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Abstract

In this paper, we describe our system and re-
sults submitted for the Natural Language In-
ference (NLI) track of the MEDIQA 2019
Shared Task (Ben Abacha et al., 2019). As
KU ai team, we used BERT (Devlin et al.,
2018) as our baseline model and pre-processed
the MedNLI dataset to mitigate the negative
impact of de-identification artifacts. More-
over, we investigated different pre-training and
transfer learning approaches to improve the
performance. We show that pre-training the
language model on rich biomedical corpora
has a significant effect in teaching the model
domain-specific language. In addition, train-
ing the model on large NLI datasets such as
MultiNLI and SNLI helps in learning task-
specific reasoning. Finally, we ensembled
our highest-performing models, and achieved
84.7% accuracy on the unseen test dataset and
ranked 10th out of 17 teams in the official re-
sults.

1 Introduction

Natural Language Inference (NLI) is one of the
central problems in artificial intelligence. It re-
quires understanding two input sentences and
forming an inference relationship between them.
Concretely, given a premise sentence p, and a hy-
pothesis sentence h, NLI is the task of determining
the inference relationship from p to h. In MedNLI,
this relationship is one of the neutral, entailment
and contradiction labels. Therefore, our task can
be considered as a three-class sentence pair classi-
fication problem.

In previous research, sequence encoders con-
nected with a classifier head have been commonly
used as NLI systems (Conneau et al., 2017). Tradi-
tionally, the encoder layer has been an RNN-based
model such as LSTM (Hochreiter and Schmidhu-
ber, 1997). Vaswani et al. (2017) proposed the

Transformer as an alternative model to the RNN.
Since the Transformer is based on a self-attention
mechanism rather than recurrent layers, it is much
faster to train in parallel and can capture distant
dependencies better. Therefore, the recent models
originated from Transformer replaced the RNN-
based encoders in many systems trained for nat-
ural language understanding tasks such as NLI,
Question Answering, Common Sense Reasoning
(Radford et al., 2018), and Neural Machine Trans-
lation (Lakew et al., 2018). As a Transformer
based model, BERT uses self-attention to capture
the relationships within the text during encoding,
which can include one or more sentences (Devlin
et al., 2018). Therefore, it can learn a joint repre-
sentation for a premise-hypothesis pair, which can
be fed to a classifier layer to predict the inference
relation between them.

Recent studies have explored different ways of
inference prediction instead of a straightforward
classifier layer. Liu et al. (2018) proposed to use
an answer module performing multi-step inference
by iteratively refining its prediction. Likewise,
models that aim to solve multiple problems simul-
taneously have gained attention due to their im-
pressive performances (Liu et al., 2019). However,
we concentrated on a single task, and wanted to
keep the prediction layer simple. Therefore, we
used neither of these approaches.

To succeed in NLI, a system must have strong
reasoning skills and a good understanding of the
language (MacCartney, 2009). If a large annotated
dataset is available, the system can be trained from
scratch for NLI, learning both the language and
reasoning simultaneously. However, such data is
often not available. Without seeing many syntac-
tic variation and inference relation combinations,
learning both is a hard task. Separating the two
by training a language model first, and adjusting it
for NLI later is a more effective approach. Due
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Figure 1: Baseline model architecture. On the left is the overview of the model, which includes the tokenizer,
embedding layer, BERT encoder, and the classification head. The BERT encoder consists of twelve encoder
layers. On the right are the details of what an encoder layer consists of. Each input and output of an encoder layer
corresponds to a single token. Modules that are side-by-side share the same weights, only differing in inputs.

to the development of powerful language mod-
els that can be trained on unlabeled data in an
unsupervised manner, many pre-trained context-
aware encoders such as BERT (Devlin et al., 2018)
and GPT (Radford et al., 2018) are publicly avail-
able. Most notably, Devlin et al. (2018) showed
that BERT can be effectively used on many natu-
ral language understanding tasks, including NLI.
Combining a pre-trained BERT encoder with a
task-specific head, and then fine-tuning the entire
model on the target task achieved state-of-the-art
results on a number of tasks.

Directly applying BERT to NLI yields high ac-
curacy if the dataset is large, and from a general
domain (Phang et al., 2018). However, the dataset
used in this shared task, MedNLI (Romanov and
Shivade, 2018), is based on clinical notes (i.e. pa-
tient histories) and limited by size, thus it is a par-
ticularly challenging NLI task. To address this
problem, we started with BERT, trained it on large
NLI datasets, such as MultiNLI (Williams et al.,
2018) and SNLI (Bowman et al., 2015), to sup-
port the inference reasoning, and then trained it
further on our target task, MedNLI. This kind of
intermediate training was shown to be effective
when BERT is trained on a target with limited data
(Phang et al., 2018). We call our approach two-
stage transfer learning. In the first stage, we trans-
fer the knowledge of the task, NLI, into our pre-
trained model. During the second stage, we spe-

cialize our model on the MedNLI dataset. We hy-
pothesized that this approach will produce higher
accuracy on MedNLI compared to direct applica-
tion of BERT.

By conducting extensive experiments, we ex-
plored the impact of different pre-trained model
weights and transfer learning strategies. As a re-
sult, we signficantly improved the performance of
BERT on MedNLI by initializing it from weights
pre-trained on corpora close to clinical domain and
applying two-stage transfer learning.

2 Model

Our baseline model is a BERT encoder (Devlin
et al., 2018), combined with a classification head.
The head outputs probabilities from a three-way
softmax, corresponding to the three possible labels
a sentence pair can have. The overview of this ar-
chitecture can be seen from Figure 1.

2.1 BERT Encoder

We used BERT to encode our input tokens.
Utilizing Transformer layers and self-attention
(Vaswani et al., 2017), BERT looks at how the to-
kens are related, and outputs a hidden vector for
each token inside of the input sequence. There-
fore, BERT can process the sentence pair together
as a whole sequence and output the encoded rep-
resentation for all of it in one pass.

One of the reasons why we opted for a model
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Weight Model Corpus
Set Size Domain Size

BERTBASE 110M
Wikipedia 2.5B

Books 0.8B

BERTLARGE 340M
Wikipedia 2.5B

Books 0.8B

BioBERT 110M
Biomedical 18.0B

(+ BERTBASE)

SciBERT 110M
Biomedical 2.5B

CompSci 0.6B

Table 1: Comparison of pre-trained BERT weight sets.

like the BERT encoder is that it completely avoids
relying on recurrence and convolution operations.
Replacing those with simple operations of self-
attention (e.g. plain matrix multiplications) makes
it more parallelizable and thus faster to train. An-
other reason is the strong starting point of BERT.
It is a language modeling architecture, success-
fully trained on massive corpora. Lastly, there
are a number of pre-trained weight sets for BERT
from different domains. These weights are pub-
licly available, which gave us the ability to test
different starting points with minimal tinkering.

2.2 Pre-Trained Weights

We have considered four different pre-trained
BERT weights as our starting point. From Devlin
et al. (2018)’s work, we examined BERTBASE

and BERTLARGE . Both models were trained from
scratch on English Wikipedia articles and books,
and have the same vocabulary. However, the lat-
ter has more than triple the parameter size of the
former.

Next we looked at BioBERT (Lee et al., 2019),
which was trained on biomedical text. How-
ever, rather than randomly initialized weights,
BioBERT utilizes BERTBASE as its starting point.
Nevertheless, both versions use the same vocabu-
lary for tokenization.

Lastly, we included SciBERT (Beltagy et al.,
2019) in our experiments. It was trained on large-
scale, annotated data from the scientific domain. It
has the same size as BERTBASE , and was trained
from scratch, but uses a different vocabulary. Al-
though the vocabulary size is the same as the orig-
inal BERT, they have a total of 42% overlap be-
tween them. A direct comparison of the pre-
trained BERT weights can be found in Table 1.

2.3 Input and Tokenization

During its pre-training process, one of the tasks
BERT has to learn is the next sentence prediction
(Devlin et al., 2018). It is a two-sentence classifi-
cation task which requires predicting if the given
sentences follow each other in the original text.
Since our task is also a two-sentence classifica-
tion task, we mimicked the inputs BERT receives
during the pre-training. Thus, our input sentence
pair is represented as ”[CLS] Premise [SEP] Hy-
pothesis [SEP]”. The [CLS] and [SEP] are special
tokens, denoting ”Classification” and ”Seperator”
respectively. Since those are the tokens used dur-
ing pre-training, they are kept in the same format
to fully utilize BERT encoder’s understanding of
sentence pairs.

BERT uses WordPiece tokenizer (Wu et al.,
2016), which divides the words in the input se-
quence into wordpieces (i.e. subwords). It main-
tains a good compromise between the charac-
ter based representation’s flexibility and the word
based representation’s efficiency. This balance im-
proves the overall accuracy of the natural language
system. Moreover, since it splits the infrequent
words into wordpieces, it naturally handles the
rare words problem (Wu et al., 2016).

2.4 Classification Head

To transform the token representations obtained
from the encoder into label predictions, we used
a small classification head. Following the conven-
tion of Devlin et al. (2018), we used the represen-
tation of the first token, [CLS], as the summary of
the whole sequence. Then, this vector is linearly
projected into a three-dimensional space such that
each dimension represents the score for a label. Fi-
nally, a softmax operation is applied to convert the
scores into class probabilities.

3 Datasets

The main dataset used in this shared task is
MedNLI. Additionally, we used MultiNLI and
SNLI to improve our accuracy via transfer learn-
ing.

3.1 MultiNLI and SNLI

MultiNLI and SNLI (Williams et al., 2018; Bow-
man et al., 2015) are general domain datasets,
containing significantly more example pairs than
MedNLI. The MultiNLI training dataset consists
of five different genres of written and spoken
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Training
Dataset Genre Set Size
MedNLI Patient Records 11, 232

MutliNLI

Fiction 77, 348
Government 77, 350
Slate 77, 306
Telephone 83, 348
Travel 77, 350
Total 392, 702

SNLI Image Captions 550, 152

Table 2: Comparison of NLI datasets by their genres
and sizes.

1 Her a[∗∗ Location ∗∗]e and PO intake have
been normal.

2 on [∗ ∗ 1− 31 ∗ ∗] Dr. [∗ ∗ Name (NI) ∗∗]
documented that there was 1 positive
ascitic fluid culture

Table 3: Two partial examples from MedNLI sentence
pairs. Note the de-identification artifacts.

English, such as telephone conversations, travel
guides and press releases from government web-
sites. All examples in the SNLI training dataset
are created from image captions, hence SNLI is
regarded as a single genre. We have only used the
training sets of MultiNLI and SNLI in our exper-
iments to teach our model general domain NLI.
A detailed comparison of the NLI datasets can be
found in Table 2.

3.2 MedNLI

Our target dataset is MedNLI (Romanov and Shiv-
ade, 2018). We have used the provided splits with-
out change. We trained our models on the training
set, evaluated them on the development set. How-
ever, we did not use the testing set during training
or hyperparameter selection.

MedNLI is created from text in the clinical do-
main, particularly patient records. To keep the
confidentiality of various parties, names (of pa-
tients and places) and dates in the source texts have
been de-identified. Therefore, the dataset contains
artifacts, some examples of which are shown in
Table 3.

In the example sequences, ”a[∗∗ Location
∗∗]e”, ”[∗ ∗ 1− 31 ∗ ∗]” and ”[∗ ∗Name (NI) ∗∗]”
are de-identification artifacts. This hurts the per-
formance of our model since when WordPiece to-

1 her, a, [, ∗, ∗, location, ∗, ∗, ], e, and, po,
intake, have, been, normal, .

2 on, [, ∗, ∗, 1, −, 31, ∗, ∗, ], dr, ., [, ∗, ∗,
name, (, ni, ), ∗, ∗, ], documented, that,
there, was, 1, positive, as, ##cit, ##ic,
fluid, culture

Table 4: The results of tokenizing the examples pro-
vided in the Table 3. The commas are used to separate
different tokens.

1
Her ae and PO intake have been normal
her, ae, and, po, intake, have, been,
normal, .

2
on Dr. documented that there was 1
positive ascitic fluid culture
on, dr, ., documented, that, there, was, 1,
positive, as, ##cit, ##ic, fluid, culture

Table 5: The results of pre-processing the examples
provided in Table 3, and their respective tokenizations.

kenizer segments the de-identified words into sub-
words, an excessive number of tokens are gener-
ated. The tokenization outputs of the examples are
shown at Table 4.

Since BERT tokenizer treats the special char-
acters such as ”[” and ”∗” as wordpieces, the re-
sulting tokenization contains an inflated number
of unnecessary tokens. These tokens include the
special characters and de-identified place-holders
such as ”Name”, ”Location”. We suspected that
WordPiece tokenizer makes the de-identification
artifacts harmful to the performance since their
tokenizations introduce too many erroneous to-
kens. To validate this observation, we performed
some experiments where we removed the de-
identified tokens from the MedNLI dataset while
pre-processing. Resulting text and tokenizations
of the sample sequences after the removal can be
found in Table 5. As a result, the accuracies im-
proved as shown in Section 5. Hence, we con-
ducted the remaining experiments by performing
this pre-processing step.

4 Training Strategy

4.1 Sequential Transfer Learning

Following the advice of Romanov and Shivade
(2018), we experimented with transfer learning
techniques to boost the accuracy of our model. In
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Figure 2: Two-stage sequential transfer learning strat-
egy.

fact, our baseline approach is itself a type of se-
quential transfer learning. We take a pre-trained
BERT, append a classifier head on top of it, and
fine-tune the whole model on the MedNLI train-
ing dataset. Since BERT is a powerful sequence
encoder, this approach alone yielded better results
on the MedNLI development dataset compared to
the published baselines (Romanov and Shivade,
2018). However, because the dataset is limited
in size, performances of these approaches are re-
stricted. Therefore, instead of training our model
directly on the target task, we added an interme-
diate training step. During this step, the model
is trained on a large NLI dataset from a general
domain such as MultiNLI and SNLI. Our aim is
to help the model learn task specific reasoning
skills using the large number of training exam-
ples. Then, the model is further fine-tuned on the
MedNLI training dataset so that it can adapt its pa-
rameters to the clinical domain and MedNLI style.
We call this strategy two-stage sequential trans-
fer learning, which is shown in Figure 2. In both
stages of the learning, the model is trained until its
accuracy on the MedNLI development set is max-
imized.

Since there are multiple large and general do-
main NLI datasets available, we wanted to lever-
age them. Therefore, we also experimented with
three-stage transfer learning. In the first two
stages, we trained our model on MultiNLI and
SNLI successively. In the third stage, we finally
trained it on MedNLI. However, this configuration

Model 1

Input
Pair

Model 2 Model N

Label
Probabilities

Label
Probabilities

Label
Probabilities

Element-wise
Function

Label
Scores

Figure 3: Ensembling procedure of N different models
for an input premise-hypothesis pair.

yielded slightly worse results compared to two-
stage transfer, as discussed in Section 5. There-
fore, we changed our method and utilized an en-
sembling approach to combine the benefits of the
available datasets.

4.2 Ensembling

We perform ensembling on independently trained
models to get the benefit of multiple datasets.
First, these models are fully trained by two-stage
transfer learning with different general domain
datasets. After that, we compute a set of la-
bel probabilities for the sentence pairs using these
models. Then, we combine the probabilities with
an element-wise operation such as sum, product,
or max to obtain a single score for each label. Fig-
ure 3 summarizes this process for a single input.
Finally, we report the label corresponding to the
highest score as our prediction for each example.
This approach might be regarded as a soft ver-
sion of majority voting, a commonly used ensem-
bling method. As Section 5 shows, this approach
yielded the best results obtained by our models.

5 Results and Discussion

5.1 Implementation Details

We used PyTorch (Paszke et al., 2017) as our deep
learning framework and the BERT implementa-
tion provided by Hugging Face1. Our models are
based on the BertForSequenceClassification class.
We used the BertAdam optimizer from the same

1https://github.com/huggingface/
pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
https://github.com/huggingface/pytorch-pretrained-BERT
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Training Training Sequence Batch Initial
Strategy Set Length Size Optimizer Learning Rate
Direct Training

MedNLI 256 16 BertAdam 2× 10−5

Task pre-training
MultiNLI 256 32 BertAdam 2× 10−5

SNLI 256 32 BertAdam 2× 10−5

Domain fine-tuning
MedNLI 256 16 BertAdam 2× 10−5

Table 6: The hyperparameters for different training settings.

repository, which imitates the Adam implementa-
tion of the original BERT.

We always evaluated our models according to
the accuracy on the MedNLI development set. For
all experiments, we trained a model until its accu-
racy in the last four epochs did not improve over
its best accuracy. If a model kept improving, we
stopped the training after 80 epochs. All model
weights are updated during the training phases of
the experiments.

The training procedure was stable, there were
no serious failure cases with unexpectedly low ac-
curacies. Nevertheless, to mitigate the possible
negative effects of the randomness on the opti-
mization, we repeated each experiment with three
different seeds and selected the run with the best
accuracy.

The primary hyperparameters of our model are
the sequence length of the encoder layers, the
batch size, and the initial learning rate of the opti-
mizer, BertAdam. We kept the remaining hyperpa-
rameters such as dropout rate the same as the orig-
inal implementation. To determine the sequence
length, we counted the number of resulting to-
kens from MultiNLI, SNLI, and MedNLI sentence
pairs after tokenization. Since the maximum token
count is 256, we naturally set the sequence length
to 256. When we trained the model on MedNLI,
we used batches with size of 16. In contrast, when
a large dataset (e.g. MultiNLI and SNLI) is used,
we used batch size of 32 to speed up the train-
ing process. In the initial experiments, we tried
2 ∗ 10−5 , 3 ∗ 10−5 , and 5 ∗ 10−5 as BertAdam’s
initial learning rate which resulted in very similar
accuracies. Nevertheless, since 2 ∗ 10−5 gener-
ally yielded slightly better results, we conducted
the remaining experiments with this initial learn-
ing rate. Table 6 summarizes the hyperparameters

Weight Set Dev Accuracy
BERTBASE 82.3%
BERTLARGE 82.9%
BioBERT 83.4%
SciBERT 83.7%

Table 7: Results of directly training on MedNLI data,
starting from various pre-trained weight sets. The high-
est accuracy is indicated with bold.

used in the training phases.

5.2 Experiments

We have conducted a number of experiments to
test our model and the effectiveness of different
training strategies. We report the resulting percent
accuracies on the MedNLI development dataset.

To start with, we trained our model on MedNLI
directly. We initialized it with various pre-trained
weights to compare their performances. The re-
sults of the experiment can be seen from Table 7.
It shows that the weights pre-trained on domains
related to the task, such as biomedical or scien-
tific data, have a noticeable advantage over the
weights obtained from general text corpora, such
as Wikipedia. Moreover, the effect of pre-training
is more significant compared to the model size.
BioBERT and SciBERT surpassed BERTLARGE

although they are three times smaller.
Next, we tested the two-stage sequential trans-

fer learning method using all combinations of pre-
trained weights and rich NLI datasets mentioned
before. Table 8 shows the results of this experi-
ment. As expected, all models benefit from two-
stage transfer learning. Moreover, the trend of spe-
cialized pre-trained weights having an advantage
continues on this experiment as well. However,
BioBERT outperforms SciBERT, unlike the pre-
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Weight Set MultiNLI SNLI
BERTBASE 82.9% 82.4%
BERTLARGE 83.7% 84.4%
BioBERT 85.6% 85.8%
SciBERT 85.4% 85.6%

Table 8: Development set accuracies achieved by per-
forming two-stage sequential transfer learning, utiliz-
ing different intermediary datasets, and starting from
various pre-trained weights. The highest accuracy is
indicated with bold.

MultiNLI SNLI
BERTBASE +0.7% ±0.0%
BERTLARGE +0.6% +2.2%
BioBERT +1.2% +0.6%
SciBERT +0.4% +1.3%

Table 9: Accuracies gained by pre-processing the
MedNLI dataset, after performing two-stage sequen-
tial transfer learning with different starting points and
datasets.

vious results. We suspect that since BioBERT is
pre-trained starting from BERTBASE , it benefits
more from general domain task training.

In order to test the effect of pre-processing
described in Section 3.2, we repeated the two-
stage training experiment without removing the
de-identification artifacts. We compared the re-
sults of this experiment with the previous results
to see how the accuracy is affected. The improve-
ments obtained from the pre-processing can be
found in Table 9. It increases the accuracy in all
cases, except for BERTBASE - SNLI, where the
accuracy is unchanged. Note that all other experi-
ments are conducted with the pre-processing is en-
abled.

We have also tested the performance of three-
stage sequential transfer learning on BioBERT.
Training on SNLI and MultiNLI sequentially be-
fore MedNLI produced lower accuracies com-
pared to the two-stage transfer learning experi-
ment. Moreover, switching the training order of
SNLI and MultiNLI did not change the resulting
accuracy. We suspect that further training on a sec-
ond intermediate dataset brings the model closer
to a worse local optimum. A comparison between
different training strategies on BioBERT can be
found in Table 10.

Lastly, we experimented with ensembling. We
tested four ensemble models, one for each pre-

Dev
Training Strategy Accuracy
Direct Training on MedNLI 83.4%

Two-Stage Transfer:
MultiNLI→MedNLI 85.6%
SNLI→MedNLI 85.8%

Three-Stage Transfer:
MultiNLI→ SNLI→MedNLI 84.9%
SNLI→MultiNLI→MedNLI 84.9%

Table 10: Single model development set accuracies
of different training strategies, starting from BioBERT.
The highest accuracy is indicated with bold.

Weight Set Sum Product Max
BERTBASE 83.3% 83.4% 83.3%
BERTLARGE 85.1% 85.0% 85.2%
BioBERT 86.1% 86.0% 86.1%
SciBERT 85.9% 85.8% 85.8%

Table 11: Development set accuracies resulting from
ensembling two models starting from the same pre-
trained weights. The highest accuracies are indicated
with bold.

trained BERT variant. For each of these start-
ing points, we combined the two models obtained
from the two-stage transfer learning experiment.
One of these models is trained with MultiNLI, the
other with SNLI. We tried three different element-
wise operations for ensembling, and compared
their effects. Table 11 shows that this approach
yielded better results compared to the two-stage
transfer methods. Therefore, we effectively com-
bined the benefits of training on different, rich
datasets.

Among all the experiments, the best result
we obtained is 86.1% accuracy by ensembling
BioBERT models trained with two-stage transfer
learning. That accuracy was obtained by combin-
ing the output probabilities with element-wise sum
operation.

Therefore, we participated in the shared task
with that ensembled model. Consequently, our
model achieved 84.7% accuracy on the unseen test
dataset reserved for the shared task.

5.3 Error Analysis
Following Romanov and Shivade (2018), we con-
ducted a similar error analysis on MedNLI devel-
opment set to understand how the different meth-
ods improve the baseline. We chose BioBERT for
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Ground Truth Label CON ENT NTR
Predicted Label ENT NTR CON NTR CON ENT
Direct Training on MedNLI 33 22 19 84 20 53
Two-Stage Transfer:
MultiNLI→MedNLI 16 14 24 77 22 48
SNLI→MedNLI 23 14 15 65 18 63
Three-Stage Transfer:
MultiNLI→ SNLI→MedNLI 19 17 18 83 22 51
SNLI→MultiNLI→MedNLI 21 20 13 73 24 59
Ensemble Model:
MultiNLI + SNLI with Sum 20 15 16 67 20 56

Table 12: Label breakdown of errors made in MedNLI development set by different models. All models were
trained with different strategies starting from BioBERT. ”CON”, ”ENT” and ”NTR” label abbreviations mean
”Contradiction”, ”Entailment”, and ”Neutral” respectively.

Category ABB MED NUM WOR
Direct Training on MedNLI 32 126 30 43
Two-Stage Transfer:
MultiNLI→MedNLI 24 113 29 35
SNLI→MedNLI 22 111 28 37
Three-Stage Transfer:
MultiNLI→ SNLI→MedNLI 23 116 30 41
SNLI→MultiNLI→MedNLI 25 116 30 39
Ensemble Model:
MultiNLI + SNLI with Sum 23 106 30 35

Table 13: Category breakdown of errors made in MedNLI development set by different models. All models
were trained with different strategies starting from BioBERT. The category abbreviations mean ”Abbreviation”,
”Medical Knowledge”, ”Numerical Reasoning”, and ”World Knowledge” respectively.

the analysis since it is the starting point of our
highest-scoring model. We compared the errors
made by the models resulting from direct train-
ing, two-stage transfer learning, three-stage trans-
fer learning, and ensembling.

In the first study, we concentrated on analyz-
ing the distribution of the misclassified examples
over labels, whose results are shown at Table 12.
First thing to notice is that the errors mostly orig-
inated from confusion between the entailment and
the neutral labels. For all models, this confusion
causes approximately 60% of the errors. Two-
stage transfer results show that intermediate train-
ing on a large dataset helps in identifying the con-
tradiction relation. The error counts of the ensem-
ble model are lower than or around the averages of
the models that are ensembled.

The second analysis is separating the errors into
four broad categories. These involve ”Abbrevi-
ation”, ”Medical Knowledge”, ”Numerical Rea-

soning”, and ”World Knowledge”. ”Abbrevation”
represents the existence of medical abbrevations
critical to decode the inference relation. ”Medi-
cal Knowledge” refers to the requirement of rea-
soning with medical knowledge. ”Numerical Rea-
soning” denotes that the inference type depends
on the value of the number(s) present in the sen-
tence pair. ”Word Knowledge” indicates the need
for common sense or general domain knowledge
to understand the inference. We manually catego-
rized each misclassified sentence pair.

Table 13 shows the results of the error catego-
rization. ”Numerical Reasoning” errors are almost
the same across all models. We believe that this is
because the scale of the numerical values highly
depends on the context. Adding general domain
knowledge does not seem to help in learning nu-
merical scales on the medical domain. As the two-
stage transfer results show, the intermediate train-
ing on a general domain NLI dataset decreases
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the error rates on the remaining three categories.
However, training with three-stage transfer learn-
ing does not improve the ”Medical Knowledge”
and ”World Knowledge” categories as much as
the two-stage transfer. Although getting poorer re-
sults after training with more data seems counter-
intuitive, Romanov and Shivade (2018) observed
a similar trend on transfer learning using SNLI,
and the genres of MultiNLI. In both findings,
the model performance does not directly correlate
with the size of the intermediate training data.

Lastly, most of the improvements introduced
by ensembling fall under ”Medical Knowledge”.
Since the component models are trained on dif-
ferent datasets on intermediate training step, the
errors they made on the MedNLI development set
differ. We suspect that the models are not very
confident in some of their ”Medical Knowledge”
errors, hence the other model may correct these
mistakes to an extent.

6 Conclusion

In this paper, we showed that a pre-trained BERT
encoder, combined with a classifier head forms a
strong baseline for MedNLI task. More impor-
tantly, we also demonstrated that the model’s ac-
curacy can be remarkably improved by utilizing a
two-stage transfer learning strategy. The success
of the final model depends on the initial BERT
weights, as well as the particular transfer learning
method. Finally, we showed that ensembling two
separate models trained on different NLI datasets
is more effective than using these datasets to train
a single model. Our best model, BioBERT ensem-
bled, achieved 86.1% accuracy on the MedNLI de-
velopment set, and 84.7% accuracy on the unseen
test dataset reserved for the MEDIQA 2019’s NLI
Shared Task.

While empirical results show that contextual-
ized sequence encoders enhanced with transfer
learning are strong, their performances might be
further improved with external knowledge integra-
tion. As future work, we would like to extend
BERT’s contextualized word vectors using seman-
tic relationships.
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