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Abstract

This paper describes the models designated for
the MEDIQA 2019 shared tasks by the team
PANLP. We take advantages of the recent ad-
vances in pre-trained bidirectional transformer
language models such as BERT (Devlin et al.,
2018) and MT-DNN (Liu et al., 2019b). We
find that pre-trained language models can sig-
nificantly outperform traditional deep learning
models. Transfer learning from the NLI task
to the RQE task is also experimented, which
proves to be useful in improving the results of
fine-tuning MT-DNN large. A knowledge dis-
tillation process is implemented, to distill the
knowledge contained in a set of models and
transfer it into an single model, whose perfor-
mance turns out to be comparable with that ob-
tained by the ensemble of that set of models.
Finally, for test submissions, model ensemble
and a re-ranking process are implemented to
boost the performances. Our models partici-
pated in all three tasks and ranked the 1st place
for the RQE task, and the 2nd place for the NLI
task, and also the 2nd place for the QA task.

1 Introduction

There are three tasks in the MEDIQA 2019 shared
tasks (see Ben Abacha et al. (2019) for details of
the tasks). The first one, NLI, consists in identi-
fying three inference relations between two sen-
tences: Entailment, Neutral and Contradiction.
The second one, RQE, requires one to identify
whether one question entails the other, where the
definition of entailment is that a question A entails
a question B if every answer to B is also a com-
plete or partial answer to A. The third task, QA,
considers not only the identification of entailment
for the asked question among a set of retrieved
questions, but also the ranks of retrieved answers.

In this work, we demonstrate that we can
achieve significant performance gains over tra-
ditional deep learning models like ESIM (Chen

et al., 2016), by adapting pre-trained language
models into the medical domain. Language model
pre-training has shown to be effective for learn-
ing universal language representations by lever-
aging large amounts of unlabeled data. Some of
the most famous examples are GPT-V2 (see Rad-
ford et al., 2019) and BERT ( by Devlin et al.,
2018). These are neural network language models
trained on text data using unsupervised objectives.
For example, BERT is based on a multi-layer bidi-
rectional Transformer, and is trained on plain text
for masked word prediction and next sentence pre-
diction tasks. To apply a pre-trained model to
specific NLU tasks such as tasks for MEDIQA
2019 shared tasks, we often need to fine-tune the
model with additional task-specific layers using
task-specific training data. For example, Devlin
et al. (2018) show that BERT can be fine-tuned
this way to create state-of-the-art models for a
range of NLU tasks, such as question answering
and natural language inference.

We also tryout a transfer learning procedure,
where an intermediate model obtained on the NLI
task is used to be fine-tuned on the RQE task. Al-
though this procedure cannot consistently improve
the dev set performance for all the models, it is
proven to be beneficial on the test set by adding
variety to the model pool.

To further improve the performance of sin-
gle models, we implement a knowledge distil-
lation procedure on the RQE task and the NLI
task. Knowledge distillation distills or transfers
the knowledge from a (set of) large, cumber-
some model(s) to a lighter, easier-to-deploy sin-
gle model, without significant loss in performance
(Liu et al., 2019a; Tan et al., 2019). Knowledge
distillation recently has attracted a lot of atten-
tions. We believe it is interesting and of great
importance to explore this method on the appli-
cations of the medical domain.
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For test submissions, model ensemble is used to
obtain more stable and unbiased predictions. We
only adopt a simple ensemble model, that is, av-
eraging the class probabilities of different models.
After obtaining test predictions, for the NLI and
RQE task, simple re-ranking operations among
pairs with the same premise are used to boost the
performance metrics.

The rest of the paper is organized as follows. In
Section 2 , we demonstrate our experiments on the
three tasks. In Section 3, transfer learning from
NLI to RQE is presented. Section 4 elaborates
on the knowledge distillation and the correspond-
ing experimental results. Section 5 and Section 6
present the model ensemble technique and the re-
ranking strategies. Section 7 explains our submis-
sion records in detail. Section 8 concludes and dis-
cusses future work.

2 Pairwise Text Modeling

This section elaborates on the fundamental meth-
ods we used for the three tasks.

2.1 RQE

The RQE task, as a pairwise text classifica-
tion task, defined here involves a premise P =
(p1, p2, ..., pm) of m words, which is a medical
question posted online, and a hypothesis H =
(h1, h2, ..., hn) of n words, which is a standard
frequently asked question that is collected to build
a QA system, and aims to find a logical relation-
ship R between P and H . For the RQE task,
relationship R is either true or false, indicating
whether the premise entails the hypothesis or not.
We mainly experiment on two groups of models,
one using fixed pre-trained embedding1, the other
employing pre-trained language models.

Traditional deep learning models typically use
a fixed pre-trained word embedding to map words
into low-dimensional vector space, and then use
some kind of encoders to encode and pool the
contexts of the premise to vector r1 and hy-
pothesis H to r2. And the features provided
to the classification layer is concat(r1, r2, ||r1 −
r2||, r1 ∗ r2). (see Bowman et al., 2015) Then
the classification output layer is usually a dense
layer with soft-max output. We experiment with
the following 4 traditional deep learning models.
The first model, which will be called Weighted-

1We will refer to this type of models as traditional deep
learning models

Transformer-NLI model, encodes the sentences
via a shared Weighted Transformer module (see
Ahmed et al., 2017 for details). The second model,
called RCNN-NLI, encodes the premise and hy-
pothesis via the RCNN model (see Lai et al.,
2015). The third model we consider, is the decom-
posable attention model by Parikh et al. (2016).
The fourth model is the ESIM model by Chen et al.
(2016), which is one of the most popular models
in the natural language inference task. We will
not elaborate on the specific architecture of the last
two models since readers can refer to the original
papers for details.

For the RQE task, the pre-trained language
models we considered are as follows: (a) the orig-
inal BERT models (both base and large models);
(b) the Bio-BERT model by Lee et al. (2019)
which is pre-trained on scientific literature in bio-
medical domain; (c) the Sci-BERT model by Belt-
agy et al. (2019) which is trained on academic pa-
pers from the corpus of semanticscholar.org; (d)
MT-DNN models (see Liu et al., 2019b), which
are based on BERT and go through a multi-task
learning procedure on the GLUE benchmark. On
top of the transformer encoders from the pre-
trained language model, we implement two kinds
of output modules: (a) linear projection, which
will be referred to as LP0, which is to take the hid-
den state corresponding to the first token [CLS]
of the sentence pair; (b) a more sophisticated
classification module called stochastic answer net-
work (henceforth SAN) proposed by Liu et al.
(2017). Rather than directly predicting the entail-
ment given the input, SAN maintains a state and
iteratively refines its predictions.

When implementing the traditional deep learn-
ing models, the Glove embedding (Pennington
et al., 2014) is used. Before training, we use
the Unified Medical System (UMLS) provided by
provided by the National Library of Medicine 2 to
replace all the abbreviations (e.g., IBS) of a med-
ical concept or entity to its full name, or to the
same name that appears in the same pair. We tune
the hyper-parameters on the dev set, and report the
best performance obtained by each model in Ta-
ble 1.

Among the four traditional models, RCNN-
NLI performs the worst. Although a power-
ful model as shown in Ahmed et al. (2017),

2https://www.nlm.nih.gov/research/
umls/

https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
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Model valid acc
Weighted-Transformer-NLI 0.6821

RCNN-NLI 0.5530
Decomposable attention 0.6854

ESIM 0.7218
BERT base + linear projection 0.7815

BERT base + SAN 0.7119
BERT large + linear projection 0.7782

BERT large + SAN 0.7682
Bio-BERT + linear projection 0.4338

Bio-BERT + SAN 0.4305
Sci-BERT + linear projection 0.7547

Sci-BERT + SAN 0.5993
MT-DNN base + linear projection 0.8378

MT-DNN base + SAN 0.7715
MT-DNN large + linear projection 0.7881

MT-DNN large + SAN 0.7815

Table 1: performances of different models on the valid set of the RQE task.

Weighted-Transformer-NLI cannot perform very
well on this dataset. The ESIM model performs
the best among the four. However the traditional
deep learning models cannot perform well enough
when compared with the results on the Round 1
leader board. We believe the reasons are as fol-
lows. First, the dataset is relatively small, thus
models like Weighted-Transformer-NLI will im-
mediately over-fit. 3 Second, the distribution of
training data for RQE task is different from the
distributions of the dev and test data. We see
most of the pairs in train set have approximately
equal length, and there are 1, 445 pairs in which
the premise and hypothesis are exactly the same.
Meanwhile, in dev and test sets, the premise is
usually much longer than the hypothesis.

When compared with traditional deep learning
models, the pre-trained language models perform
significantly better on the dev set. In addition,
one can see that adding a sophisticated output
module like SAN on top of the pre-trained lan-
guage model tends to worsen the dev performance.
Among all the BERT model family, the MT-DNN
model (base model) performs best, and the orig-
inal BERT base model performs slightly worse.
Since the MT-DNN family are BERT models fine-
tuned on GLUE benchmark via a multi-task learn-
ing mechanism, and in GLUE eight out of nine

3Readers can refer to Guo et al. (2019) for more detailed
discussions on how transformer models performs unsatisfy-
ingly on medium or small datasets, when directly trained
from scratch.

layers to freeze valid acc
0 0.7782
1 0.8013
3 0.7914
6 0.7881
9 0.8179
10 0.8344
11 0.8378

Table 2: performances of the MT-DNN base model
with linear projection, when different number of lay-
ers are freezed during fine-tuning on the RQE dataset

tasks are pairwise text modeling tasks, MT-DNN
are more equipped to model pairwise text classifi-
cation tasks on different domains than the original
BERT model. And we can see that MT-DNN base
performs better than MT-DNN large, which is in
contradiction to the results on the GLUE bench-
mark reported in Liu et al. (2019b). Sci-BERT
and Bio-BERT model does not perform well. We
believe the reasons are that the Sci-BERT and Bio-
BERT models share the same feature that they are
trained on scientific literature, in which the lan-
guage is more formal and rigid. However, texts in
RQE is drawn from online questions from medi-
cal forums, thus Sci-BERT and Bio-BERT are not
suitable for this task.

We also notice that freezing the lower bi-
directional transformer layers of MT-DNN signif-
icantly improves the dev set accuracy. In Table 2,
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Model valid acc
ESIM (by Romanov and Shivade, 2018) 0.7440

InferSent (by Romanov and Shivade, 2018) 0.7600
BERT base + linear projection 0.8186

BERT base + SAN 0.8143
BERT large + linear projection 0.8229

BERT large + SAN 0.8280
Bio-BERT + linear projection 0.6824

Bio-BERT + SAN 0.6882
Sci-BERT + linear projection 0.8466

Sci-BERT + SAN 0.8251
MT-DNN base + linear projection 0.8265

MT-DNN base + SAN 0.8287
MT-DNN large + linear projection 0.8420

MT-DNN large + SAN 0.8327

Table 3: performances of different models on the valid set of the NLI task.

we can see that freezing 11 lower layers of the MT-
DNN base performs best. During training of dif-
ferent models, even traditional deep learning mod-
els, we notice that a model can easily over-fit on
the training set of RQE, fine-tuning the whole lan-
guage model will introduce much bias into the
model. Meanwhile freezing the lower layers can
alleviate over-fitting and maintain the generaliza-
tion ability of the pre-trained models.

2.2 NLI

For the NLI task, we are tasked to identify the
relationship R between the premise and the hy-
pothesis, which is among the following three: en-
tailment, neutral or contradiction. Romanov and
Shivade (2018) has done a thorough investiga-
tion on how traditional deep learning models like
ESIM and InferSent perform on the original NLI
datasets. Thus to save time, we only implement
with pre-trained language models for this task.

The BERT based models we tried are the same
as we investigate on the RQE datasets, whose re-
sults are reported in Table 3. It turns out, the
BERT-based model significantly outperforms the
traditional models. MT-DNN models still perform
quite well, but the Sci-BERT with linear projec-
tion achieves the highest accuracy on the dev set.
The Bio-BERT model still cannot achieve satisfy-
ing results. We find that models behave quite dif-
ferently on NLI compared with the RQE datasets.
First, on the NLI dataset, BERT large and the MT-
DNN large, which is derived from BERT large,
perform better than their base counterparts, BERT

base and MT-DNN base. Second, during tuning
the hyper-parameters, we find that freezing layers
leads to performance loss. Third, the SAN output
module does not lead to significant performance
change except for Sci-BERT, whereas on the RQE
dataset adding SAN module usually leads to sig-
nificant performance loss.

2.3 QA

On the basis of the results obtained on RQE and
NLI task, we found that the MT-DNN models out-
perform other pre-trained language models. Thus,
with limited time, in the QA task we chose to di-
rectly look into the MT-DNN models on the QA
datasets.

The QA task requires us not only give a binary
label to an answer, but also rank the answers of
the same questions. There are two perspectives
of treating such a task: classification and regres-
sion. The classification model just distinguishes
whether the question and the answer match, and
the output of Softmax layer can be used to rank the
answers. However, the regression model is able
to predict the matching degree between questions
and answers, and rank the answers according to
the matching degree. The final result achieved is a
combination of two models.

From the perspective of the classification
model, answers with ReferenceScore less than 3
are given a not entailment label, and the rest are
labeled entailment. The dataset obtained with this
treatment is called the QA-C dataset. Table 4 re-
ports the performance on the dev set. To align



384

Model acc Spearman’s Rank Corr
MT-DNN base on QA-R 0.8248 0.1478
MT-DNN large on QA-R 0.8333 0.2054

MT-DNN base + linear projection on QA-C 0.7479 0.0557
MT-DNN base + SAN on QA-C 0.7607 -0.0108

MT-DNN large + linear projection on QA-C 0.8333 0.0803
MT-DNN large + SAN on QA-C 0.8120 0.2146

Table 4: performances of different models on the valid set of the QA task. Here accuracy is calculated on the whole
dev set.

Model dev acc
MT-DNN base 0.8378

MT-DNN base + transfer learning on NLI 0.8220
MT-DNN large 0.7881

MT-DNN large + transfer learning on NLI 0.7957

Table 5: The performance on the RQE dev set, when we apply transfer learning, compared with the performances
obtained by directly fine-tuning the MT-DNN models on the RQE dataset.

with the leader board, we calculated accuracy and
Spearman’s Rank Correlation Coefficient (hence-
forth SRCC). As is shown in Table 4, BERT base
can achieve accuracy of 0.7478 after fine-tuning.
However, SRCC is 0.057, which is quite poor.
The results demonstrate that a binary classifica-
tion model helps us to get a fair accuracy score,
but it omits all the ranking information like Ref-
erenceRank and ReferenceScore from the original
data. Thus the resulting model can not tell whether
an answer is better than another. Bearing that in
mind, we decided to introduce a related but dif-
ferent model to specialize in providing ranking in-
formation, while leave the accuracy metric to the
classification model.

The new model we are introducing treats the
task at hand as a regression task. For a sample
data, the input is a pair composed of a query and
an answer. The target value is the relevance score
between the query and the answer, which is de-
fined as follows:

score = ReferenceScore+1/ReferenceRank.
(1)

The reciprocal of the ReferenceRank is used to
enlarge the gaps of relevance scores among differ-
ent answers. The dataset obtained with the above
modification is called the QA-R dataset. The re-
gression model is also built on the pre-trained lan-
guage models by replacing the classification out-
put module with a regression task header (see
equation (2) of Liu et al., 2019b). Table 4 shows
that we can obtain a huge bump on SRCC with

the regression model. The best dev SRCC we can
obtain is 0.148, which is the result of fine-tuning
the MT-DNN large model. With a threshold for
the relevance score, we can also get the classifi-
cation label from the regression label. After ad-
justing the threshold, we can also get accuracy of
0.8247. Thus, we can conclude that the regres-
sion model works better in capturing the ranking
information without reducing the accuracy of the
model.

By observing the SRCC obtained at each epoch
during training, we can see the following phe-
nomenon: SRCC can improve from 0.125 to 0.273
after a single epoch, and suddenly drop to 0.023
on the next one. SRCC seems to be quite unstable,
which will be problematical when making predic-
tions for the unknown test set. This is a problem
that we fail to solve at the end of competition and
requires further investigations.

3 Transfer learning

We also experimented with transfer learning for
the RQE task. The procedure is to first fine-tune
a MT-DNN model on the NLI dataset for a cer-
tain number of epochs, then the obtained model
will further be fine-tuned on the RQE dataset. Our
motivation is that first fine-tuning on the NLI task
can help the pre-trained language model to adapt
to the medical domain, thus making the training
on RQE more stable. Table 5 reports that after the
transfer learning procedure, MT-DNN base model
performs worse, but it makes the MT-DNN large
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model perform slightly better.

4 knowledge distillation

In this section, we experiment on the idea of
knowledge distillation (Hinton et al., 2015), to
further boost the performance of single models.
We implement knowledge distillation on each task
separately.4 The procedure is as follows:

• train a set of models on each tasks. Follow-
ing Liu et al. (2019a), the set of models are:
MT-DNN base and MT-DNN large, with dif-
ferent dropout rates ranged in 0.1, 0.3, 0.5 for
the task specific output layers, while keep-
ing the hyper-parameters of lower BERT en-
coders the same with those in the previous
section.

• ensemble the above models to get a label
model (Ratner et al., 2018)5. This so-called
label model is constructed by modeling a
generative model over all the label func-
tions, i.e., the single models, to maximize the
log likelihood, give the label matrix (Ratner
et al., 2017). The label model is a general-
ization of the so-called teacher model in (Liu
et al., 2019a), where the teacher model is sim-
ply the average of class probabilities.

• The end model (or called the student model
by Liu et al., 2019a) is trained on the soft
targets given out by the label model. Here,
training on the soft targets means the cross-
entropy loss is averaged with the class prob-
abilities as weights.

• Inference is the same for end model with
other normal models.

In Table 6, we can see that knowledge distilla-
tion can significantly improve the performance on
the NLI task, and can even achieve better results
than model ensemble. However, on the RQE task,
knowledge distillation cannot perform better than
model ensemble, but still outperforms the best sin-
gle model.

4Liu et al. (2019a) extends the knowledge distillation to
multi-task learning setting, which is a direction we need to
explore in future work.

5There are alternative terminologies for knowledge distil-
lation. We mainly follow Ratner et al. (2018).

5 Ensemble

Since the test set is small, one single model is too
biased to achieve great results on the test dataset.
Ensemble learning is an effective approach to im-
prove model generalization, and has been used to
achieve new state-of-the-art results in a wide range
of natural language understanding (NLU) tasks
(Devlin et al., 2018, Liu et al., 2017).

For the MEDIQA 2019 shared task, we only
adopt a simple ensemble approach, that is, aver-
aging the softmax outputs from different models,
or different runs or epochs of the same model, and
makes prediction based on these averaged class
probabilities. All our submissions follow this en-
semble strategy. 6

6 Re-ranking strategies for the NLI and
RQE tasks

The previous sections demonstrate how deep
learning models perform on the task datasets.
However, in order to obtain more competitive re-
sults, one could adopt some simple heuristics.

For the NLI task, after observing the task
datasets, we can see that one premise is grouped
with three different hypothesis, and the latter are
labeled with entailment, neutral and contradiction
respectively. We call the three pairs with the same
premise a group. Our sentence pair model does
not know the idea of groups, thus the labels corre-
sponding to the maximum class probabilities ob-
tained by soft-max layer can conflict with one an-
other. For example, two pairs in the same group
may both be labeled as entailment. To eliminate
the above conflicts, we adopt the following heuris-
tic post-processing procedure:

• obtain the label predictions directly from the
softmax output. If there is no conflict in a
group, accept the predictions. Otherwise, in
this group:

• Give the contradiction label to the pair with
the highest score for this label

• Between the remaining two pairs, decide
which one should get the neutral label via the
scores for this label

6We definitely can try some more sophisticated ensem-
ble methods, but we believe experimenting different learn-
ing strategies like MTL and knowledge distillation is more
meaningful for research purpose, and is in alignment with the
objective of the MEDIQA 2019 share tasks.
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Model NLI RQE
best single model 0.8466 0.8378
model ensemble 0.8638 0.8477
knowledge distillation 0.8667 0.8411

Table 6: Comparison of performances on the dev sets, among the best single model, ensemble model and the
model obtained by knowledge distillation.

• the remaining pair get the entailment label

For the RQE task, since the label is binary, and
the number of pairs in a group in this task varies,
the re-ranking heuristic is a little different, which
is elaborated as follows.

• obtain the score of the entailment label from
the model

• for each group, rank the pairs by their scores.

• denote the number of pairs in a group as n,
then we directly label the last max(1, [n/2]−
1) as negative pairs. and the top pair as posi-
tive pair

• For the rest of pairs, we choose a threshold
t, if the score of a pair is higher than t, it is
labeled entailment, otherwise it is labeled as
not entailment. We choose the threshold to
obtain the highest accuracy on the dev set

7 Submission results

This section discusses the submission results on
the leader boards.

First, let us look at the submission history on
the RQE task (presented here in Table 7). The
first submission is a single MT-DNN base model
trained only on the training data, with re-ranking.
On the second submission, we add the available
dev set in, and re-train all the models. The en-
semble of a MT-DNN base and a MT-DNN large
after re-ranking push the test accuracy to 0.736.
Then we tryout transfer learning on the third run,
two runs of MT-DNN large, which go through the
transfer learning process described in Section 3,
achieves 0.745 after re-ranking. Adding the end
model after knowledge distillation to the combina-
tion in the third run makes the performance drops
slightly to 0.740. For the final submission, we
just ensemble all the models available, and achieve
0.749 on the test set, which ranks the first on the
RQE task.

Table 8 presents the submission records on the
NLI task. On the first submission, we experi-
ment the model obtained by knowledge distilla-
tion, which obtains 0.865 on accuracy. The sec-
ond submission, we use a single MT-DNN large
fine-tuned on the train set and post-processed for
re-ranking. The accuracy is 0.916 for this sub-
mission. Then the ensemble of four models, the
8-th epoch of 2 different runs of MT-DNN large,
the 10-th epoch of 2 different runs of Sci-BERT,
achieves an accuracy of 0.946 after re-ranking.
The final submission combines MT-DNN large,
Sci-BERT, MT-DNN large after knowledge distil-
lation, obtains 0.966 after re-ranking, which ranks
the third on the leader board.

For the QA task, the first two submissions are
based on a single MT-DNN large model fine-tuned
on QA-R data set, chosen from two different train-
ing epochs. The first submission with accuracy
of 0.73 is chosen because in this epoch of train-
ing, we achieved the best Spearman’s rho result
on the dev dataset; Similarly,the second submis-
sion with accuracy of 0.733 is chosen at the epoch
where we achieved best ACC result on the dev
dataset. From the third round, we started apply-
ing ensemble strategy by considering some well
performing epochs at different runs together. The
two submissions with accuracy of 0.774 and 0.777
are the results of different processing strategies:
max score and mean score. According to the re-
sults obtained, we find that ”max score” strategy
performs slightly better on SRCC, while ”mean
score” works better on ACC.

8 Conclusion and discussions

To conclude, we have shown that domain adapta-
tion with the pre-trained language models achieves
significant improvement over traditional deep
learning models on the MEDIQA 2019 shared
tasks. We also experimented transfer learning
from the NLI task to the RQE task. Knowl-
edge distillation obtains a single model which sig-
nificantly outperforms the single models trained
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Submission No. test acc details
1 0.675 1 * MT-DNN base (trained on train set) + re-rank
2 0.736 1 * MT-DNN base + 1 * MT-DNN large + re-rank
3 0.745 2 * MT-DNN large (TL) + re-rank
4 0.740 1 * MT-DNN large (KD) + 2 * MT-DNN large (TL) + re-rank
5 0.749 2 * MT-DNN base + 2 * MT-DNN large (TL)

+ 1 * MT-DNN large (KD) + 1 * MT-DNN large
+ re-rank

Table 7: The submission results on the RQE task. Multiplication symbol ”*” here means multiple runs or epochs
of the same model (with different random seed). ”TL” means the model go through transfer learning on the NLI
task. ”KD” means the model is obtained via knowledge distillation. Without declaration, all the models here are
trained on the train and dev set.

Submission No. test acc details
1 0.865 1 * MT-DNN large (KD)
2 0.916 1 * MT-DNN large (on train set) + re-rank
3 0.946 2 * MT-DNN large + 2 * Sci-BERT + re-rank
4 0.966 4 * MT-DNN large + 4 * Sci-BERT

+ 2 * MT-DNN large (KD) + re-rank

Table 8: The submission records on the NLI task. Multiplication symbol ”*” here means multiple runs or epochs
of the same model (with different random seed). ”KD” means the model is obtained via knowledge distillation.
Without declaration, all the models here are trained on the train and dev set.

Submission No. test acc test Spearman’s rho details
1 0.730 0.236 MT-DNN large (epoch with best training SRCC)
2 0.736 0.204 MT-DNN large (epoch with best training ACC)
3 0.774 0.22 MT-DNN large ensemble(rank by max socre)
4 0.777 0.18 MT-DNN large ensemble(rank by mean socre)
5 0.772 0.204 MT-DNN large ensemble(rank by mean socre)

Table 9: The submission results on the QA task.

in the usual way. Our submission results, al-
though including model ensemble and re-ranking,
are strong demonstration of the power of language
model pre-training, transfer learning and knowl-
edge distillation.

However, due to the limited time and the fact
that we participate all three tasks at once, we
haven’t exhaustively explore all the possible ways
to boost the performance on the leader board,
e.g., utilizing external sources such as medical
knowledge bases to rule out false positive answers.
Multi-task learning is also a direction that we need
to pay more attention to.

In addition, the heuristics adopted in the re-
ranking strategies resemble the relevance ranking
task (Huang et al., 2013), where one compares
different pairs in a group to obtain the final deci-
sions. Due to time constraint, we didn’t implement
a pairwise relevance ranking model on top of the

MT-DNN model, but this research direction will
be investigated by us in future work.
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2017. Snorkel: Rapid Training Data Creation
with Weak Supervision. arXiv e-prints, page
arXiv:1711.10160.

Alexander Ratner, Braden Hancock, Jared Dunnmon,
Frederic Sala, Shreyash Pandey, and Christopher
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