table 5 and Table 6.

System Model Prefix BLEU ↑ TER ↓
MT Baseline N/A N/A 74.73 16.84
NPE Primary large topic 74.29 17.29

Contrastive I large length 74.01 17.41
SMT Contrastive II medium N/A 74.30 17.07

Table 5: BLEU and TER scores for submitted and base-
line systems for the EN-DE language pair.

System Model Prefix BLEU ↑ TER ↓
MT Baseline N/A N/A 76.20 16.16
NPE Primary large length 72.90 18.31
SMT Contrastive small N/A 75.27 16.59

Table 6: BLEU and TER scores for submitted and base-
line systems for the EN-RU language pair.

We believe one of the main factors for these re-
sults is the initially high quality of the baseline
MT systems. The inherent nature of APE systems
dictates that they generate a whole new sentence
when the inputs are passed through the model.
However, in cases when no or barely any changes
are required, it will be desirable not generate a
new sentence, i.e. the post-edit, but to retain the
original one, as any transformation process would
be likely to impede the quality. In future work,
we will look into combining NPE models with
Quality Estimation (QE), to filter NMT output by
expected quality and thus control over-correction:
the NPE system will then only present alternatives
for sentences that require improvements.

6 Conclusions

Although our NPE systems do not fulfill their
main aim (improving the output of an NMT sys-
tem), this paper highlights the potential of two
strategies for APE which explore the thin improve-
ment margins allowed by NMT output.

The augmentation strategy is a simple process
that requires no system development, but presents
its own challenges. The tokens that are used must
be informative, so as to guide the NPE system to
features in the datasets with a very close relation
to the editing patterns the system is supposed to
learn. Future work should check the topic model
and if necessary switch to a more suitable model.
Other types of tokens should also be tested. Fur-
thermore, data augmentation in APE implies pre-
analysis of the datasets, since the same tokens are
not applicable to different datasets nor use-cases.

The strategy of applying a different MT
paradigm, SMT for APE of NMT output, yielded
interesting results, albeit still not being able to im-
prove the original NMT output. The margin of de-
velopment of SMT systems may be limited, but
this is also worth experimenting, in view of the
challenges APE currently faces with NMT output.

Furthermore, we outlined a hypothesis about the
reasons why the post-edited texts score below the
baseline system. In particular, we believe this re-
sult has to do with the high quality of the base-
line MT systems: this implies that some segments
should not be post-edited, but our APE system at-
tempted to edit every sentence. We plan to incor-
porate QE and data selection to mitigate this over-
correction issue, offering an APE suggestion only
when editing is necessary.
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