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Abstract

Transformer-based neural machine transla-
tion (NMT) has recently achieved state-of-
the-art performance on many machine trans-
lation tasks. However, recent work (Ra-
ganato and Tiedemann, 2018; Tang et al.,
2018; Tran et al., 2018) has indicated that
Transformer models may not learn syntac-
tic structures as well as their recurrent neu-
ral network-based counterparts, particularly in
low-resource cases. In this paper, we incor-
porate constituency parse information into a
Transformer NMT model. We leverage lin-
earized parses of the source training sentences
in order to inject syntax into the Transformer
architecture without modifying it.

We introduce two methods: a multi-task ma-
chine translation and parsing model with a sin-
gle encoder and decoder, and a mixed encoder
model that learns to translate directly from
parsed and unparsed source sentences. We
evaluate our methods on low-resource trans-
lation from English into twenty target lan-
guages, showing consistent improvements of
1.3 BLEU on average across diverse target lan-
guages for the multi-task technique. We fur-
ther evaluate the models on full-scale WMT
tasks, finding that the multi-task model aids
low- and medium-resource NMT but degener-
ates high-resource English—German transla-
tion.

1 Introduction

Transformer-based neural machine translation
(NMT) (Vaswani et al., 2017) has recently out-
performed recurrent neural network (RNN)-based
models (Bahdanau et al., 2015; Cho et al., 2014)
in many tasks (Bojar et al., 2018). However, there
is still room for improvement for NMT, partic-
ularly for low- and moderate-resource language
pairs. Enriching NMT with syntactic informa-
tion has the potential to improve generalization
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in low-resource scenarios, and adding syntax to
Transformer-based NMT is currently an underex-
plored research area.

Transformer-based NMT may in fact stand to
benefit even more from explicit syntactic annota-
tions than RNN-based NMT, particularly in low-
resource settings. On the one hand, the Trans-
former model already learns some syntax with-
out explicit supervision in high-resource cases.
Vaswani et al. (2017) visualized a few encoder
self-attentions in a trained NMT model and found
that they seemed to capture syntactic structure.
This was formalized by Raganato and Tiedemann
(2018), who found that Transformer encoders
trained on high-resource NMT tasks were able to
perform reasonably well at part-of-speech tagging,
chunking, and other tasks. However, for Trans-
formers trained on low-resource NMT, the results
on these tasks were not as strong. Additionally,
Tran et al. (2018) found that an RNN language
model did better at predicting subject-verb agree-
ment than a Transformer language model; Tang
et al. (2018) saw similar results for Transformer
vs. RNN NMT models.

Thus, the goal of this paper is to improve
Transformer-based NMT using source-side syn-
tactic supervision. We propose two methods that
incorporate source-side linearized constituency
parses into Transformer-based NMT. The first,
multi-task, uses the Transformer to learn to parse
and translate the source sentence simultaneously.
The second, mixed encoder, learns to translate di-
rectly from both parsed and unparsed source sen-
tences. This paper makes the following contribu-
tions:

o This is one of the first attempts at using syn-
tax to improve Transformer-based NMT

e We introduce two methods for adding syntax
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no ha sido elegido .
permitanme utilizar una comparacion .

(roor (s (xp ) (vp (vp (vp ) ) ) ))

Transformer

no ha sido elegido .
estas cuestiones son importantes .

no ha sido elegido .

Transformer

<TR> you have not been elected . <TR>
<TR> let me make a comparison . <TR>

<PA> you have not been elected . <PA>

(roor (s (np you ) (vp have not (vp been (vp elected ) ) ). ) )
(roor (s (np they ) (vp are (np important issues ) ). ) )

you have not been elected .

(a) Multi-task syntactic NMT model. The system
is trained to translate (<TR>) and parse (<PA>)
source sentences using the same architecture.

(b) Mixed encoder syntactic NMT model. The system learns to trans-
late directly from both parsed and unparsed source sentences into un-
parsed target sentences.

Figure 1: Illustrations of the two proposed syntactic NMT methods.

to NMT that are straightforward to incorpo-
rate in practice

e We empirically evaluate both methods on
translation from English into 21 diverse tar-
get languages, finding that the multi-task
method improves consistently over a non-
syntactic baseline

2 Transformer-Based NMT with
Linearized Parses

We propose two models for incorporating lin-
earized parses into Transformer-based NMT: a
multi-task model and a mixed encoder model. Fig-
ure 1 summarizes the two proposed methods; they
are discussed in detail in sections 2.2 and 2.3, re-
spectively.

2.1 Linearized Constituency Parses

Both of our proposed methods make use of lin-
earized parses of the source sentences to inject
source syntax into Transformer-based NMT. Lin-
earizing the parses allows us to add syntactic in-
formation without modifying the Transformer ar-
chitecture. Here, we describe how these parses are
created. We generate and format the parsed data
as follows:

1. In order to generate syntactically parsed
training data, we use the Stanford CoreNLP
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constituency parser (Manning et al., 2014)
to parse the source side of the parallel cor-
pus. This technique of parsing the parallel
data instead of using gold parses is common
in syntactic NMT (Eriguchi et al., 2016) and
in neural parsing (Vinyals et al., 2015). For
the multi-task model, it would be possible to
incorporate gold parses into training as well,
but we leave this for future work.

. We linearize the resulting parses similarly

to Vinyals et al. (2015) by using a depth-
first tree traversal. We tokenize the opening

parenthesis of each phrase with its phrase la-
bel.

. Since neural machine translation already

struggles with long sentences (Bahdanau
et al., 2015), and adding the phrase nodes
has the potential to make the sentences much
longer, we remove part-of-speech tags from
the parses (as was done by Aharoni and Gold-
berg, 2017).

. For our multi-task model (section 2.2), we re-

move words from the linearized parses. We
do this in order to further shorten the length
of the target sequences. We do not expect that
this will make the parsing task too difficult, as
a similar technique was used for neural pars-



translation <TR> you have not been elected . <TR> — no ha sido elegido .

parsing

<PA> you have not been elected . <PA> — (roor (s (Np ) (ve (vp (v ) ) )))

Table 1: Example of English— Spanish training data for parsing and translation tasks in the multi-task system.

you have not been elected .

(roort (s (np you ) (vp have not (vp been (yp elected ) ) ) . ) ) — no ha sido elegido .

— no ha sido elegido .

Table 2: Example of English— Spanish training data for the mixed encoder system.

ing by Vinyals et al. (2015).

5. For our mixed encoder model (section 2.3),
we convert the words in the parses into sub-
words using byte pair encoding (Sennrich
et al., 2016). We do not allow the parse la-
bels to be broken into subwords.

Tables 1 and 2 give examples of the resulting
parse formats.

2.2 Multi-Task NMT and Parsing with
Shared Decoder

Our first method for incorporating source-side
syntax into Transformer-based NMT adopts a
multi-task framework. The main task is translat-
ing the source sentence into the target language;
the secondary task is parsing the source sentence.
For the parsing task, we employ the same encoder-
decoder framework as for NMT, with the sequen-
tial source sentence as input and the linearized,
unlexicalized parsed source sentence as output.
Thus, both tasks are trained using a single model
with a shared encoder and decoder. This is similar
to the multi-task framework proposed by Luong
et al. (2016), with three main differences: 1) we do
not use separate decoders for each task, 2) we use
the same source data for both parsing and transla-
tion, and 3) we use a Transformer rather than re-
current neural network-based architecture.

We do not directly use gold parses to train the
parsing task, nor do we split the training data be-
tween the two tasks. The reason for using the same
source data for both tasks is that we expect it to be
difficult to find a sufficiently large amount of in-
domain gold parses for training; additionally, our
main goal is to improve NMT, so we do not expect
the lower quality of the synthetic parses to matter.

In order to generate the training data for this
model, we first create linearized parses of the
source side of the training corpus as described
above. Next, we add a tag at the beginning and
end of each source sentence indicating the desired
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task, similar to what was done by Johnson et al.
(2017) for multilingual NMT. Table 1 gives an ex-
ample of the data format. Finally, we shuffle the
parsing and translation training data together and
train the shared encoder and decoder on both tasks,
making no further distinction between the tasks
during training. Since we parse all of the train-
ing data, each source sentence appears twice: once
with a target language sentence and once with a
parse of the source sentence. These copies are
shuffled separately.
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Our second method for augmenting the NMT
Transformer with syntax is the mixed encoder
model. This model learns to translate both from
unparsed and parsed source sentences into un-
parsed target sentences.

In order to train the mixed encoder model, we
create two copies of the training data, one with
parsed source sentences and the other with un-
parsed source sentences. We then shuffle these
training corpora together into a single corpus and
train a standard Transformer NMT model on the
final data, with a single encoder for both parsed
and unparsed source sentences. The training data
contains (parsed source, unparsed target) and (un-
parsed source, unparsed target) sentence pairs; Ta-
ble 2 gives an example of the two types of train-
ing sentence pairs for the mixed encoder method.
Since the data is shuffled, these two sentence pairs
(with identical target sentences) will not necessar-
ily be seen together during training.

Since the mixed encoder model is trained on
both parsed and unparsed source sentences, during
inference it is able to translate from either source
sentence format. Inference on unparsed source
sentences is slightly faster (since it does not re-
quire parsing of the source sentence) and achieves
slightly higher BLEU scores, so we show results
using unparsed source sentences for our experi-
ments (sections 4.2 and 5.2).

Mixed Encoder Transformer



3 Experimental Setup

We evaluate our multi-task and mixed encoder
models compared to a standard (non-syntactic)
Transformer baseline on translation from English
into 21 target languages. Sections 4.1 and 5.1 con-
tain detailed information on the target languages
and data used. All models are implemented in
Sockeye (Hieber et al., 2017). For hyperparam-
eter settings, we follow the recommendations of
Vaswani et al. (2017).

We preprocess our data for all experiments as
follows. First, we tokenize and truecase the data
using the Moses scripts (Koehn et al., 2007). We
then train separate subword vocabularies (Sen-
nrich et al., 2016) for the source and target lan-
guages, with 30k merge operations per language.
We use the Stanford CoreNLP parser (Manning
et al., 2014) to generate constituency parses of
the source (English) sentences, and linearize and
format the parses as described in section 2.1.
We do not use any monolingual training data;
however, our proposed models are amenable to
adding monolingual data, and we expect that
BLEU scores would strongly increase if monolin-
gual training data were used.

4 Small-Scale Cross-Lingual
Experiments

4.1 Data

We use the Europarl Parallel Corpus (Koehn,
2005) as the basis for our small-scale cross-lingual
experiments. We consider translation from En-
glish (EN) into each of the twenty remaining target
languages; Table 3 contains a full list of the tar-
get languages, as well as their language families
or branches. By using this data set, we are able
to evaluate the usefulness of syntactic information
for several relatively diverse target languages, un-
like most previous work on syntactic NMT (re-
viewed in section 7). However, all the languages in
our experiments are Indo-European or Uralic due
to using Europarl.

In order to facilitate comparison between the
target languages, we follow Cotterell et al. (2018)
by taking only the intersections of the Europarl
training data. This means that the source (EN) data
is identical for all experiments, and the targets are
all translations of each other in the different tar-
get languages. This results in 170k parallel train-
ing sentences for each language pair. We reserve a
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Family Language | Abbrev.
Baltic Latvian LV
Lithuanian | LT
Germanic | Danish DA
Dutch NL
German DE
Swedish SV
Hellenic Greek EL
Romance | French FR
Italian IT
Portuguese | PT
Romanian | RO
Spanish ES
Slavic Bulgarian | BG
Czech CS
Polish PL
Slovak SK
Slovene SL
Uralic Estonian ET
Finnish FI
Hungarian | HU
Table 3: Target languages used in our experiments,

along with their language families or branches and their
abbreviations (abbrev.).

random subset of 10k sentences from the original
data to use as development data and an additional
10k sentences as test data; these development and
test sets are not included in the training data.

4.2 Results

Table 4 displays BLEU scores on the test data
for each target language for the proposed systems.
The multi-task system outperforms the baseline
for all target languages. In addition, for all but four
target languages (SV, EL, SK, and ET), the multi-
task system is at least 1 BLEU point better than the
baseline. Thus, our proposed multi-task method
consistently improves over a non-syntactic base-
line across several diverse target languages in low-
resource scenarios. Additionally, in all cases but
two (EN—LT and EN—ET), multi-task achieves
the highest BLEU score of all models.

The performance of the mixed encoder system
in relation to the baseline is less consistent than
that of the multi-task system. In most cases, the
mixed encoder improves only slightly (less than 1
BLEU) over the baseline, although for LV, LT, RO,
ES, PL, and FI, the improvements are stronger.
However, for four target languages (NL, EL, BG,



EN—* | base mixed enc. multi-task
LV 26.5 28.1(+1.6) 28.2(+1.7)
LT 235 24.6 (+1.1) 24.8(+1.3)
DA 39.5 40.1 (+0.6) 40.7 (+1.2)
NL 28.8 28.7(-0.1) 30.6 (+1.8)
DE 30.5 30.6(+0.1) 32.1(+1.6)
SV 359 36.4(+0.5) 36.4(+0.5)
EL 38.9 38.8(-0.1) 39.7(+0.8)
FR 38.3 38.5(+0.2) 404 (+2.1)
IT 31.3 31.3 (== 32.5(+1.2)
PT 39.2 393(+0.1) 40.5(+1.3)
RO 36.3 37.8(+1.5) 37.8(+1.5)
ES 41.6 43.0(+1.4) 43.1 (+1.5)
BG 3900 38.6(-04) 40.5(+1.5)
CS 27.5 28.3(+0.8) 28.8(+1.3)
PL 237 248 (+1.1) 251 (+1.4)
SK 32.8 325(-03) 329 +0.1)
SL 333 342(+0.9) 349 (+1.6)
ET 20.2 209 (+0.7) 20.8 (+0.6)
FI 21.5 228 (+1.3) 23.3(+1.8)
HU 223 226 (+0.3) 234 (+1.1)
Table 4: BLEU scores on the test set for small-

scale cross-lingual experiments for the baseline (base),
mixed encoder (mixed enc.), and multi-task models.
Difference with the baseline is shown in parentheses.

and SK), the mixed encoder system does worse
than the non-syntactic baseline.

Target language family does not seem to have
a noticeable effect on the performance of either
the mixed encoder or the multi-task method; this
could be due to the fact that the syntactic anno-
tations were on the source sentence only. It re-
mains to be seen whether certain source languages
are particularly amenable to incorporating source
syntax in NMT.

S Full-Scale WMT Experiments
5.1 Data

The main goal of the previous section was to
evaluate our proposed syntactic NMT methods
on a wide range of target languages and com-
pare the effect of target language on performance.
In this section, we run additional experiments
in order to evaluate the proposed methods on a
standard benchmark. We train our models on
the following tasks: English—Turkish (TR) from
the WMT18 news translation shared task (Bojar
et al., 2018), English—+Romanian WMT16 (Bojar
et al., 2016), and English—German WMT17 (Bo-
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System newstest2017 | newstest2018

baseline 9.6 8.8

mixed enc. 9.6 (== 9.3 (+0.5)

multi-task 10.6 (+1.0) 10.4 (+1.6)
Table 5: BLEU scores (and improvement over the

baseline) for EN—TR on the test (newstest2017) and
held-out (newstest2018) datasets.

jar et al., 2017).

For each experiment, we use all available par-
allel training data from the task, but no monolin-
gual data. This gives us 200k parallel training sen-
tences for EN—TR, 600k for EN—RO, and 5.9M
for EN—DE. Note that the EN—RO and EN—DE
training corpora contain some overlaps with the
training data in section 4.1, although the experi-
ments in this section use significantly more train-
ing data. We validate EN—TR on newstest2016,
EN—RO on newsdev2016, and EN—DE on new-
stest2015.

5.2 Results

The results for the EN—TR experiments are dis-
played in Table 5. These results mirror what was
seen in the previous experiments: the mixed en-
coder method gives modest improvements over
the non-syntactic baseline (0-0.5 BLEU), while
the multi-task method yields the strongest results,
with an improvement of 1.0-1.6 BLEU points over
the baseline. Although Turkish is not related to
any of the target languages studied in section 4,
the amount of training data for EN—TR is similar
to what was used in the previous section, which
might be one explanation for the similar results.

Table 6 shows performance of each model on
the WMT EN—RO experiments. Here, we see
more modest improvements from adding the syn-
tactic data: only 0.5 BLEU over the baseline for
both the mixed encoder and multi-task methods.
It is interesting to compare this with the results for
the Europarl EN—RO experiments (section 4.2);
there, we saw a much larger improvement over the
baseline for both multi-task models (1.5 BLEU).
This indicates that the effectiveness of these mod-
els may depend on amount of data (the WMT
models were trained on about three times as much
training data) rather than on target language fam-
ily.

Finally, we display our WMT EN—DE re-
sults in Table 7. Here, we see that for very
high-resource EN—DE translation, the multi-task



System newstest2016
baseline 21.5
mixed enc. 22.0 (+0.5)
multi-task 22.0 (+0.5)

Table 6: BLEU scores (and improvement over the
baseline) for EN—RO on the test set (newstest2016).

System newstest2016 | newstest2017
baseline 31.7 25.5
mixed enc. | 31.9 (+0.2) 26.0 (+0.5)
multi-task 29.6 (-2.1) 234 (-2.1)

Table 7: BLEU scores (and difference with the base-
line) for EN—DE on the test (newstest2016) and held-
out (newstest2017) datasets.

method does much worse than the baseline (by
2.1 BLEU points). In addition, the mixed encoder
method achieves comparable BLEU scores to the
baseline (only 0.2-0.5 BLEU higher). Thus, nei-
ther proposed technique is particularly successful
for high-resource EN—DE NMT. Again, we can
contrast this with the Europarl EN—DE experi-
ments, where we saw strong improvements from
the multi-task model (1.6 BLEU). This lends fur-
ther credence to the hypothesis that these NMT
models with linearized source parses are helpful
cross-linguistically in low-resource scenarios, but
not in high-resource setups.

We further investigated the WMT EN—DE
multi-task model to find reasons for the large drop
in performance compared to the baseline. We
found that while the multi-task model was able to
generate reasonable (albeit lower-quality) transla-
tions, it did not successfully learn to parse. Dur-
ing parsing inference, the model always output the
same parse regardless of the input sentence: (roor
(s (np ) (ve (np (np ) (PP (NP (NP ) (PP (NP ) ) ) )
) ) ) ). This was a common parse in the training
data (it occurred 12k times in the data). This issue
is partially due to the fact that validation is only
done on the translation task, not on the parsing
task. However, we do not see this issue with the
other language pairs and experiments. This failure
to learn to parse indicates that the WMT EN—DE
multi-task model is not able to take advantage of
the syntactic annotations.

6 Validity of Parses

The multi-task syntactic NMT models are trained
both to translate and to parse the input sentences.
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EN—* | % Valid Parses
LV 96.8%
LT 99.2%
DA 70.8%
NL 93.3%
DE 87.2%
NY% 95.4%
EL 85.2%
FR 92.3%

IT 78.8%
PT 89.4%
RO 96.3%
ES 86.5%
BG 97.5%
CS 95.9%
PL 98.1%
SK 98.5%
SL 97.3%
ET 98.2%
FI 95.1%
HU 93.6%

Table 8: Percent of valid parses of the parses generated
by the Europarl multi-task systems.

The main goal of these models has been to im-
prove translation; those results were reported in
sections 4.2 and 5.2. In this section, we analyze
the validity of the parses produced by the multi-
task systems. We use a standard parsing bench-
mark, WSJ section 23 of the Penn Treebank (Mar-
cus et al., 1993), as the evaluation dataset in this
section. We preprocess this dataset as described in
section 3 before using it as the source data for the
multi-task systems.

The multi-task models were trained to generate
unlexicalized parses. Since we removed part-of-
speech tags from the parses during preprocessing,
it is not possible to automatically relexicalize the
parses. This is because there is no one-to-one cor-
respondence between the leaves of the parse tree
and the number of words in the sentence. Thus,
rather than evaluating the parses directly, we count
the number of valid parses (i.e. parses with bal-
anced parentheses) per target language.

Table 8 shows the percent of generated parses
that were valid for the Europarl multi-task mod-
els. For most target languages, over 90% of the
generated parses are valid.

Unlike for the translation results, target lan-
guage family does seem to have an effect on the



EN—* | % Valid Parses
TR 86.3%
RO 99.8%
DE 100%

Table 9: Percent of valid parses of the parses generated
by the WMT multi-task systems.

parsing results. Overall, Romance, Germanic,
and Hellenic target language systems generate the
fewest valid parses. This indicates that Baltic,
Slavic, and Uralic target languages are most help-
ful in learning to parse English in a multi-task sys-
tem. Thus, from our cross-lingual experiments, it
seems that the parsing performance of a multi-task
system depends on the target language, whereas
we saw in the previous sections that the transla-
tion success depends more on the amount of train-
ing data. Note, however, some caveats: 1) we did
not perform validation on the parsing task (only
on the translation task), and 2) we are measuring
only parsing validity here, rather than parsing per-
formance.

Table 9 shows the percent of valid parses for the
three WMT multi-task experiments. For EN—DE,
all of the generated parses are valid because they
are all identical (as dicussed in section 5.2). For
EN—RO, nearly all the parses are valid as well.
However, this language pair did not have the same
issue as EN—DE: the parses generated for each
sentence were different, and a manual analysis in-
dicated that the generated EN—RO parses were
reasonable. The EN—TR system generated a
large amount of valid parses, but fewer than the
EN—RO system; it is possible that the EN—TR
system would have done better with more training
data.

7 Related Work

The performance of many RNN-based NMT
paradigms has been improved by adding explicit
syntactic annotations, particularly on the source
side; we review some syntactic NMT models here.
This paper is, along with Wu et al. (2018) and
Zhang et al. (2019), among the first to add explicit
syntax to Transformer-based NMT.

7.1 Linearized Parses in Neural Networks

In this work, we use linearized parse trees to add
syntax into the Transformer. Vinyals et al. (2015)
and Choe and Charniak (2016) introduced the idea
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of linearizing parse trees for neural parsing. Lin-
earized parses are advantageous because they can
be used anywhere that standard sequences can be
used; in fact, Vaswani et al. (2017) showed that
they can also be used by the Transformer to learn
constituency parsing. Here, we leverage this idea
by using linearized parses as an additional signal
for the Transformer during NMT training.

7.2 Syntactic NMT with Modified Encoder

There have been several recent proposals to incor-
porate source-side syntax into RNN-based NMT
by modifying the encoder architecture; we re-
view some such models here. Eriguchi et al.
(2016) augmented the RNN encoder with a tree-
LSTM (Tai et al., 2015) to read in source-side
HPSG parses, and combined this with a standard
RNN decoder. Similarly, Bastings et al. (2017)
used a graph convolutional encoder in combina-
tion with an RNN decoder to translate from de-
pendency parsed source sentences. Although these
models improved over non-syntactic RNN-based
NMT systems, they relied heavily on parsed data
during both training and inference, whereas our
models are able to translate unparsed data. In ad-
dition, it is not clear how to incorporate such im-
provements into the state-of-the-art Transformer
architecture.

7.3 Linearized Parses in NMT

This work fits with another line of research that
uses linearized parses to incorporate syntax into
neural machine translation without requiring a
specific NMT architecture. Luong et al. (2016)
used a single encoder and different decoders to
train two tasks: parsing the source sentence and
translating from source to target. Kiperwasser
and Ballesteros (2018) also applied multi-task
learning to syntactic NMT; they used a shared
RNN decoder for translation, dependency parsing,
and part-of-speech tagging and evaluated differ-
ent scheduling techniques to combine the tasks.
Our multi-task system builds off these two papers
by training a joint NMT and parsing model us-
ing a single encoder and decoder in a Transformer
framework, and further evaluates the multi-task
framework on several language pairs.

Currey and Heafield (2018) leveraged a multi-
source NMT system to learn to translate from both
unparsed and parsed source sentences. Wu et al.
(2018) similarly combined the standard bidirec-
tional encoder with two additional encoders, one



that encoded the pre-order traversal of the de-
pendency parse of the sentence and one that en-
coded the post-order traversal. Unlike Currey and
Heafield (2018), they joined the encoders on the
word level and used a Transformer architecture.
Our mixed encoder model is similar to these but
instead uses a single Transformer encoder for both
parsed and unparsed source sentences.

The mixed RNN encoder model of Li et al.
(2017) is also similar to our mixed encoder model;
their model used an RNN to encode a linearized
parse of a source sentence, but attended only to
the words of the parse. Our mixed encoder model
is trained on both linearized parses and unparsed
sentences, but for the linearized parses we attend
to words and to parse labels. Zhang et al. (2019)
used syntax to augment the word representations
in both RNN-based and Transformer-based NMT;
this was done by concatenating the hidden states of
a dependency parser with the NMT word embed-
dings. Their method is complementary to ours and
could be used along with our multi-task or mixed
encoder models to enhance any NMT architecture.

In this work, we have concentrated on source-
side syntax, but linearized parses have also been
popular for incorporating target syntax into neu-
ral machine translation. Aharoni and Goldberg
(2017) and Nadejde et al. (2017) both trained
RNN-based neural machine translation systems to
translate from sequential source sentences into lin-
earized parses of target sentences; this could also
be done using a Transformer.

8 Conclusions

In this paper, we proposed two methods for in-
corporating source-side syntactic annotations into
a Transformer-based neural machine translation
system. The first, multi-task, used a shared en-
coder and decoder to train two tasks: transla-
tion and constituency parsing. The second, mixed
encoder, learned to translate linearized parses of
the source sentences as well as unparsed source
sentences directly into the target language. We
performed experiments from English into twenty
target languages in a low-resource setup; the
multi-task system improved over the non-syntactic
baseline for all target languages. We further
demonstrated the success of this method on the
EN—TR and EN—RO WMT datasets; however,
for the very high-resource EN—DE WMT setup,
the multi-task model performed poorly, while the
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mixed encoder model did only marginally better
than the non-syntactic baseline.

In the future, we plan on extending these
techniques to incorporate target-side syntax into
Transformer-based NMT. In addition, we would
like to experiment with different source languages
in order to find out whether adding source-side
syntax has a greater effect on some source lan-
guages than others. It would also be interesting to
experiment with a multi-task, multilingual NMT
framework with multiple target languages.
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