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Abstract
In this paper, we present the University of
Helsinki submissions to the WMT 2019 shared
task on news translation in three language
pairs: English–German, English–Finnish and
Finnish–English. This year, we focused first
on cleaning and filtering the training data
using multiple data-filtering approaches, re-
sulting in much smaller and cleaner training
sets. For English–German, we trained both
sentence-level transformer models and com-
pared different document-level translation ap-
proaches. For Finnish–English and English–
Finnish we focused on different segmentation
approaches, and we also included a rule-based
system for English–Finnish.

1 Introduction

The University of Helsinki participated in the
WMT 2019 news translation task with four pri-
mary submissions. We submitted neural ma-
chine translation systems for English-to-Finnish,
Finnish-to-English and English-to-German, and
a rule-based machine translation system for
English-to-Finnish.

Most of our efforts for this year’s WMT focused
on data selection and pre-processing (Section 2),
sentence-level translation models for English-
to-German, English-to-Finnish and Finnish-to-
English (Section 3), document-level translation
models for English-to-German (Section 4), and
a comparison of different word segmentation ap-
proaches for Finnish (Section 3.3). The final sub-
mitted NMT systems are summarized in Section 5,
while the rule-based machine translation system is
described in Section 3.4.

2 Pre-processing, data filtering and
back-translation

It is well known that data pre-processing and se-
lection has a huge effect on translation quality in

neural machine translation. We spent substantial
effort on filtering data in order to reduce noise—
especially in the web-crawled data sets—and to
match the target domain of news data.

The resulting training sets, after applying the
steps described below, are for 15.7M sentence
pairs for English–German, 8.5M sentence pairs
for English–Finnish, and 12.3M–26.7M sentence
pairs (different samplings of back-translations) for
Finnish–English.

2.1 Pre-processing

For each language, we applied a series of pre-
processing steps using scripts available in the
Moses decoder (Philipp Koehn, 2007):

• replacing unicode punctuation,

• removing non-printing characters,

• normalizing punctuation,

• tokenization.

In addition to these steps, we replaced a number
of English contractions with the full form, e.g.
“They’re”→“They are”. After the above steps,
we applied a Moses truecaser model trained for in-
dividual languages, and finally a byte-pair encod-
ing (BPE) (Sennrich et al., 2016b) segmentation
using a set of codes for either language pair.

For English–German, we initially pre-processed
the data using only punctuation normalization and
tokenization. We subsequently trained an En-
glish truecaser model using all monolingual En-
glish data as well as the English side of all paral-
lel English–German datasets except the Rapid cor-
pus (in which non-English characters were miss-
ing from a substantial portion of the German sen-
tences). We also repeated the same for German.
Afterwards, we used a heuristic cleanup script1 in

1Shared by Marcin Junczys-Dowmunt. Retrieved
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order to filter suspicious samples out of Rapid, and
then truecased all parallel English–German data
(including the filtered Rapid) using these models.
Finally, we trained BPE codes with 35 000 sym-
bols jointly for English–German on the truecased
parallel sets. For all further experiments with
English–German data, we applied the full set of
tokenization steps as well as truecasing and BPE
segmentation.

For English–Finnish, we first applied the stan-
dard tokenization pipeline. For English and
Finnish respectively, we trained truecaser models
on all English and Finnish monolingual data as
well as the English and Finnish side of all paral-
lel English–Finnish datasets. As we had found to
be optimal in our previous year submission (Ra-
ganato et al., 2018), we trained a BPE model
using a vocabulary of 37 000 symbols, trained
jointly only on the parallel data. Furthermore, for
some experiments, we also used domain labeling.
We marked the datasets with 3 different labels:
〈NEWS〉 for the development and test data from
2015, 2016, 2017, 〈EP〉 for Europarl, and 〈WEB〉
for ParaCrawl and Wikititles.

2.2 Data filtering

For data filtering we applied four types of filters:
(i) rule-based heuristics, (ii) filters based on lan-
guage identification, (iii) filters based on word
alignment models, and (iv) language model filters.

Heuristic filters: The first step in cleaning the
data refers to a number of heuristics (largely in-
spired by (Stahlberg et al., 2018)) including:

• removing all sentence pairs with a length
difference ratio above a certain threshold:
for CommonCrawl, ParaCrawl and Rapid we
used a threshold of 3, for WikiTitles a thresh-
old of 2, and for all other data sets a threshold
of 9;

• removing pairs with short sentences: for
CommonCrawl, ParaCrawl and Rapid we re-
quired a minimum number of four words;

• removing pairs with very long sentences: we
restricted all data to a maximum length of
100 words;

from https://gist.github.com/emjotde/
4c5303e3b2fc501745ae016a8d1e8e49

• removing sentences with extremely long
words: We excluded all sentence pairs with
words of 40 or more characters;

• removing sentence pairs that include HTML
or XML tags;

• decoding common HTML/XML entities;

• removing empty alignments (while keeping
document boundaries intact);

• removing pairs where the sequences of non-
zero digits occurring in either sentence do not
match;

• removing pairs where one sentence is termi-
nated with a punctuation mark and the other
is either missing terminal punctuation or ter-
minated with another punctuation mark.

Language identifiers: There is a surprisingly
large amount of text segments in a wrong lan-
guage in the provided parallel training data. This
is especially true for the ParaCrawl and Rapid
data sets. This is rather unexpected as a basic
language identifier certainly must be part of the
crawling and extraction pipeline. Nevertheless, af-
ter some random inspection of the data, we found
it necessary to apply off-the-shelf language identi-
fiers to the data for removing additional erroneous
text from the training data. In particular, we ap-
plied the Compact Language Detector version 2
(CLD2) from the Google Chrome project (using
the Python interface from pycld22), and the widely
used langid.py package (Lui and Baldwin, 2012)
to classify each sentence in the ParaCrawl, Com-
monCrawl, Rapid and Wikititles data sets. We re-
moved all sentence pairs in which the language of
one of the aligned sentences was not reliably de-
tected. For this, we required the correct language
ID from both classifiers, the reliable-flag set to
“True” by CLD2 with a reliability score of 90 or
more, and the detection probability of langid.py to
be at least 0.9.

Word alignment filter: Statistical word align-
ment models implement a way of measuring the
likelihood of parallel sentences. IBM-style align-
ment models estimate the probability p(f | a, e)
of a foreign sentence f given an ”emitted” sen-
tence e and an alignment a between them. Train-
ing word alignment models and aligning large cor-
pora is very expensive using traditional methods

2https://github.com/aboSamoor/pycld2

https://gist.github.com/emjotde/4c5303e3b2fc501745ae016a8d1e8e49
https://gist.github.com/emjotde/4c5303e3b2fc501745ae016a8d1e8e49
https://github.com/aboSamoor/pycld2
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and implementations. Fortunately, we can rely on
eflomal3, an efficient word aligner based on Gibbs
sampling (Östling and Tiedemann, 2016). Re-
cently, the software has been updated to allow the
storage of model priors that makes it possible to
initialize the aligner with previously stored model
parameters. This is handy for our filtering needs
as we can now train a model on clean parallel data
and apply that model to estimate alignment proba-
bilities of noisy data sets.

We train the alignment model on Europarl and
news test sets from previous WMTs for English–
Finnish, and NewsCommentary for English–
German. For both language pairs, we train a
Bayesian HMM alignment model with fertilities
in both directions and estimate the model priors
from the symmetrized alignment. We then use
those priors to run the alignment of the noisy data
sets using only a single iteration of the final model
to avoid a strong influence of the noisy data on
alignment parameters. As it is intractable to esti-
mate a fully normalized conditional probability of
a sentence pair under the given higher-level word
alignment model, eflomal estimates a score based
on the maximum unnormalized log-probability of
links in the last sampling iteration. In practice, this
seems to work well, and we take that value to rank
sentence pairs by their alignment quality. In our
experiments, we set an arbitrary threshold of 7 for
that score, which seems to balance recall and pre-
cision well according to some superficial inspec-
tion of the ranked data. The word alignment filter
is applied to all web data as well as to the back-
translations of monolingual news.

Language model filter: The most traditional
data filtering method is probably to apply a lan-
guage model. The advantage of language mod-
els is that they can be estimated from monolin-
gual data, which may be available in sufficient
amounts even for the target domain. In our ap-
proach, we opted for a combination of source and
target language models and focused on the com-
parison between scores coming from both mod-
els. The idea is to prefer sentence pairs for which
not only the cross-entropy of the individual sen-
tences (H(S, qs) and H(T, qt)) is low with respect
to in-domain LMs, but also the absolute differ-
ence between the cross-entropies (abs(H(S, qs)−
H(T, qt))) for aligned source and target sentences

3Software available from https://github.com/
robertostling/eflomal

is low. The intuition is that both models should be
roughly similarly surprised when observing sen-
tences that are translations of each other. In order
to make the values comparable, we trained our lan-
guage models on parallel data sets.

For English–Finnish, we used news test data
from 2015-2017 as the only available in-domain
parallel training data, and for English–German
we added the NewsCommentary data set to the
news test sets from 2008-2018. As both data
sets are small, and we aimed for an efficient and
cheap filter, we opted for a traditional n-gram lan-
guage model in our experiments. To further avoid
data sparseness and to improve comparability be-
tween source and target language, we also based
our language models on BPE-segmented texts us-
ing the same BPE codes as for the rest of the
training data. VariKN (Siivola et al., 2007b,a)4

is the perfect toolkit for the purposes of estimat-
ing n-gram language models with subword units.
It implements Kneser-Ney growing and revised
Kneser-Ney pruning methods with the support of
n-grams of varying size and the estimation of
word likelihoods from text segmented in subword
units. In our case, we set the maximum n-gram
size to 20, and the pruning threshold to 0.002.
Finally, we computed cross-entropies for each
sentence in the noisy parallel training data and
stored 5 values as potential features for filtering:
H(S, qs), H(T, qt), avg(H(S, qs), H(T, qt)),
max(H(S, qs), H(T, qt)) and abs(H(S, qs) −
(T, qt)). Based on some random inspection, we
selected a threshold of 13 for the average cross-
entropy score, and a threshold of 4 for the cross-
entropy difference score. For English–Finnish, we
opted for a slightly more relaxed setup to increase
coverage, and set the average cross-entropy to 15
and the difference threshold to 5. We applied the
language model filter to all web data and to the
back-translations of monolingual news.

Applying the filter to WMT 2019 data: The
impact of our filters on the data provided by WMT
2019 is summarized in Tables 1, 2 and 3.

We can see that the ParaCrawl corpus is the
one that is the most affected by the filters. A lot
of noise can be removed, especially by the lan-
guage model filter. The strict punctuation filter
also has a strong impact on that data set. Natu-
rally, web data does not come with proper com-

4VariKN is available from https://vsiivola.
github.io/variKN/

https://github.com/robertostling/eflomal
https://github.com/robertostling/eflomal
https://vsiivola.github.io/variKN/
https://vsiivola.github.io/variKN/
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EN–DE EN–FI

CommonCrawl 3.2%
Europarl 0.8% 2.8%
News-Commentary 0.2%
ParaCrawl 0.6%
Rapid 13.2% 5.2%
WikiTitles 8.0% 4.0%

Table 1: Basic heuristics for filtering – percentage of
lines removed. For English–Finnish the statistics for
ParaCrawl are not available because the cleanup script
was applied after other filters.

% rejected

Filter CC ParaCrawl Rapid

LM average CE 31.9% 62.0% 12.7%
LM CE diff 19.0% 12.7% 6.9%
Source lang ID 4.0% 30.7% 7.3%
Target lang ID 8.0% 22.7% 6.2%
Wordalign 46.4% 3.1% 8.4%
Number 15.3% 16.0% 5.0%
Punct 0.0% 47.4% 18.7%

total 66.7% 74.7% 35.1%

Table 2: Percentage of lines rejected by each filter for
English–German data sets. Each line can be rejected
by several filters. The total of rejected lines is the last
row of the table.

% rejected

ParaCrawl Rapid

Filter strict relax strict relax

LM avg CE 62.5% 40.0% 50.7% 21.4%
LM CE diff 35.4% 25.7% 44.8% 31.1%
Src lang ID 37.2% 37.2% 11.9% 11.9%
Trg lang ID 29.1% 29.1% 8.5% 8.5%
Wordalign 8.3% 8.3% 8.3% 8.3%
Number 16.8% 16.8% 6.7% 6.7%
Punct 54.6% 3.3% 23.7% 7.6%

total 87.9% 64.2% 62.2% 54.8%

Table 3: Percentage of lines rejected by each filter for
English–Finnish data sets. The strict version is the
same as for English–German, and the relax version ap-
plies relaxed thresholds.

plete sentences that end with proper final punctu-
ation marks, and the filter might remove quite a
bit of the useful data examples. However, our fi-

nal translation scores reflect that we do not seem
to lose substantial amounts of performance even
with the strict filters. Nevertheless, for English–
Finnish, we still opted for a more relaxed setup
to increase coverage, as the strict version removed
over 87% of the ParaCrawl data.

It is also interesting to note the differences of
individual filters on different data sets. The word
alignment filter seems to reject a large portion of
the CommonCrawl data set whereas it does not af-
fect other data sets that much. The importance
of language identification can be seen with the
ParaCrawl data whereas other corpora seem to be
much cleaner with respect to language.

2.3 Back-translation

We furthermore created synthetic training data by
back-translating news data. We translated the
monolingual English news data from the years
2007–2018, from which we used a filtered and
sampled subset of 7M sentences for our Finnish–
English systems, and the Finnish data from years
2014–2018 using our WMT 2018 submissions.
We also used the back-translations we generated
for the WMT 2017 news translation task, where
we used an SMT model to create 5.5M sentences
of back-translated data from the Finnish news2014
and news2016 corpora (Östling et al., 2017).

For the English–German back-translations, we
trained a standard transformer model on all the
available parallel data and translated the monolin-
gual German data into English. The BLEU score
for our back-translation model is 44.24 on news-
test 2018. We applied our filtering pipeline to the
back-translated pairs, resulting in 10.3M sentence
pairs. In addition to the new back-translations, we
also included back-translations from the WMT16
data by Sennrich et al. (2016a).

3 Sentence-level approaches

In this section we describe our sentence-
level translation models and the experiments in
the English-to-German, English-to-Finnish and
Finnish-to-English translation directions.

3.1 Model architectures

We experimented with both NMT and rule-based
systems. All of our neural sentence-level models
are based on the transformer architecture (Vaswani
et al., 2017). We used both the OpenNMT-
py (Klein et al., 2017) and MarianNMT (Junczys-
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Dowmunt et al., 2018) frameworks. Our experi-
ments focused on the following:

• Ensemble models: using ensembles with a
combination of independent runs and save-
points from a single training run.

• Left-to-right and right-to-left models: Trans-
former models with decoding of the output in
left-to-right and right-to-left order.

The English-to-Finnish rule-based system is an
enhanced version of the WMT 2018 rule-based
system (Raganato et al., 2018).

3.2 English–German
Our sentence-level models for the English-to-
German direction are based on ensembles of in-
dependent runs and different save-points as well
as save-points fine-tuned on in-domain data. For
our submission, we used an ensemble of 9 models
containing:

• 4 save-points with the lowest development
perplexity taken from a model trained for
300 000 training steps.

• 5 independent models fine-tuned with in-
domain data.

All our sentence-level models for the English–
German language pair are trained on filtered
versions of Europarl, NewsCommentary, Rapid,
CommonCrawl, ParaCrawl, Wikititles, and back-
translations. For in-domain fine-tuning, we use
newstest 2011–2016. Our submission is com-
posed of transformer-big models implemented in
OpenNMT-py with 6 layers of hidden size 4096,
16 attention heads, and a dropout of 0.1. The dif-
ferences in development performance between the
best single model, an ensemble of save-points of
a single training run and our final submission are
reported in Table 4. We gain 2 BLEU points with
the ensemble of save-points, and an additional 0.8
points by adding in-domain fine-tuned models into
the ensemble. This highlights the well-known ef-
fectiveness of ensembling and domain adaptation
for translation quality.

Furthermore, we trained additional models us-
ing MarianNMT with the same training data and
fine-tuning method. In this case, we also included
right-to-left decoders that are used as a comple-
ment in the standard left-to-right decoders in re-
scoring approaches. In total, we also end up with
9 models including:

BLEU news2018

Single model 44.61
5 save-points 46.65
5 save-points + 4 fine-tuned 47.45

Table 4: English–German development results compar-
ing the best single model, an ensemble of 5 save-points,
and an ensemble of 5 save-points and 4 independent
runs fine-tuned on in-domain data.

• 3 independent models trained for left-to-right
decoding,

• 3 independent models trained for right-to-left
decoding,

• 3 save-points based on continued training of
one of the left-to-right decoding models.

The save-points were added later as we found
out that models kept on improving when using
larger mini-batches and less frequent validation in
early stopping. Table 5 lists the results of various
models on the development test data from 2018.

BLEU news2018
Model Basic Fine-tuned

L2R run 1 43.63 45.31
L2R run 2 43.52 45.14
L2R run 3 43.33 44.93
L2R run3 cont’d 1 43.65 45.11
L2R run3 cont’d 2 43.76 45.43
L2R run3 cont’d 3 43.53 45.67

Ensemble all L2R 44.61 46.34
Rescore all L2R 46.49

R2L run 1 42.14 43.80
R2L run 2 41.96 43.67
R2L run 3 42.17 43.91

Ensemble all R2L 43.03 44.70
Rescore all R2L 44.73

Rescore all L2R+R2L 46.98

Table 5: English–German results from individual Mar-
ianNMT transformer models and their combinations
(cased BLEU).

There are various trends that are interesting to
point out. First of all, fine-tuning gives a consis-
tent boost of 1.5 or more BLEU points. Our initial
runs were using a validation frequency of 5 000
steps and a single GPU with dynamic mini-batches
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that fit in 13G of memory. The stopping crite-
rion was set to 10 validation steps without improv-
ing cross-entropy on heldout data (newstest 2015
+ 2016). Later on, we switched to multi-GPU
training with two GPUs and early stopping of 20
validation steps. The dynamic batching method
of MarianNMT produces larger minibatches once
there is more memory available, and multi-GPU
settings simply multiply the working memory for
that purpose. We realized that this change enabled
the system to continue training substantially, and
Table 5 illustrates the gains of that process for the
third L2R model.

Another observation is that right-to-left decod-
ing models in general work less well compared
to the corresponding left-to-right models. This
is also apparent with the fine-tuned and ensemble
models that combine independent runs. The dif-
ference is significant with about 1.5 BLEU points
or more. Nevertheless, they still contribute to
the overall best score when re-scoring n-best lists
from all models in both decoding directions. In
this example, re-scoring is done by simply sum-
ming individual scores. Table 5 also shows that re-
scoring is better than ensembles for model combi-
nations with the same decoding direction because
they effectively increase the beam size as the hy-
potheses from different models are merged before
re-ranking the combined and re-scored n-best lists.

The positive effect of beam search is further il-
lustrated in Figure 1. All previous models were
run with a beam size of 12. As we can see, the
general trend is that larger beams lead to improved
performance, at least until the limit of 64 in our
experiments. Beam size 4 is an exception in the
left-to-right models.

3.3 English–Finnish and Finnish–English

The problem of open-vocabulary translation is
particularly acute for morphologically rich lan-
guages like Finnish. In recent NMT research,
the standard approach consists of applying a
word segmentation algorithm such as BPE (Sen-
nrich et al., 2016b) or SentencePiece (Kudo and
Richardson, 2018) during pre-processing. In re-
cent WMT editions, various alternative segmenta-
tion approaches were examined for Finnish: hy-
brid models that back off to character-level rep-
resentations (Östling et al., 2017), and variants
of the Morfessor unsupervised morphology algo-
rithm (Grönroos et al., 2018). This year, we exper-

1 2 4 8 16 32 64
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Figure 1: The effect of beam size on translation perfor-
mance. All results use model ensembles and the scores
are case-sensitive.

imented with rule-based word segmentation based
on Omorfi (Pirinen, 2015). Omorfi is a morpho-
logical analyzer for Finnish with a large-coverage
lexicon. Its segmentation tool5 splits a word form
into morphemes as defined by the morphological
rules. In particular, it distinguishes prefixes, in-
fixes and suffixes through different segmentation
markers:

Intia→
India

←n
GEN

ja
and

Japani→
Japan

←n
GEN

pää→
prime

←ministeri→
minister

←t
PL

tapaa→
meet

←vat
3PL

Tokio→
Tokyo

←ssa
INE

While Omorfi provides word segmentation
based on morphological principles, it does not rely
on any frequency cues. Therefore, the standard
BPE algorithm is run over the Omorfi-segmented
text in order to split low-frequency morphemes.

In this experiment, we compare two models for
each translation direction:

• One model segmented with the standard BPE
algorithm (joint vocabulary size of 50 000,
vocabulary frequency threshold of 50).

• One model where the Finnish side is pre-
segmented with Omorfi, and both the Omorfi-
segmented Finnish side and the English side
are segmented with BPE (same parameters as
above).

All models are trained on filtered versions of
Europarl, ParaCrawl, Rapid, Wikititles, news-
dev2015 and newstest2015 as well as back-
translations. Following our experiments at WMT

5https://flammie.github.io/
omorfi/pages/usage-examples.html#
morphological-segmentation

https://flammie.github.io/omorfi/pages/usage-examples.html#morphological-segmentation
https://flammie.github.io/omorfi/pages/usage-examples.html#morphological-segmentation
https://flammie.github.io/omorfi/pages/usage-examples.html#morphological-segmentation
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2018 (Raganato et al., 2018), we also use domain
labels (〈EP〉 for Europarl, 〈Web〉 for ParaCrawl,
Rapid and Wikititles, and 〈NEWS〉 for newsdev,
newstest and the back-translations). We use new-
stest2016 for validation. All models are trained
with MarianNMT, using the standard Transformer
architecture.

Figures 2 and 3 show the evolution of BLEU
scores on news2016 during training. For English–
Finnish, the Omorfi-segmented system shows
slightly higher results during the first 40 000 train-
ing steps, but is then outperformed by the plain
BPE-segmented system. For Finnish–English, the
Omorfi-segmented system obtains higher BLEU
scores much longer, until both systems converge
after about 300 000 training steps.

0 100,000 200,000 300,000

0

5

10

15

20

25

Training steps

BPE
Omorfi+BPE

Figure 2: Evolution of English–Finnish BLEU scores
(on y-axis) during training.
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Figure 3: Evolution of Finnish–English BLEU scores
(on y-axis) during training.

Table 6 compares BLEU scores for the 2017 to
2019 test sets. The Omorfi-based system shows
consistent improvements when used on the source
side, i.e. from Finnish to English. However, due
to timing constraints, we were not able to integrate
the Omorfi-based segmentation into our final sub-
mission systems. In any case, the difference ob-
served in the news2019 set after submission dead-
line is within the bounds of random variation.

Data set ∆ BLEU ∆ BLEU
EN-FI FI-EN

news2017 −0.47 +0.36
news2018 −0.61 +0.38
news2019 +0.19 +0.04

Table 6: BLEU score differences between Omorfi-
segmented and BPE-segmented models. Positive val-
ues indicate that the Omorfi+BPE model is better, neg-
ative values indicate that the BPE model is better.

We tested additional transformer models seg-
mented with the SentencePiece toolkit, using a
shared vocabulary of 40k tokens trained only on
the parallel corpora. We do this with the pur-
pose of comparing the use of a software tailored
specifically for Finnish language (Omorfi) with a
more general segmentation one. These models
were trained with the same specifications as the
previous ones, including the transformer hyperpa-
rameters, the train and development data and the
domain-labeling. Since we used OpenNMT-py to
train these models, it is difficult to know whether
the differences come from the segmentation or the
toolkit. We, however, find it informative to present
these results. Table 7 presents the obtained BLEU
scores with both systems.

We notice that both systems yield similar scores
for both translation directions. SentencePiece
models are consistently ahead of Omorfi+BPE, but
this difference is so small that it cannot be consid-
ered convincing nor significant.

Our final models for English-to-Finnish are
standard transformer models with BPE-based seg-
mentation, trained using MarianNMT with the
same settings and hyper-parameters as the other
experiments. We used the filtered training data us-
ing the relaxed settings of the language model fil-
ter to obtain better coverage for this language pair.
The provided training data is much smaller and
we also have less back-translated data at our dis-
posal, which motivated us to lower the threshold
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Model news news
2017 2019

SentencePiece EN-FI 25.60 20.60
Omorfi+BPE EN-FI 25.50 20.13
SentencePiece EN-FI 31.50 25.00
Omorfi+BPE FI-EN 31.21 24.06

Table 7: BLEU scores comparison between Sentence-
Piece and Omorfi+BPE-segmented models.

of taking examples from web-crawled data. Do-
main fine-tuning is done as well using news test
sets from 2015, 2016 and 2018. The results on
development test data from 2017 are listed in Ta-
ble 8.

BLEU news2017
Model L2R R2L

Run 1 27.68 28.01
Run 2 28.64 28.77
Run 3 28.64 28.41

Ensemble 29.54 29.76
Rescored 29.60 29.72
– L2R+R2L 30.66

Top matrix 21.7

Table 8: Results from individual MarianNMT trans-
former models and their combinations for English to
Finnish (cased BLEU). The top matrix result refers to
the best system reported in the on-line evaluation ma-
trix (accessed on May 16, 2019).

A striking difference to English–German is that
right-to-left decoding models are on par with the
other direction. The scores are substantially higher
than the currently best (post-WMT 2017) sys-
tem reported in the on-line evaluation matrix for
this test set, even though this also refers to a
transformer with a similar architecture and back-
translated monolingual data. This system does not
contain data derived from ParaCrawl, which was
not available at the time, and the improvements we
achieve demonstrate the effectiveness of our data
filtering techniques from the noisy on-line data.

For Finnish-to-English, we trained MarianNMT
models using the same transformer architecture
as for the other language pairs. Table 9 shows
the scores of individual models and their com-
binations on the development test set of news
from WMT 2017. All models are trained on the

same filtered training data using the strict set-
tings of the language model filter including the
back-translations produced for English monolin-
gual news.

BLEU news2017
Model L2R R2L

Run 1 32.26 31.70
Run 2 31.91 31.83
Run 3 32.68 31.81

Ensemble 33.23 33.03
Rescored 33.34 32.98
– L2R+R2L 33.95

Top (with ParaCrawl) 34.6
Top (without ParaCrawl) 25.9

Table 9: Results from individual MarianNMT trans-
former models and their combinations for Finnish to
English (cased BLEU). Results denoted as top refer to
the top systems reported at the on-line evaluation ma-
trix (accessed on May 16, 2019), one trained with the
2019 data sets and one with 2017 data.

In contrast to English-to-German, models in the
two decoding directions are quite similar again
and the difference between left-to-right and right-
to-left models is rather small. The importance of
the new data sets from 2019 are visible again and
our system performs similarly, but still slightly be-
low the best system that has been submitted this
year to the on-line evaluation matrix on the 2017
test set.

3.4 The English–Finnish rule-based system
Since the WMT 2018 challenge, there has been
development in four areas of translation process in
the rule-based system for English–Finnish:

1. The standard method in handling English
noun compounds was to treat them as mul-
tiword expressions (MWE). This method al-
lows many kinds of translations, even mul-
tiple translation, which can be handled in
semantic disambiguation. However, be-
cause noun compounding is a common phe-
nomenon, also a default handling method was
developed for such cases, where two or more
consecutive nouns are individually translated
and glued together as a single word. The sys-
tem works so that if the noun combination is
not handled as MWE, the second strategy is
applied (Hurskainen, 2018a).
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2. The translation of various types of questions
has been improved. Especially the transla-
tion of indirect questions was defective, be-
cause the use ofif in the role of initiating
the indirect question was not implemented.
The conjunctionif is ambiguous, because it
is used also for initiating the conditional
clause (Hurskainen, 2018b).

3. Substantial rule optimizing was carried out.
When rules are added in development pro-
cess, the result is often not optimal. There
are obsolete rules and the rules may need
new ordering. As a result, a substantial
number of rules (30%) were removed and
others were reordered. This has effect on
translation speed but not on translation re-
sult (Hurskainen, 2018c).

4. Temporal subordinate clauses, which start
with the conjunction when or while, can
be translated with corresponding subordinate
clauses in Finnish. However, such clauses are
often translated with participial phrase con-
structions. Translation with such construc-
tions was tested. The results show that al-
though they can be implemented, they are
prone to mistakes (Hurskainen, 2018d).

These improvements to the translation system
contribute to fluency and accuracy of translations.

4 Document-level approaches

To evaluate the effectiveness of various document-
level translation approaches for the English–
German language pair, we experimented with a
number of different approaches which are de-
scribed below. In order to test the ability of the
system to pick up document-level information, we
also created a shuffled version of the news data
from 2018. We then test our systems on both the
original test set with coherent test data divided
into short news documents and the shuffled test set
with broken coherence.

4.1 Concatenation models

Some of the previously published approaches use
concatenation of multiple source-side sentences in
order to extend the context of the currently trans-
lated sentence (Tiedemann and Scherrer, 2017). In
addition to the source-side concatenation model,
we also tested an approach where we concatenate

the previously translated sentence with the current
source sentence. The concatenation approaches
we tested are listed below.

• MT-concat-source: (2+1) Concatenating pre-
vious source sentence with the current source
sentence (Tiedemann and Scherrer, 2017).
(3+1a) Concatenating the previous two sen-
tences with the current source sentence.
(3+1b) Concatenating the previous, the cur-
rent and the next sentence in the source lan-
guages.

• MT-concat-target: (1t+1s+1) Concatenating
the previously translated (target) sentence
with the current source sentence.

• MT-concat-source-target: (2+2) Concatenat-
ing the previous with the current source sen-
tence and translate into the previous and
the current target sentence (Tiedemann and
Scherrer, 2017). Only the second sentence in
the translation will be kept for evaluation of
the translation quality.

Extended context models only make sense with
coherent training data. Therefore, we ran exper-
iments only with the training data that contain
translated documents, i.e. Europarl, NewsCom-
mentary, Rapid and the back-translations of the
German news from 2018. Hence, the baseline is
lower than a sentence-level model on the com-
plete data sets provided by WMT. Table 10 sum-
marizes the results on the development test data
(news 2018).

BLEU news2018
System Shuffled Coherent

Baseline 38.96 38.96
2+1 36.62 37.17
3+1a 33.90 34.30
3+1b 34.14 34.39
1t+1s+1 36.82 37.24
2+2 38.53 39.08

Table 10: Comparison of concatenation approaches for
English–German document-level translation.

The results overall are rather disappointing. All
but one of the concatenation models underperform
and cannot beat the sentence-level baseline. Note
that the concat-target model (1t+1s+1) even refers
to an oracle experiment in which the reference
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translation of the previous sentence is fed into the
translation model for translating the current source
sentence. As this is not very successful, we did
not even try to run a proper evaluation with sys-
tem output provided as target context during test-
ing. Besides the shortcomings, we can neverthe-
less see a consistent pattern that the extended con-
text models indeed pick up information from dis-
course. For all models we observe a gain of about
half a BLEU point when comparing the shuffled
to the non-shuffled versions of the test set. This is
interesting and encourages us to study these mod-
els further in future work, possibly with different
data sets, training procedures and slightly different
architectures.

4.2 Hierarchical attention models
A number of approaches have been developed
to utilize the attention mechanism to capture ex-
tended context for document-level translation. We
experimented with the two following models:

• NMT-HAN: Sentence-level transformer
model with a hierarchical attention network
to capture the document-level context (Mi-
culicich et al., 2018).

• selectAttn: Selective attention model for
context-aware neural machine transla-
tion (Maruf et al., 2019).

For testing the selectAttn model, we used the
same data with document-level information as we
applied in the concatenation models. For NMT-
HAN we had to use a smaller training set due to
lack of resources and due to the implementation
not supporting data shards. For NMT-HAN we
used only Europarl, NewsCommentary and Rapid
for training. Table 11 summarizes the results on
the development test data. Both of the tested mod-
els need to be trained on sentence-level first, be-
fore tuning the document-level components.

Model Sentence-level Document-level

NMT-HAN 35.03 31.73
selectAttn 35.26 34.75

Table 11: Results (case-sensitive BLEU) of the hierar-
chical attention models on the coherent newstest 2018
dataset.

The architecture of the selective attention model
is based on the general transformer model but with

quite a different setup in terms of hyperparame-
ters and dimensions of layer components etc. We
applied the basic settings following the documen-
tation of the software. In particular, the model
includes 4 layers and 8 attention heads, and the
dimensionality of the hidden layers is 512. We
applied a sublayer and attention dropout of 0.1
and trained the sentence-level model for about 3.5
epochs. We selected monolingual source-side con-
text for our experiments and hierarchical docu-
ment attention with sparse softmax. Otherwise,
we also apply the default parameters suggested
in the documentation with respect to optimizers,
learning rates and dropout. Unfortunately, the re-
sults do not look very promising as we can see
in Table 11. The document-level model does not
even reach the performance of the sentence-level
model even though we trained until convergence
on development data with patience of 10 reporting
steps, which is quite disappointing. Overall, the
scores are below the standard transformer models
of the other experiments, and hence, we did not try
to further optimize the results using that model.

For the NMT-HAN model we used the imple-
mentation of Miculicich et al. (2018) with the
recommended hyperparameter values and settings.
The system is based on the OpenNMT-py imple-
mentation of the transformer. The model includes
6 hidden layers on both the encoder and decoder
side with a dimensionality of 512 and the multi-
head attention has 8 attention heads. We applied
a sublayer and attention dropout of 0.1. The tar-
get and source vocabulary size is 30K. We trained
the sentence-level model for 20 epochs after which
we further fine-tuned the encoder side hierarchi-
cal attention for 1 epoch and the joint encoder-
decoder hierarchical attention for 1 epoch. The re-
sults for the NMT-HAN model are disappointing.
The document-level model performs significantly
worse than the sentence-level model.

5 Results from WMT 2019

Table 12 summarizes our results from the WMT
2019 news task. We list the official score from
the submitted systems and post-WMT scores that
come from models described above. For Finnish–
English and English–Finnish, the submitted sys-
tems correspond to premature single models that
did not converge yet. Our submitted English–
German model is the ensemble of 9 models de-
scribed in Section 3.2.
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Language pair Model BLEU

English–German submitted 41.4
L2R+R2L 42.95

Finnish–English submitted 26.7
L2R+R2L 27.80

English–Finnish submitted 20.8
rule-based 8.9
L2R+R2L 23.4

Table 12: Final results (case-sensitive BLEU scores)
on the 2019 news test set; partially obtained after the
deadline.

The ensemble results clearly outperform those
results but were not ready in time. We are still be-
low the best performing system from the official
participants of this year’s campaign but the final
models perform in the top-range of all the three
tasks. For English–Finnish, our final score would
end up on a third place (12 submissions from 8
participants), for Finnish–English it would be the
fourth-best participant (out of 9), and English–
German fifth-best participant (out of 19 with 28
submissions).

6 Conclusions

In this paper, we presented our submission for
the WMT 2019 news translation task in three lan-
guage pairs: English–German, English–Finnish
and Finnish–English.

For all the language pairs we spent considerable
time on cleaning and filtering the training data,
which resulted in a significant reduction of train-
ing examples without a negative impact on trans-
lation quality.

For English–German we focused both on
sentence-level neural machine translation models
as well as document-level models. For English–
Finnish, our submissions consists of an NMT
system as well as a rule-based system whereas
the Finnish–English system is an NMT system.
For the English–Finnish and Finnish–English lan-
guage pairs, we compared the impact of different
segmentation approaches. Our results show that
the different segmentation approaches do not sig-
nificantly impact BLEU scores. However, our ex-
periments highlight the well-known fact that en-
sembling and domain adaptation have a significant
positive impact on translation quality.

One surprising finding was that none of the

document-level approaches really worked, with
some even having a negative effect on translation
quality.
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Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

https://www.aclweb.org/anthology/W18-6410
https://www.aclweb.org/anthology/W18-6410
http://www.njas.helsinki.fi/salama
http://www.njas.helsinki.fi/salama
http://www.njas.helsinki.fi/salama
http://www.njas.helsinki.fi/salama
http://www.njas.helsinki.fi/salama
http://www.njas.helsinki.fi/salama
http://www.njas.helsinki.fi/salama
http://www.njas.helsinki.fi/salama
http://www.aclweb.org/anthology/P18-4020
http://www.aclweb.org/anthology/P18-4020


423

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proc. ACL.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent subword
tokenizer and detokenizer for neural text processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 System Demonstrations,
pages 25–30, Jeju Island, Korea. Association for
Computational Linguistics.
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