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Abstract

The paper describes the development process
of Tilde’s NMT systems for the WMT 2019
shared task on news translation. We
trained systems for the English-Lithuanian
and Lithuanian-English translation directions
in constrained and unconstrained tracks. We
build upon the best methods of the previous
year’s competition and combine them with
recent advancements in the field. We also
present a new method to ensure source domain
adherence in back-translated data. Our sys-
tems achieved a shared first place in human
evaluation.

1 Introduction

Since the paradigm-shifting success of neural ma-
chine translation (NMT) systems at the 2016 Con-
ference on Machine Translation (WMT) (Bojar
et al., 2016), NMT methods and neural network
architectures applied in NMT have been annu-
ally improved. In 2016, the best-performing sys-
tems were based on recurrent neural networks with
gated recurrent units (GRU) (Sennrich et al., 2016;
Bojar et al., 2016). In 2017, deep GRU mod-
els (Sennrich et al.) and models based on shal-
low multiplicative long short-term memory units
(MLSTM; (Pinnis et al., 2017b)) allowed achiev-
ing the best results (Bojar et al., a). In 2018, the
majority of best-performing systems were based
on self-attentional (Vaswani et al., 2017) (Trans-
former) models (Bojar et al., b).

A year has passed, and the majority of best-
performing systems submitted to the shared task
on news translation of WMT 2019 are still based
on Transformer networks. However, improve-
ments are evident in other areas (e.g., usage of
document-level context, very deep models, distil-
lation by ensemble teachers, etc.)'. Quite a few of
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the submissions indicate that substantial amounts
of computational resources may have been utilised
in order to achieve such results. As we do not have
access to large GPU clusters, our strategy for par-
ticipating at the shared task on news translation
of the 2019 Conference on Machine Translation
was comprised of combining different methods
that showed promising results in scientific publi-
cations published in 2018, and analysing whether
the methods allowed increasing the overall qual-
ity of NMT systems when training NMT models
using just modest hardware (with access to one or
two graphical processing units) and with the goal
of producing models suitable for production.

In our experiments, we investigated methods for
corpora filtering (the Tilde MT parallel data filter-
ing (TMTF) and normalisation workflow (Pinnis,
2018) together with dual conditional cross-entropy
filtering (DCCEF) (Junczys-Dowmunt, 2018)),
training data pre-processing using the methods de-
scribed by Pinnis et al. (2018a), a new optimi-
sation method, the quasi-hyperbolic Adam, pro-
posed by Ma and Yarats (2018), back-translation
with sampling-based decoding (e.g., as done by
Edunov et al. (2018)) and by targeting rare words
(Fadaee and Monz, 2018) and in-domain subsets
of the monolingual data, and automatic linguisti-
cally informed post-editing of named entities and
non-translatable phrases.

This year, Tilde participated in the shared task
on news translation for the English<+Lithuanian
language pair. We trained constrained and uncon-
strained systems for both translation directions.

The paper is further structured as follows: Sec-
tion 2 describes the data used for training, Sec-
tion 3 describes the main NMT model training
experiments, Section 4 describes our experiments
on automatic post-editing of named entities, Sec-
tion 5 summarises our automatic evaluation re-
sults, and the paper is concluded in Section 6.
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2 Data

Similarly to the year before, we used both con-
strained data, which were provided by the organ-
isers of the shared task, as well as unconstrained
data, which comprised publicly available paral-
lel and monolingual corpora as well as propri-
etary data from the Tilde Data Library?. For lan-
guage model (LM) training and back-translation,
we used news data provided by the organisers. For
the unconstrained systems, we used a proprietary
news corpus. The raw statistics of data available
are provided in Table 1. For validation, we used
the first 1000 sentences of the NewsDev2019 data
set. Evaluation was performed on NewsTest 2019.

2.1 Data Filtering

For data filtering, we applied the parallel data fil-
tering methods of Tilde MT (Pinnis et al., 2018b;
Pinnis, 2018) for both constrained and uncon-
strained systems. The filters address potential is-
sues that arise from misalignment of parallel data,
incomplete translation, various types of data cor-
ruption, and other types of data quality issues.
However, these filters do not perform data se-
lection. Therefore, we applied also data filter-
ing using DCCEF proposed by Junczys-Dowmunt
(2018). As it uses an in-domain LM to discard
out-of-domain sentence pairs, it performs the task
of data selection. Because for the constrained sys-
tems the data-set was not sufficiently large, we ap-
plied the filter with a threshold of > 0. For the
unconstrained systems, we set the threshold to 11
million® highest scored sentence pairs.

For monolingual data, we filtered out all sen-
tences that: 1) were redundant, 2) exceeded 128
tokens or 1000 characters, 3) contained tokens
over 50 characters, and 4) contained corrupt char-
acters. See Table 1 for statistics of data filtering.

2.2 Data Pre-Processing

This year, we did not change the parallel and
monolingual data pre-processing workflows that
we used for our WMT 2018 submissions (Pinnis
et al., 2018a).

Similarly to last year, the training corpora were
supplemented with synthetic data where up to
three words in each sentence were replaced with

2www.tilde.com/products-and-services/data-library
3The threshold was empirically identified by training mul-
tiple models with thresholds set at 8 to 12 million.
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unknown word identifiers on both source and tar-
get sides to ensure that the NMT models are able
to handle rare and unknown phenomena during
translation (Pinnis et al., 2017a). The statistics of
the parallel corpora after supplementing them with
synthetic data sets are provided in Table 1.

3 NMT Systems

We took an iterative approach to validating the
methods we selected for use in NMT system train-
ing. At each step, we either accepted or re-
jected a method for further use based on its per-
formance compared to a baseline. When moving
on, we would often use the previously selected
method as a baseline for the next method (which
we would combine with the previous method)
and so on. More specifically, we conducted
the experiments as follows: 1) Filtering (Sec-
tion 3.1), 2) ~QHAdam (Section 3.2.1), 3) reg-
ular back-translation, 4) large batches (Section
3.3), 5.a) back-translation using beam search or
sampling (Section 3.4.2), 5.b) back-translation us-
ing rare or random data (Section 3.4.1, the re-
sults weren’t used further), 6) QHAdam (Section
3.2), 7) Source domain adherence (Section 3.4.3),
8) Transformer-big (Section 3.5). The outline of
this section loosely follows the above timeline.
As a result of the iterative approach, the eval-
uation of the training methods was mostly non-
exhaustive — meaning that it was usually done
only for a single translation direction (most of-
ten En — Lt) testing only a few possible config-
urations (e.g., different model hyper-parameters,
back-translated data-set size, etc.). Also, for some
experiments we did not methodically test the ef-
fect of each of the compounding changes to the
experiment’s configuration, e.g., in ~QHAdam ex-
periments (in Section 3.2) along with adopting the
new optimiser we also selected a new learning-
rate and learning-rate schedule without confirming
that the baseline optimiser would not also benefit
from these changes. As a result, for some exper-
iments we cannot confirm with certainty that the
selected method is better than the baseline, only
that the selected method with a given set of hyper-
parameters is better. The above choices were pri-
marily motivated by resource and time constraints.
All NMT systems described further used the
Transformer architecture (Vaswani et al., 2017)
and were trained using the Marian NMT toolkit
(Junczys-Dowmunt et al., 2018). Unless noted
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Table 1: Training data statistics (TMTF - Tilde MT filtering, DCCEF - dual conditional cross-entropy filtering)

otherwise, we used the base model configuration
for the model hyper-parameters.

3.1 Filtering

Since  DCCEF achieved the best results in
the shared task on parallel corpus filtering at
WMT 2018 (Koehn et al., 2018), we decided to
test whether the combination of our filtering meth-
ods (i.e., TMTF) and DCCEF allows acquiring
better models. Therefore, we filtered the paral-
lel corpora using DCCEEF. For this, we trained two
NMT models using the data that were already fil-
tered using TMTF and four language models (two
in-domain models that were trained on news cor-
pora and two models trained using the parallel
data), and trained several NMT systems. Figure 1
shows the training progress for En — Lt. It is ev-
ident that the combination of the methods works
better only for the unconstrained systems. We sus-
pect that it is because the unconstrained data sets
are large enough to leave enough training data re-
maining in the filtered data sets. Further, all ex-
periments for unconstrained systems will be per-
formed using data filtered with TMTF and DCCEF
and for constrained systems — only TMTF.
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Figure 1: En — Lt systems trained on datasets filtered
using the TMTF and DCCEF methods

3.2 QHAdam

We used two versions of the Quasi-Hyperbolic
Adam (QHAdam) optimiser (Ma and Yarats,

2018) to train our systems — a version as de-
scribed in the original paper, and a modified ver-
sion (~QHAdam) as described below. The mod-
ified version was due to an error in our initial
implementation of the optimiser but it performed
well enough for us to use it to train the majority of
the systems during the period of the competition.

3.2.1 ~QHAdam

We define the ~QHAdam’s update step in (1). The
definitions for g, s}, v1 and vy are the same as in
the original paper.

The comparison of ~QHAdam and the baseline
system for the constrained En — Lt track is given
in Figure 2. ~QHAdam was tested with different
combinations of settings for the learning rate and
the number of warm-up steps used. In our ini-
tial experiments, we found that setting the learn-
ing rate to 5 x 10~* and using 48k warm-up steps
worked best. A workspace size of 9 GB on 2 GPUs
was used in Marian which resulted in an effective
batch-size of around 255 sentences.

3.3 Using Large Batches

As shown by Popel and Bojar (2018) and Ott
et al. (2018), using a large batch size in conjunc-
tion with increasing the learning rate allows to
train better-performing NMT systems. We con-
firm these findings. We trained the same system
described in Section 3.2.1 except training it with
a workspace size of 14 GB on 8 GPUs (simu-
lated using the --optimizer-delay option in Mar-
ian) which resulted in an effective batch size of
~1263 sentences. Additionally we increased the
learning rate to 7.3 x 10~ roughly keeping to the
rule of scaling the learning rate by a factor of \/n
when the batch size has increased by a factor of n
(Hoffer et al., 2017). The results are given in Fig-
ure 3. These experiments were done using back-
translated data (see Section 3.4). When using non-
back-translated data, we saw overfitting occur.
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Figure 2: Training progress for the baseline and
~QHAdam systems in the En — Lt translation direc-
tion.
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Figure 3: Training progress for ~QHAdam systems
comparing effects of different batch sizes and learning
rates in the En — Lt translation direction.

3.4 Experiments with Back-translation

We used NMT model adaptation through back-
translation (Sennrich et al., 2015) to adapt NMT
systems to the news domain. We applied two iter-
ations of back-translation and the subsequent sys-
tem training to incrementally improve the back-
translated data set (Rikters, 2018). We also anal-
ysed methods for selection of the data for back-
translation. The methods are discussed further. In
the figures further, if not specified in the name of
each system, the proportion between parallel and
back-translated data is 1-to-1.

3.4.1 Rare vs. Random Data for
Back-Translation

Fadaee and Monz (2018) showed that adaptation
through back-translation works better if the data
for back-translation can be considered rare or diffi-
cult. Therefore, we compared two types of data se-
lection - random selection and selection by target-

ing rare words (as proposed by Fadaee and Monz
(2018)), back-translated the data sets using beam
search, and trained NMT models. Figure 4 depicts
the training progress of the En — Lt and Lt — En
systems. The results suggest that targeting of sen-
tences containing rare words did not help. We be-
lieve that this is due to the fact that what is rare in
the target language may not be relevant for speak-
ers of the source language. Therefore, there is no
guarantee that the method will work. We stopped
here and did not pursue this method further.
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Figure 4: Training progress of systems trained on ran-
domly selected data for back-translation and data se-
lected by targeting rare words

3.4.2 Beam vs. Sampling

As suggested by Edunov et al. (2018), when back-
translating data for domain adaptation, better-
performing models can be acquired when using
sampling instead of beam search. Therefore, we
trained several systems on different amounts of
back-translated data. The training progress of the
systems is depicted in Figure 5.

For the final training iteration, we used sam-
pling instead of beam-search during decoding for
all but one system.

3.4.3 Source Domain Adherence

When adapting a system to a specific domain, it
is important to use data from that specific do-
main. However, since we use a monolingual cor-
pus from the target language to adapt an NMT
system for source content, there may still be a
domain mismatch, because how people write and
what they write about in the target language may
be (to higher or lower extent) irrelevant for the
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Figure 5: Training progress of systems trained on back-
translated data that was acquired using beam search and
sampling.

people writing in the source language. Therefore,
we performed an experiment where we translated
the in-domain source data into the target side us-
ing an NMT system, trained a language model on
the translations, scored each sentence of the tar-
get side’s monolingual corpus, and used only the
top-scored sentences for back-translation. Com-
parison between systems trained on randomly se-
lected data for back-translation and data selected
using LMs (with sorted in the name) is given in
Figure 6.
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Figure 6: Training progress of systems trained on ran-
domly selected data and data selected using LMs for
back-translation.

3.5 Transformer Big

When training the unconstrained systems on
the second iteration of back-translated data, we
trained a variant for both translation directions
using the transformer-big configuration (Vaswani
et al., 2017). While doing so, we also adjusted
the learning rate. Due to time constraints and
technical difficulties we were not able to run
these experiments to completion. Nonetheless,
the transformer-big configuration still managed to
surpass the baseline. For results see Figure 7.
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Figure 7: Training progress for the transformer-big
systems comparing them to QHAdam baselines.

4 Automatic Named Entity Post-Editing

In our submissions for WMT 2018, we intro-
duced an automatic named entity (NE) post-
editing (ANEPE) workflow (Pinnis et al., 2018a),
which allowed to fix translations of NEs (con-
sisting of one word) and non-translatable words
after NMT decoding. The method depends on
the quality of word alignments. Because then
we did not have methods to extract reliable word
alignments from Transformer models, we had to
rely on external word alignment using fast_align
(Dyer et al., 2013). This resulted in many mis-
alignments and unalignments, and incorrect post-
edits. This year, we trained all models using the
guided alignment method implemented in Mar-
ian (Junczys-Dowmunt et al., 2018). Although
we still had to pre-process training data using
fast_align, the NMT models learned to produce
more reliable word alignments. We also extended
the ANEPE method to support multi-word NEs
and non-translatable phrases.

The method works as described further. Using
collections of NEs and non-translatable phrases,
we perform dictionary-based NE recognition in
the source text. Then, for each recognised unit,
we analyse whether the NMT translation contains
a valid translation of the source unit. In order
to support morphologically rich languages (as is
Lithuanian), stemming of tokens is performed.
However, NEs can already be included in surface
forms in the NE collections to account for possi-
ble stemming-related issues. If a valid translation
is not found, we analyse whether we can iden-
tify, which target words the source unit was trans-
lated into. If the words are next to each other (i.e.,
there is no gap between the target words), we re-
place the target words (except trailing stop-words)
with the most similar (according to Levenshtein
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distance (Levenshtein, 1966)) translation equiva-
lent (except trailing stop-words) found in the NE
collection. Stop-words are excluded as the word
alignment extracted from the NMT model com-
monly aligns stop-words to content words when
stop-words (dis)appear in the target language. Us-
ing ANEPE, we improved the translation quality
by 0.04 to 0.1 BLEU points for all submissions.
Statistics also show that out of 408 named enti-
ties and non-translatable phrases identified in the
Lithuanian validation set, 322 already had valid
translations, 26 were post-edited, and the remain-
ing 60 either had alignment issues or the target
words were too dissimilar from the entries in the
NE collection. We applied ANEPE for all our sub-
missions.

5 Results

Automatic evaluation results of our final systems
using BLEU* (Papineni et al., 2002) are given in
Table 2. To acquire final translations, we per-
formed also ensembling of the best-performing in-
dividual models. For submission, we selected the
best-performing models for both translation direc-
tions and both scenarios. However, it is evident
that other models were able to translate the New-
sTest 2019 evaluation set better (for 3 out of 4 sub-
missions). Although this can be expected, when
deciding, which systems to submit, we did not ac-
count for the change of the evaluation strategy, i.e.,
the fact that the evaluation set contained only texts
originally written in the source language (which is
different from previous years). The results clearly
show that the models that are more source domain
adherent (e.g., the ‘(u) so-beam-~qh-1-to-1" un-
constrained system for Lt — En) even surpass the
quality of our ensemble models.

6 Conclusion

The paper presented Tilde’s efforts on develop-
ing NMT systems for the WMT 2019 shared task
on news translation. We built upon our meth-
ods from the previous year and investigated other
novel methods proposed in 2018. Our experi-
ments showed that improvements in translation
quality could be achieved by using improved filter-
ing by combining TMTF and DCCEF, sampling-
based back-translation (although not for all sys-

*BLEU scores were obtained using SacreBLEU

(Post, 2018), checksum: BLEU+case.mixed+numrefs.1
+smooth.exp+tok.13a+version.1.2.7.
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System NewsDev NewsTest
(2019a) (2019)
English-Lithuanian
(u) best 4 ens. 27.18 18.84
(u) best 2 ens. 27.03 19.53
(c) best 5 ens. 26.70 17.86
(u) sa-~gh-1-to-3 26.66 18.76
(u) sa-gh+-big-1-to-3 26.61 19.13
(c) best 3 ens. 26.54 18.59
(c) sa-gh+-1-t0-3.3 26.42 18.14
(c) sa-~gh-1-to-1.7 26.19 18.17
(c) sa-~gh-1-to-1 26.16 17.83
Lithuanian-English
(u) best 5 ens. 30.41 31.55
(c) best 5 ens. 29.76 30.21
(u) so-beam-
~qh-1-to-1 29.43 31.67
(u) so-sa-gh+-big-
1035-1-to2 29.12 30.09
(u) so-sa-gh-1-to-2 28.99 29.60
(c) so-sa-~qh-1-to-3.2 28.84 29.30
(c) so-sa-gh-1-to-3.2 28.66 28.93
(c) sa-1-t0-3.3 28.17 28.94

Table 2: Evaluation results - BLEU scores (submit-
ted models are underlined, bold marks best results for
both scenarios, (¢) - constrained scenario, (u) - uncon-
strained scenario, ‘ens.” - ensembles of models, ‘sa’
- sampling-based back-translation, ‘so’ - source do-
main adherence, ‘gh’ - quasi-hyperbolic Adam, ‘~qgh’
- modified version of ‘gh’, ‘qh+’ - ‘qgh’ with tuned
parameters, ‘M-to-N’ - the proportion of parallel and
back-translated data)

tems), and the quasi-hyperbolic Adam optimiser.
We also introduced a new method that allows to
boost the quality of back-translation by ensuring
source domain adherence of the data selected for
back-translation, as well as described improve-
ments upon our automatic named entity post-
editing method. Our systems achieved a shared
first place in human evaluation.
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