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Abstract

This paper includes approaches we have
taken for Natural Language Inference, Ques-
tion Entailment Recognition and Question-
Answering tasks to improve domain-specific
Information Retrieval. Natural Language In-
ference (NLI) is a task that aims to determine if
a given hypothesis is an entailment, contradic-
tion or is neutral to the given premise. Recog-
nizing Question Entailment (RQE) focuses on
identifying entailment between two questions
while the objective of Question-Answering
(QA) is to filter and improve the ranking of au-
tomatically retrieved answers. For addressing
the NLI task, the UMLS Metathesaurus was
used to find the synonyms of medical terms
in given sentences, on which the InferSent
model was trained to predict if the given sen-
tence is an entailment, contradictory or neu-
tral. We also introduce a new Extreme gra-
dient boosting model built on PubMed em-
beddings to perform RQE. Further, a closed-
domain Question Answering technique that
uses Bi-directional LSTMs trained on the
SquAD dataset to determine relevant ranks of
answers for a given question is also discussed.
Experimental validation showed that the pro-
posed models achieved promising results.

1 Introduction

Recent studies have shown that patient-specific
data can be utilized for the development of intel-
ligent Healthcare Information Management Sys-
tems (HIMS), that support a wide range of sup-
porting applications that enhance healthcare deliv-
ery platforms. The application of natural language
processing, sophisticated data modeling, and pre-
dictive algorithms make it a highly interesting area
of research. Patient data is continuously gener-
ated in large volume and variety, given the mul-
tiple modalities, it is available in (e.g., discharge
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summaries, physician’s notes, clinical reports, lab
reports etc). With an abundance of such diverse
information sources available in the medical do-
main, sophisticated solutions that can adapt to
the heterogeneity and specific manifold nature of
health-related information are a critical require-
ment for HIMS development.

In clinical text, a commonly occurring prob-
lem would be to understand the correlation and
association between various factors like disease,
symptoms, diagnoses and treatment. Clinical text
is inherently unstructured and written in natural
language, and hence is prone to significant is-
sues in effective interpretability and utilization.
Challenges like paraphrase detection, anaphora
resolution, natural language inference etc must
be effectively dealt with in order to extract use-
ful knowledge that can be used to build intelli-
gent decision support applications. Such support
systems require extensive evidence-based anal-
ysis, and context-sensitive processing, in order
to enable higher-level functionalities like clinical
question-answering. Thus, dealing with such is-
sues is paramount importance.

Natural Language Inference is used to deter-
mine whether a given hypothesis can be inferred
from a given premise (Ben Abacha et al. (2019)).
The three inference relations to be identified be-
tween the statements are Entailment, Neutrality
and Contradiction. If a statement is a true descrip-
tion of the other then it is labelled Entailment. If it
is a false description then it is labelled Contradic-
tion, otherwise, it is considered to be Neutral. The
goal of Recognizing Question Entailment(RQE) is
to retrieve answers to a premise question by re-
trieving inferred or entailed questions, called hy-
pothesis questions that already have associated an-
swers. Therefore, we define the entailment rela-
tion between two questions as: a question A en-
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tails a question B if every answer to B also cor-
rectly answers A (Abacha and Demner-Fushman,
2016). RQE is particularly relevant due to the in-
creasing numbers of similar questions posted on-
line (Luo et al., 2015). For Question Answer-
ing, the input ranks are generated by the med-
ical QA system CHiQA. Extracting certain ele-
ments of a question like the question type and fo-
cus is the main approach in question answering.
If the question happens to contain multiple sub-
questions then an answer will be considered com-
plete only if all sub-questions are answered. The
rest of this paper is organized as follows: Section
2 presents a summarization on relevant existing
research done in the area of interest. We discuss
the Proposed Architecture for NLI, RQE and QA
in Section 3. Section 4 presents the results and
performance of the various models for each task,
followed by error analysis, conclusion and refer-
ences.

2 Related Work

There has been considerable research in the field
of Medical Question Answering Systems. Incor-
porating QA systems with NLI and RQE give a
machine the ability to better understand a query
and fetch precise answers.

Modeling natural language inference is a com-
plicated task but with the introduction of MedNLI
(Romanov and Shivade, 2018; Goldberger et al.,
2000), a new publicly available expert annotated
dataset for NLI it has become possible to train
models in order to achieve state-of-the-art perfor-
mance. Chen et al. (2017) experimented with the
SNLI corpus (Bowman et al., 2015) and MultiNLI
corpus (Williams et al., 2017) to train complex
models, to increase the performance of the neural
network based NLI models with external knowl-
edge. Most previous works on NLI worked on rel-
atively small datasets, Chen et al. (2016) designed
an approach to merge the modeling ability of neu-
ral networks with extra external inference knowl-
edge. The advantage of using external knowledge
is more significant when the training data is of lim-
ited size and is beneficial as more information is
obtained. They obtained good results with this ap-
proach.

Romanov and Shivade (2018) presented a sys-
tematic comparison of various open domain mod-
els for NLI on MedNLI and studied the applicabil-
ity of transfer learning techniques from the open
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domain to the clinical domain. They discussed
their experimentation with a feature-based sys-
tem in order to establish a baseline performance
on MedNLI. Models that were explored include
the Bag of Words model, InferSent (Conneau
et al., 2017), ESIM (Enhanced Sequential Infer-
ence Model)(Chen et al., 2016). Other techniques
included those that employed transfer learning,
use of word embeddings and knowledge integra-
tion. In our work, we built on the work of
these authors, by adapting their models and bench-
marking them on different features, various word
embeddings and clinical domain-oriented knowl-
edge base to predict the relationship between the
hypothesis and premise. Abacha and Demner-
Fushman (2016) developed a method where RQE
is applied to find a frequently asked question sim-
ilar to consumer health questions, in order to an-
swer consumer health questions with the answers
given to similar FAQs. Groenendijk and Stokhof
(1984) define an entailment relation between two
questions (J1, Qs if every proposition giving an
answer to (01 is also giving an answer to (Js. In
our case, we used a supervised machine learning
approach to determine whether or not a question
(2 can be inferred from a question ); by mod-
eling the medical context’s syntactic and seman-
tic features, including complex relationships like
negation, medical entities like disease, symptom,
diagnoses and treatment etc. Abacha and Demner-
Fushman (2016) used the NLM (National Library
of Medicine) collection of 4,655 clinical questions
asked by family doctors to construct the training
corpus for RQE. For test pairs, two types of test
data were collected - pairs of manually validated
questions from the NLM collections and pairs of
questions including FAQs retrieved online with a
manual search of NIH websites. Four different
statistical learning algorithms, SVM, Logistic Re-
gression, Naive Bayes and J48, were used for RQE
on the feature vector created. They reported the
best results using the SVM classifier in the form
of 75% F-measure values.

Abacha and Demner-Fushman (2019) studied
question entailment in the medical domain and
the effectiveness of the end-to-end RQE-based QA
approach is calculated by evaluating the relevance
of the retrieved answers. They benchmarked ma-
chine learning and deep learning approaches to
RQE using different kinds of datasets, includ-
ing textual inference, question similarity and en-



tailment in both the open and clinical domains.
The RQE methods (i.e. deep learning model
and logistic regression classifier) are evaluated
using two datasets of sentence pairs (SNLI and
multiNLI), and three datasets of question pairs
(Quora, Clinical-QE, and SemEval-cQA). They
analyzed two methods for RQE: a deep learning
model and Logistic Regression Classifier. Deep
learning models achieve good results on open-
domain and clinical datasets but delivered a lower
performance on consumer health questions. When
trained and tested on the same corpus, the Deep
learning model with GloVe embeddings (Penning-
ton et al. (2014)) gave the best results. Logistic
Regression gave the best Accuracy on the Clinical-
RQE dataset. When tested on our test set (850
medical CHQs-FAQs pairs), Logistic Regression
trained on Clinical-QE gave the best performance.

Question answering (QA) is a crucial task that
requires both natural language processing and do-
main related knowledge. Many Question Answer-
ing systems have been developed around the Ques-
tion Answering dataset from Stanford (SQuAD)
(Rajpurkar et al., 2016). The public leaderboard
on the SQuAD website displays many deep learn-
ing models built for the task. Since the seminal
work by Rajpurkar et al. (2016), many researchers
have proposed different architectures for the task.
The main feature of the dataset is that the answers
are present as a span in the reverence document.
The present state-of-the-art model is an AoA neu-
ral network by Cui et al. (2016), with an F1 score
of 89.281, EM score of 82.482 and also outper-
forms the performance of humans.

3 Proposed Approaches

In this section, a detailed discussion on the various
models designed for addressing the NLI, RQE and
QA tasks, are presented.

3.1 Natural Language Inference

The first model proposed for NLI, a recurrent neu-
ral network (RNN) method is designed. We use
the content of the two sentences to determine the
two new rows sentence;q, and sentence;q, re-
spectively which are formed using 300 dimen-
sional glove embeddings. This feature vector cre-
ated has been passed through a RNN with 300
nodes. Once this model was trained, we were able
to get an accuracy of 67.1% with the test dataset.
The second model is the InferSent Model,
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Figure 1: The Infersent Architecture adopted for NLI
task

which is a sentence embedding method that pro-
vides semantic representations for English sen-
tences. As shown in Figure 1, the architec-
ture centralizes on the idea that two sentences
(premise input and hypothesis input) will be trans-
formed by sentence encoder (same weights). Af-
ter that, it leverages three matching methods to
recognize relations between premise input and
hypothesis input. The three matching methods
are: concatenation of two vectors, product two
vectors element-wise and absolute difference of
two vectors. Conneau et al. (2017) proposed the
model which is trained using GloVe word embed-
dings(Pennington et al., 2014). In our work, we
used the MedNLI (Romanov and Shivade, 2018;
Goldberger et al., 2000) along with different word
embeddings such as 300D GloVe embeddings,
MIMIC clinic data embeddings (Johnson et al.,
2016), Wikipedia (english) embeddings, the com-
bination of Wikipedia english and MIMIC clinical
data embeddings and even with the combination
of 300D GloVe with BioASQ (Tsatsaronis et al.,
2015) and MIMIC embeddings. All the techniques
were set with number of training epochs as 100
and were trained on GPUs.

We also designed a novel technique to ex-
tract the semantic aspect of the clinical terms, for
which we used the UMLS Metathesaurus (Aron-



son, 2001). The Metathesaurus is the largest com-
ponent of UMLS that is organized by concept,
or meaning, and links similar names for the term
from over two hundred different vocabularies. The
Metathesaurus is able to identify useful and rel-
evant relationships between the various medical
and non-medical concepts while preserving basic
meaning and relationships from each vocabulary.
We made use of the MetaMap tool for recognizing
UMLS concepts in text. It can map medical texts
to the UMLS Metathesaurus, using which we gen-
erated the synonyms for the terms that are not stop
words and all synonyms have been generated with
the use of UMLS Metathesaurus and NLTK cor-
pus wordnet synsets. With this technique we were
able to generate the highest accuracy yet of 87.7%
on the test dataset given for the MediQA shared
task.

3.2 Question Answering Task

The objective is to filter and improve the rank-
ing of automatically retrieved answers, and the
workflow employed is shown in Figure 2. Each
question consists of several possible answers - rel-
evant or irrelevant and are ranked based on the
medical QA system CHiQA. We propose a system
based on Question Answering model called Deep-
pavlov.ai (Burtsev et al., 2018). The context based
question answering model uses SQuAD dataset to
predict the answer. For every possible question,
there are multiple answers and answer URLs as-
sociated with it. We scrape the content from the
URL links and use that as context to the Deep-
pavlov model. The model takes in a question and
a context to predict the answer. The answer pro-
vided in the AnswerText is a subset of the URL
context. In case an answer does not have a URL
associated with it, we use the AnswerText as the
context.

Next, the model provides a score for every an-
swer. This helps us determine how relevant the
answer is for a question. We pass all the answers
pertaining to a question to the model and obtain a
score. We rank the answers based on the score ob-
tained. We also need to determine if an answer
is relevant or irrelevant. Based on the training
dataset we set the threshold for relevance. If the
answer has a score above the threshold then it is
relevant, otherwise, it is irrelevant. This threshold
is taken as the average of the scores of all answers
belonging to a question. The threshold can be fur-
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Figure 2: The proposed Question Answering workflow

ther improved based on the mode and median of
the scores.

3.3 Recognizing Question Entailment

For the next task, the stop words were removed
and word stemming using the Porter algorithm
(Porter, 1980) was performed for all (Q1,Q2)
training pairs, to extract relevant features. We cre-
ate the feature vector using lexical features and
semantic features. The semantic features used
are Negativity and Positivity, and Named enti-
ties count. The lexical features used are Jac-
card similarity, Mover’s distance and Bigram over-
lap (Abacha and Demner-Fushman, 2016). We
used scikit-learn library (Pedregosa et al., 2011)
for all the machine learning models. We also
used NLTK (Natural Language Toolkit) (Loper
and Bird, 2002) to find ngrams, Wordnet (pri,
2010) and StanfordNERTagger. Wordnet is a lexi-
cal database which can be used to find synonyms.
StanfordNERTagger is used to find named entities
in the text.

Four different models were benchmarked for
the RQE task on the test dataset - Support Vec-
tor Machine (SVM), Logistic Regression Clas-
sifier (LRC), AdaBoost Classifier and XGBoost
with PubMed Embeddings.

Support Vector Machine for RQE: We use
word overlap, common bigrams, Jaccard simi-
larity, cosine similarity and Levenshtein distance
as the features(Abacha and Demner-Fushman



(2016)). We also calculate the Word Mover’s dis-
tance and this is included in the feature vector.
We pass this feature vector through a SVM model.
In order to enhance the performance and alter it
for the medical domain, we use PubMed (Pyysalo
et al. (2013)) 200D embeddings to find the word
vectors.

Logistic Regression Classifier for RQE: - The
same feature vector that was used for the Sup-
port Vector Machine task is being used here. In
addition to that, the feature list also includes the
maximum and average values obtained with these
measures and the question length ratio (length(P
Q)/length(HQ)).The morphosyntactic feature indi-
cating the number of common nouns and verbs
between P Q and HQ is also used (Abacha and
Demner-Fushman (2019)).

K-Nearest Neighbors Classifier for RQE: Us-
ing the same feature vectors that was used in the
Logistic Regression Classifier, we have used the
K-nearest neighbors classifier for RQE. In order
to obtain the value of K resulting with the highest
accuracy, we have ran the algorithm for K rang-
ing from 5 to 70. With the varying values of K,
the accuracy is measured and the highest accuracy
measure was with K=47.

Ada Boost Classifier for RQE: We use a new
approach which uses the Ada Boost Classifier.
Adaptive Boosting uses results from weak learner
algorithms and combines it into a weighted sum
which represents the final output of the boosted
classifier. Using the same feature set as above we
pass the feature vector through the ensemble based
model. AdaBoost produces better results as it is
adaptive. This algorithm works better than the sin-
gle classifiers as it pools the prediction of multiple
classifiers and reduces model bias and variance.

XGBoost with PubMed embeddings for RQE:
We present a new approach for RQE in the medi-
cal domain using XGBoost with PubMed embed-
dings. XGBoost (Chen and Guestrin (2016)) is an
optimized distributed gradient boosting library de-
signed to be highly efficient, flexible and portable.
It implements machine learning algorithms under
the Gradient Boosting framework and is an ensem-
ble model. Ensemble learning offers a systematic
solution to combine the predictive power of mul-
tiple learners. The result is a single model which
gives the aggregated output from several models.
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In XGboost, the ensemble trees are constructed
much faster than any other ensemble classifier as
it makes use of distributed computing. The fea-
ture vector created above is passed through the
Extreme Gradient boosting algorithm and a new
feature based on the PubMed 200D embedding is
added to the feature vector for calculating the sim-
ilarity between the two medical questions. This is
one unique feature which can capture relations be-
tween medical terms and thus gives high accuracy.

4 Experimental Results and Discussion

We performed several experiments to benchmark
the relative performance of the various proposed
models for the three different tasks - NLI, RQE
and QA. We analyzed the accuracy obtained us-
ing the standard metrics defined for the three tasks.
The datasets provided from the ACL-BioNLP’19
Shared Task (Ben Abacha et al., 2019) were used
for the experimental studies.

For the NLI task, we used the MedNLI dataset
(Romanov and Shivade, 2018; Goldberger et al.,
2000) built on different word embeddings such
as 300D GloVe embeddings (Pennington et al.
(2014)) , MIMIC clinic data embeddings (John-
son et al. (2016)) , Wikipedia English embeddings,
combination of Wikipedia English and MIMIC
clinical data embeddings and even with the com-
bination of 300D GloVe with BioASQ (Tsatsaro-
nis et al. (2015)) and MIMIC embeddings. All
the techniques were set with number of training
epochs as 100 and were trained on GPUs. The ob-
served performance for the MediQA released test
dataset is tabulated in Table 1.

Table 1: Performance of the InferSent model for NLI
task when different embeddings are used

Embeddings used Accuracy
Wiki English 71.4%
MIMIC 71.7%
GloVe with BioASQ and MIMIC 72.4%
Wiki English with MIMIC 74.4%

The accuracy obtained with different methods
is listed in Table 2. The RNN based model for
NLI was trained for 30 epochs and a validation ac-
curacy of 67.1% was achieved. Further accuracy
can be improved by using a Bidirectional LSTM or
Bidirectional GRU. The InferSent Model for NLI
with MIMIC (Johnson et al., 2016) embeddings
that were trained for 100 epochs gave an accu-



Table 2: Comparative performance of the proposed ap-
proaches for the NLI, RQE and QA tasks

Methology Used Task Accuracy
RNN NLI 67.1%
Infersent+MIMIC NLI 71.7%
Infersent+MIMIC+Wiki  NLI 74.4%
UMLS Metathesaurus NLI 87.7%
SVM RQE 62%
Logistic Regression RQE 64.5%
KNN RQE 62.4%
Naive Bayes RQE 65%
Ada Boosting RQE 66%
XgBoost RQE 66.7%
Closed domain QA QA 53.6%

racy of 71.7% This is because the medical context
of the sentences was taken care of by the MIMIC
word embeddings. The InferSent Model for NLI
with MIMIC and Wikipedia english words em-
beddings gave an accuracy of 74.4% when trained
for 100 epochs. This is because the medical and
grammatical concepts were given special empha-
sis during the modeling phase. The model built on
UMLS Metathesaurus and NLTK wordnet synsets
model achieved an accuracy of 87.7% on the test
data and 93.2% on validation data.

In the case of the RQE task, the SVM model
was trained using a few features like semantic fea-
tures, bigram overlap, word movers distance and
cosine similarity. An accuracy of 62% achieved.
The Logistic Regression model was trained using
several handcrafted features and an accuracy of
64.5% was achieved. The KNN algorithm was
also used for this classification task and an ac-
curacy of 62.4% was obtained with K=47. The
Naive Bayes model was fine-tuned and trained us-
ing the constructed feature vector. This gave an
accuracy of 64%. The Naive Bayes model fea-
ture vector was modified again to include a fea-
ture which will consider the content of both the
questions, which improved the accuracy by 1%.
The AdaBoost classifier was used and this ensem-
ble based method performed better than the naive
methods and gave an accuracy of 66%. The XG-
Boost method performed the best and gave an ac-
curacy of 66.7% on the test set.

As can be seen from Table 2, the closed do-
main question answering model gave an accu-
racy of 53.6% which is much above the baseline
fixed at 51%. This accuracy was achieved because
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this method focuses on finding the specific answer
in the given context which is more relevant to a
given question. Based on the scores obtained from
the closed domain model, the answers have been
ranked accordingly. The model achieved an accu-
racy of 53.6%, precision of 55.9% and Mean Re-
ciprocal Rank of 62.93%.

4.1 Discussion

Based on the experimental results, we hereby
present several observations and insights into the
proposed models. In the case of the NLI task,
we performed error analysis for the InferSent
model by varying the embeddings and incorporat-
ing UMLS Metathesaurus and found that the er-
ror ratio also varies. The ratio of the error rate
between neutral, entailment and contradiction was
observed to be 5 : 4 : 3, when the MIMIC word
embeddings (Johnson et al. (2016)) were used.
However, it changed to 2 : 1 : 1 when the UMLS
Metathesaurus with WordNet (pri, 2010) synsets
are used. Thus, it can be concluded that the neu-
tral label was the hardest to predict and differen-
tiating between entailment and neutrality is also
challenging. In our current implementation, if
similar terms are present in the hypothesis and
premise, then the label of entailment is still pre-
dicted, whereas the statements could actually be
neutral. We also noticed that, by using clinical
domain-specific embeddings, the predictions be-
come more accurate.

Table 4 shows the Precision and Recall values
for RQE using XgBoost. XgBoost provides a par-
allel tree boosting which improves the accuracy.
Also, it uses continued training so it can further
boost an already fitted model on new data, thus a
significant improvement in accuracy is observed.

Table 3: Confusion Matrix for NLI

Label True False
Entailment 121 14
Neutral 114 21

Contradiction 128 15

Table 4: Confusion Matrix for RQE

Parameters True False
Precision 0.68 0.66
Recall 0.65 0.69




S Concluding Remarks

In this paper, several techniques for the NLI, RQE
and QA tasks were discussed. For addressing the
NLI task, the UMLS Metathesaurus was used to
find the synonyms of medical terms in given sen-
tences, on which the InferSent model was trained
to predict if the given sentence is an entailment,
contradictory and neutral. We also designed a
new Extreme gradient boosting model built on
PubMed embeddings to perform RQE. Further,
a closed-domain Question Answering technique
that uses Bi-directional LSTMs trained on the
SquAD dataset to determine relevant ranks of an-
swers for a given question was also presented.
Among the proposed models, the UMLS Metathe-
saurus and NLTK wordnet synsets model achieved
the highest accuracy of 87.7% on the test dataset
provided by the MediQA Challenge (Ben Abacha
et al., 2019). For RQE, the highest accuracy of
66.7% was achieved using the XGBoost method.
For the QA task, we achieved an accuracy of
53.6%, precision of 55.9% and Mean Reciprocal
Rank of 62.93%.

As future work, we intend to extend the tex-
tual inference model for the clinical domain to de-
velop decision support applications so that treat-
ment methods can be simplified by grouping sim-
ilar diseases and problems together. This can be
achieved by using RQE which can aid in analyz-
ing if two different health conditions are similar
enough to have the same treatment. The model can
also be trained on MedQuAD dataset (Abacha and
Demner-Fushman (2019)) to improve the accuracy
so that the model can perform more accurately in
real-world hospital scenarios.
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