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Abstract

Randomized controlled trials assess the effects
of an experimental intervention by comparing
it to a control intervention with regard to some
variables - trial outcomes. Statistical hypoth-
esis testing is used to test if the experimental
intervention is superior to the control. Statis-
tical significance is typically reported for the
measured outcomes and is an important char-
acteristic of the results. We propose a machine
learning approach to automatically extract re-
ported outcomes, significance levels and the
relation between them. We annotated a cor-
pus of 663 sentences with 2,552 outcome -
significance level relations (1,372 positive and
1,180 negative relations). We compared sev-
eral classifiers, using a manually crafted fea-
ture set, and a number of deep learning mod-
els. The best performance (F-measure of 94%)
was shown by the BioBERT fine-tuned model.

1 Introduction

In clinical trials, outcomes are the dependent vari-
ables that are monitored to assess how they are
influenced by other, independent, variables (treat-
ment used, dosage, patient characteristics). Out-
comes are a central notion for clinical trials.

To assess the impact of different variables on
the outcomes, statistical hypothesis testing is com-
monly used, giving an estimation of statistical sig-
nificance – the likelihood that a relationship be-
tween two or more variables is caused by some-
thing other than a chance (Schindler, 2015). Sta-
tistical significance levels are typically reported
along with the trial outcomes as p-values, with a
certain set threshold, where a p-value below the
threshold means that the results are statistically
significant, while a p-value above the threshold
presents non-significant results. Hypothesis test-
ing in clinical trials is used in two main cases:

1. In a trial comparing several treatments given

to different groups of patients, a difference
in value of an outcome observed between the
groups at the end of the trial is evaluated by
hypothesis testing to determine if the differ-
ence is due to the difference in medication. If
the difference is statistically significant, the
null hypothesis (the difference between treat-
ments is due to a chance) is rejected, i.e. the
superiority of one treatment over the other is
considered to be proved.

2. When an improvement of an outcome is ob-
served within a group of patients taking a
treatment, hypothesis testing is used to deter-
mine if the difference in the outcome at dif-
ferent time points within the group is due to
the treatment. If the results are statistically
significant, it is considered to be proven that
the treatment has a positive effect on the out-
come in the given group of patients.

Although p-values are often misused and misinter-
preted (Head et al., 2015), extracting significance
levels for trial outcomes is still vital for a num-
ber of tasks, such as systematic reviews, detec-
tion of bias and spin. In particular, our application
of interest is automatic detection of spin, or dis-
torted reporting of research results, that consists
in presenting an intervention studied in a trial as
having higher beneficial effects than the research
has proved. Spin is an alarming problem in health
care as it causes overestimation of the intervention
by clinicians (Boutron et al., 2014) and unjustified
positive claims regarding the intervention is health
news and press releases (Haneef et al., 2015; Yav-
chitz et al., 2012).

Spin is often related to a focus on significant
outcomes, and occurs when the primary outcome
(the main variable monitored during a trial) is not
significant. Thus, to detect spin, it is important
to identify the significance of outcomes, and espe-
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cially of the primary outcome. To our best knowl-
edge, no previous work addressed the extraction
of the relation between outcomes and significance
levels. In this paper, we present our approach to-
wards extracting outcomes, significance levels and
relations between them, that can be incorporated
into a spin detection pipeline.

2 State of the art

Extraction of outcome - significance level rela-
tions consists of two parts: entity extraction (re-
ported outcomes and significance levels) and ex-
traction of the relationship between the entities.
In this section, we present the previous works on
these or similar tasks.

2.1 Entity extraction

The number of works addressing automatic extrac-
tion of significance levels is limited.

(Hsu et al., 2012) used regular expressions to
extract statistical interpretation, p-values, confi-
dence intervals, and comparison groups from sen-
tences categorized as ”outcomes and estimation”.
The authors report precision of 93%, recall of 88%
and F-measure of 90% for this type of information.

(Chavalarias et al., 2016) applied text mining
to evaluate the p-values reported in the abstracts
and full texts of biomedical articles published in
1990 – 2015. The authors also assessed how fre-
quently statistical information is presented in ways
other than p-values. P-values were extracted using
a regular expression; the system was evaluated on
a manually annotated dataset. The reported sensi-
tivity (true positive rate) is 96.3% and specificity
(true negative rate) is 99.8%. P-values and qual-
itative statements about significance were more
common ways of reporting significance than con-
fidence intervals, Bayes factors, or effect sizes.

A few works focused on extracting outcome-
related information, addressing it either as a sen-
tence classification, or as entity extraction task.

(Demner-Fushman et al., 2006) defined an out-
come as ”The sentence(s) that best summarizes
the consequences of an intervention” and thus
adopted a sentence classification approach to ex-
tract outcome-related information from medical
articles, using a corpus of 633 MEDLINE cita-
tions. The authors tested Naive Bayes, linear SVM
and decision-tree classifiers. Naive Bayes showed
the best performance. The reported classification
accuracy ranged from 88% to 93%.

One of the notable recent works addressing out-
come identification as an entity extraction task,
rather than sentence classification, is (Blake and
Lucic, 2015). The authors addressed a partic-
ular type of syntactic constructions – compara-
tive sentences – to extract three items: the com-
pared entities, referred to as the agent and the ob-
ject, and the ground for comparison, referred to as
the endpoint (synonymous to outcome). The aim
of this work was to extract corresponding noun
phrases. The dataset was based on full-text med-
ical articles and included only the sentences that
contain all the three entities (agent, object and
endpoint). The training set comprised 100 sen-
tences that contain 656 noun phrases. The algo-
rithm proceeds in two steps: first, comparative
sentences are detected with the help of a set of
adjectives and lexico-syntactic patterns. Second,
the noun phrases are classified according to their
role (agent, object, endpoint) using SVM and gen-
eralized linear model (GLM). On the training set,
SVM showed better performance than GLM, with
an F-measure of 78% for the endpoint. However,
on the test set the performance was significantly
lower: SVM showed an F-measure of only 51%
for the endpoint. The performance was higher
on shorter sentences (up to 30 words) than on the
longer ones.

A following work (Lucic and Blake, 2016)
aimed at improving the recognition of the first
entity and of the endpoint. The authors pro-
pose to use in the classification the information
on whether the head noun of the candidate noun
phrase denotes an amount or a measure. The an-
notation of the corpus was enriched by the cor-
responding information. As a result, precision of
the endpoint detection improved to 56% on longer
sentences and 58% on shorter ones; recall im-
proved to 71% on longer sentences and 74% on
shorter ones.

2.2 Relation extraction

To our knowledge, extraction of the relation
between outcomes and significance levels has
not been addressed yet. In this section, we
overview some frameworks for relation extraction
and outline some common features of different ap-
proaches in the biomedical relation extraction.

A substantial number of works addressed ex-
tracting binary relations, such as protein-protein
interactions or gene-phenotype relation, or com-
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plex relations, such as biomolecular events. A
common feature of the works in this domain, noted
by (Zhou et al., 2014; Lever and Jones, 2017) and
still relevant for recent works e.g. (Peng and Lu,
2017; Asada et al., 2017), consists in assuming
that entities of interest are already extracted and
provided to the relation extraction system as input.
Thus, the relation extraction is assessed separately,
without taking into account the performance of en-
tity extraction. We adopt this approach for relation
extraction evaluation in our work, but we provide
separate assessment for our algorithms of entity
extraction.

One of the general frameworks for relation ex-
traction in the biomedical domain is proposed by
(Zhou et al., 2014). The authors suggest using
trigger words to determine the type of a relation,
noting that for some relation types trigger words
can be extracted simply with a dictionary, while
for other types, rule-based or machine-learning ap-
proaches may be required. For relation extrac-
tion, rule-based methods can be applied, often em-
ploying regular expressions using words or POS
tags. Rules can be crafted manually or learned
automatically. The machine learning approaches
to binary relation extraction, as the authors note,
usually treat the task as a classification problem.
Features for classification often use output of tex-
tual analysis algorithms such as POS-tagging and
syntactic parsing. Machine learning approaches
can be divided into feature-based approaches (us-
ing syntactic and semantic features) and kernel ap-
proaches (calculating similarity between input se-
quences based on string or syntactic representation
of the input). Supervised machine learning is a
highly successful approach for binary relation ex-
traction, but its main drawback consists in the need
of large amount of annotated data.

A framework for pattern-based relation extrac-
tion is introduced by (Peng et al., 2014). The ap-
proach aims at reducing the need for manual anno-
tation. The approach is based on a user-provided
list of trigger words and specifications (the defini-
tion of arguments for each trigger). Variations of
lexico-syntactic patterns are derived using this in-
formation and are matched with the input text, de-
tecting the target relations. Some interesting fea-
tures of the framework include the following: the
use of text simplification to avoid writing rules for
all existing constructions; the use of referential re-
lations to find the best phrase referring to an entity.

The authors state that their system is characterized
by good generalizability due to the use of language
properties and not of task-specific knowledge.

A recent work (Björne and Salakoski, 2018) re-
ports on the development of convolutional neural
networks (CNNs) for event and relation extrac-
tion, using Keras (Chollet et al., 2015) with Ten-
sorflow backend (Abadi et al., 2016). Parallel con-
volutional layers process the input, using sequence
windows centered around the candidate entity, re-
lation or event. Vector space embeddings are built
for input tokens, including features such as word
vectors, POS, entity features, relative position, etc.
The system was tested on several tasks and showed
improved performance and good generalizability.

3 Our dataset

3.1 Corpus creation and annotation

In our previous work on outcome extraction, we
manually annotated a corpus for reported out-
comes comprising 1,940 sentences from the Re-
sults and Conclusions sections of PMC article ab-
stracts. We used this corpus as a basis for a corpus
with annotations for outcome significance level
relations.

Our corpus contains 2,551 annotated outcomes.
Out of the sentences with outcomes, we selected
those where statistical significance levels are sup-
posedly reported (using regular expressions) and
manually annotated relations between outcomes
and significance levels. The annotation was done
by one annotator (AK), in consultation with a
number of domain experts, due to infeasibility of
recruiting several annotators with sufficient level
of expertise within a reasonable time frame.

The final corpus contains 663 sentences with
2,552 annotated relations, out of which 1,372 rela-
tions are positive (the significance level is related
to the outcome) and 1,180 relations are negative
(the significance level is not related to the out-
come). The corpus is publicly available (Anna,
2019).

3.2 Data description

There are three types of data relevant for this work:
outcomes, significance levels, and relationship be-
tween them. In this section, we describe these
types of data and the observed variability in the
ways of presenting them.

1. Outcomes
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A trial outcome is, in broad sense, a mea-
sure or variable monitored during a trial. It
can be binary (presence of a symptom or
state), numerical (”temperature”) or qualita-
tive (”burden of disease”). Apart from the
general term denoting the outcome, there are
several aspects that define it: a measure-
ment tool (questionnaire, score, etc.) used to
measure the outcome; time points at which
the outcome is measured; patient-level anal-
ysis metrics (change from baseline, time to
event); population-level aggregation method
(mean, median, proportion of patients with
some characteristic).

Generally, there are two main contexts in
which outcomes of a clinical trial can be
mentioned: a definition of what the outcomes
of a trial were (”Quality of life was selected
as the primary outcome.”), and reporting re-
sults for an outcome (”Quality of life was
higher in the experimental group than in the
control group.”). In both cases, a mention
of an outcome may contain the aspects listed
above, but does not necessarily include all of
them. In this work, we are interested in the
second type of context.

The ways of reporting outcomes are highly
diverse. Results for an outcome may be
reported as a value of the outcome mea-
sure: for binary outcomes, it refers to pres-
ence/absence of an event or state; for numeri-
cal outcome, it is a numerical value; for qual-
itative outcome, it is often a value obtained on
the associated measurement tool. As the pri-
mary goal of RCTs is to compare two or more
interventions, results for an outcome can be
reported as a comparison between the inter-
ventions/patient groups, with or without ac-
tual values of the outcome measure. Syntac-
tically, an outcome may be represented by a
noun phrase, a verb phrase, an adjective or
a clause. We provide here some examples of
outcome reporting, to give an idea of variabil-
ity of expressions.

The outcome is reported as a numerical
value:

a) The median progression-free survival was
32 days.

The outcome is reported as a comparison be-
tween groups, without the values for groups:

b) MMS resulted in more stunting than stan-
dard Fe60F (p = 0.02).

The outcome is reported as a numerical value
with comparison between groups:

c) The average birth weight was 2694 g and
birth length was 47.7 cm, with no difference
among intervention groups.

d) The crude incidence of late rectal toxic-
ity ≥ G2 was 14.0% and 12.3% for the arm
A and B, respectively.

e) More than 96% of patients who received
DPT were apyrexial 48 hours after treatment
compared to 83.5% in the AL group (p <
0.001).

f) The proportion of patients who remained
relapse-free at Week 26 did not differ sig-
nificantly between the placebo group (5/16,
31%) and the IFN beta-1a 44 mcg biw (6/17,
35%; p = 0.497), 44 mcg tw (7/16, 44%; p =
0.280) or 66 mcg tw (2/18, 11%; p = 0.333)
groups.

In the latter case, the variation is especially
high, and the same outcome may be reported
in several different ways (cf. the examples
d, e and f that all talk about a percentage of
patients in which a certain event occurred, but
the structure of the phrases differs).

Identifying the textual boundaries of an out-
come presents a challenge: for the exam-
ple d, it can be ”the crude incidence of late
rectal toxicity ≥ G2” or ”late rectal toxic-
ity ≥ G2”; for the example f, it can be ”the
proportion of patents who remained relapse-
free at Week 26”, or ”remained relapse-free
at Week 26”, or simply ”relapse-free”. This
variability poses difficulties for both annota-
tion and extraction of reported outcomes. In
our annotation, we aimed at annotating the
minimal possible text span describing an out-
come, not including time points, aggregation
and analysis metrics.

2. Significance levels

The ways of presenting significance levels
are less diverse than the ways of reporting
outcomes. Typically, significance levels are
reported via p-values. Another way of deter-
mining significance of the results is the con-
fidence interval (CI), where a CI comprising
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zero denotes non-significant results. In this
work, we do not address CIs as they are less
frequently reported (Chavalarias et al., 2016).

Statistical significance can be reported as
an exact value of P (”p=0.02”), as P-value
relative to a pre-set threshold (”p<0.05”),
or in qualitative form (”significant”/”non-
significant”). We address all these forms of
reporting significance.

Although in general the ways of present-
ing statistical significance are rather uniform,
there are a few cases to be noted:

• Coordinated p-values:
For the non-HPD stratum, the intent-to-
treat relative risks of spontaneous pre-
mature birth at < 34 and < 37 weeks’
gestation were 0.33 (0.03, 3.16) and
0.49 (0.17, 1.44), respectively, and they
were non-significant (ns) with p = 0.31
and 0.14.

• Significance level in score of a negation:
The respiratory rate, chest indrawing,
cyanosis, stridor, nasal flaring, wheeze
and fever in both groups recorded at en-
rollment and parameters did not differ
significantly between the two groups.
A particular difficulty is presented by
the cases in which a negation marker
occurs in the main clause and a signifi-
cance level in the dependent clause, thus
the significance level is within the scope
of the negation, but there is a big linear
distance between them:
Results There was no evidence that an
incentive (52% versus 43%, Risk Dif-
ference (RD) -8.8 (95%CI 22.5, 4.8);
or abridged questionnaire (46% versus
43%, RD 2.9 (95%CI 16.5, 10.7); sta-
tistically significantly improved dentist
response rates compared to a full length
questionnaire in RCT A.

3. Relationship between outcomes and signifi-
cance levels

The correspondence between outcomes and
significance levels in a sentence is often not
one-to-one: multiple outcomes can be linked
to the same significance level, and vice versa.
Several outcomes are linked to one signifi-
cance level when outcomes are coordinated:

No significant improvements in lung func-
tion, symptoms, or quality of life were seen.

Several significance levels can be associated
to one outcome in a number of cases:

• one outcome is linked to two signifi-
cance levels when a significance level is
presented in both qualitative and numer-
ical form:
Results The response rates were not
significantly different Odds Ratio 0.88
(95% confidence intervals 0.48 to 1.63)
p = 0.69.

• in the case of comparison between pa-
tient groups taking different medica-
tions, when there are more than 2
groups, significance can be reported for
all pairs of groups;

• significance level for difference ob-
served within groups of patients receiv-
ing a particular medication:
[Na] increased significantly in the 0.9%
group (+0.20 mmol/L/h [IQR +0.03,
+0.4]; P = 0.02) and increased, but
not significantly, in the 0.45% group
(+0.08 mmol/L/h [IQR -0.15, +0.16]; P
= 0.07).

• significance reported for both between-
and within-group comparison:
PTEF increased significantly both after
albuterol and saline treatments but the
difference between the two treatments
was not significant (P = 0.6).

• significance for differences within sub-
groups of patients (e.g. gender or age
subgroups) receiving a medication;

• significance for different types of analy-
sis: intention-to-treat / per protocol:
Results For BMD, no intent-to-treat
analyses were statistically significant;
however, per protocol analyses (ie, only
including TC participants who com-
pleted ≥ 75% training requirements) of
femoral neck BMD changes were sig-
nificantly different between TC and UC
(+0.04 vs -0.98%; P = 0.05).

• significance for several time points:
Results A significant main effect of time
( p < 0.001) was found for step-counts
attributable to significant increases in
steps/day between: pre-intervention ( M
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= 6941, SD = 3047) and 12 weeks ( M
= 9327, SD = 4136), t (78) = - 6.52, p
< 0.001, d = 0.66; pre-intervention and
24 weeks ( M = 8804, SD = 4145), t (78)
= - 4.82, p < 0.001, d = 0.52; and pre-
intervention and 48 weeks ( M = 8450,
SD = 3855), t (78) = - 4.15, p < 0.001,
d = 0.44.

• significance level for comparison of var-
ious analysis metrics (mean, AUC, etc.)

4 Methods

To extract the relation between an outcome and its
significance level, we propose a 3-step algorithm:
1) extracting reported outcomes; 2) extracting sig-
nificance levels; 3) classification of pairs of out-
comes and significance levels to detect those re-
lated to each other.

As significance levels are not characterized by
high variability, we follow the previous research
in using rules (regular expressions and sequential
rules using information from pos-tagging) to ex-
tract significance levels.

We present our methods and results for outcome
extraction in detail elsewhere, here we provide
a brief summary. We tested several approaches:
a baseline approach using sequential rules using
information from pos-tagging; an approach us-
ing rules based on syntactic structure provided by
spaCy dependency parser (Honnibal and Johnson,
2015); a combination of bi-LSTM, CNN and CRF
using GloVe(Pennington et al., 2014) word em-
beddings and character-level representations (Ma
and Hovy, 2016); and a fine-tuned bi-LSTM using
BERT (Devlin et al., 2018) vector word represen-
tations.

BERT (Bidirectional Encoder Representations
from Transformers) is a recently introduced ap-
proach to pre-training language representations,
using a masked language model (MLM) which
randomly masks some input tokens, allowing to
pre-train a deep bidirectional Transformer using
both left and right context. The pre-trained BERT
models can be fine-tuned for supervised down-
stream tasks by adding one output layer.

BERT was trained on a dataset of 3.3B words
combining English Wikipedia and BooksCorpus.
Two domain-specific versions of BERT are avail-
able, pre-trained on a combination of the ini-
tial BERT corpus and additional domain-specific
datasets: BioBERT (Lee et al., 2019), adding a

large biomedical corpus of PubMed abstracts and
PMC full-text articles comprising 18B tokens; and
SciBERT (Beltagy et al., 2019), adding a corpus
of 1.14M full-text papers from Semantic Scholar
with the total of 3.1B tokens. Both BioBERT and
SciBERT outperform BERT on biomedical tasks.

BERT provides several models: uncased
(trained on lower-cased data) and cased (trained
on unchanged data); base and large (differing in
model sizes). BioBERT is based on the BERT-
base cased model and provides three versions
of models: pre-trained on PubMed abstracts, on
PMC full-text articles, or on combination of both.
SciBERT has both cased and uncased models and
provides two versions of vocabulary: BaseVocab
(the initial BERT vocabulary) and SciVocab (the
vocabulary from the SciBERT corpus). We fine-
tuned and tested the BioBERT model trained on
the whole corpus, and both cased and uncased base
models for BERT and SciBERT (using SciVocab).
We did not perform experiments with BERT-Large
as we do not have enough resources. We used the
code provided by BioBERT for the entity extrac-
tion task1.

The relation extraction assumes that the entities
have already been extracted and are given as an
input to the algorithm, with the sentence in which
they occur. To predict the tag for outcome - signif-
icance level pair, we use machine learning.

As the first approach, we compared several clas-
sifiers available in the Python scikit-learn library
(Pedregosa et al., 2011): Support Vector Ma-
chine (SVM) (Cortes and Vapnik, 1995); Deci-
sionTreeClassifier (Rokach and Maimon, 2008);
MLPClassifier(von der Malsburg, 1986); Kneigh-
borsClassifier (Altman, 1992); GaussianProcess-
Classifier (Rasmussen and Williams, 2005); Ran-
domForestClassifier (Breiman, 2001); AdaBoost-
Classifier (Freund and Schapire, 1997); Extra-
TreesClassifier (Geurts et al., 2006); Gradient-
BoostingClassifier (Friedman, 2002). Feature en-
gineering was performed manually and was based
on our observations on the corpus.

Evaluation was performed using 10-fold cross-
validation. To account for different random states,
the experiments were run 10 times, we report the
average results of the 10 runs. We performed hy-
perparameters tuning via exhaustive grid search
(with the help of the scikit-learn GridSearchCV

1https://github.com/dmis-
lab/biobert/blob/master/run ner.py
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function).
As the second approach, we employed a deep

learning approach to relation extraction, fine-
tuning BERT-based models on this task. We tested
the same models as for the outcome extraction.
We used the code provided by BioBERT for re-
lation extraction task2. The algorithm takes as in-
put sentences with the two target entities replaced
by masks (”@outcome$” and ”@significance$”)
and positive/negative relation labels assigned to
the sentence.

Hyperparameters for entity and relation ex-
traction with BERT-based algorithms are shown
in the Table 1. We tested both possi-
ble values (True/False) of the hyperparameter
”do lower case” (lower-casing the input) for all
the models.

Hyperparameter Entity
extraction

Relation ex-
traction

max seq length 128
train batch size 32
eval batch size 8
predict batch size 8
use tpu False
learning rate 5e-5 2e-5
num train epochs 10.0 3.0
warmup proportion 0.1
save checkpoints steps 1000
iterations per loop 1000
tf.master None

Table 1: BERT/BioBERT/SciBERT hyperparameters

5 Features

Features are calculated for each pair of outcome
and significance level. They are based both on
the information about these entities (their position,
text, etc.) and on the contextual information (pres-
ence of other entities in the sentence, etc.). We
used the following binary (True/False) features:

1. only out: whether the outcome is the only
outcome present in the sentence. If yes, it is
the only candidate that can be related to the
present statistical significance values.

2. only signif: whether the significance level is
the only significance level in the sentence. If
yes, it is the only candidate that can be related
to the present outcomes.

3. signif type num: whether the significance
level is expressed in the numerical form;

2https://github.com/dmis-
lab/biobert/blob/master/run re.py

Algorithm do lower
case

Precision Recall F1

SciBERT
uncased

True 81.17 78.09 79.42

BioBERT True 80.38 77.85 78.92
BioBERT False 79.61 77.98 78.6
SciBERT
cased

False 79.6 77.65 78.38

SciBERT
cased

True 79.24 76.61 77.64

SciBERT
uncased

False 79.51 75.5 77.26

BERT
uncased

True 78.98 74.96 76.7

BERT
cased

False 76.63 74.25 75.18

BERT
cased

True 76.7 73.97 75.1

BERT
uncased

False 77.28 72.25 74.46

Bi-LSTM-
CNN-CRF

51.12 44.6 47.52

Rule-based 26.69 55.73 36.09

Table 2: Reported outcome extraction results

4. signif type word: whether the significance
level is expressed in the qualitative form;

5. signif exact: whether the exact value of sig-
nificance level is given (P = 0.049), or it is
presented only as comparison to a threshold
(P < 0.05). Significance levels expressed
in the word form always have ”False” value
for this feature. We assumed that signifi-
cance levels with exact numerical value are
less likely to be related to several outcomes
that significance levels with inexact value:
obtaining exactly same significance level for
several outcomes seems unlikely.

6. signif precedes: whether the significance
level precedes the outcome. It is especially
pertinent for numerical significance values as
they most often follow the related outcome.

7. out between: whether there is another out-
come between the outcome and significance
level in the given pair. The outcome that is
closer to a significance level is a more likely
candidate to be related to it.

8. signif between: whether there is another sig-
nificance level between the outcome and the
significance level in a given pair. The signif-
icance level that is closer to an outcome is a
more likely candidate to be related to it.

9. concessive between: whether there are words
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Classifier Hyperparameters Precision Recall F1
RandomForestClassifier max depth = 15,

min samples split = 10,
n estimators = 300

90.16 92.6 91.33

ExtraTreesClassifier default 89.74 88.53 89.08
GradientBoostingClassifier learning rate = 0.25, max depth

= 23.0, max features = 7,
min samples leaf = 0.1,
min samples split = 0.2,
n estimators = 200

88.44 89.8 89.07

RandomForestClassifier default 89.54 88.64 89.03
GaussianProcessClassifier 1.0 * RBF(1.0) 86.99 90.38 88.64
GradientBoostingClassifier default 87.75 89.14 88.4
SVC C = 1000, gamma = 0.0001,

kernel = ’rbf’
86.14 89.65 87.79

DecisionTreeClassifier default 87.85 86.83 87.27
MLPClassifier activation = ’tanh’, alpha =

0.0001, hidden layer sizes =
(50, 100, 50), learning rate =
’constant’, solver = ’adam’

84.06 85.15 84.44

MLPClassifier default 84.4 83.34 83.47
KNeighborsClassifier n neighbors = 7, p = 1 83.37 81.27 82.21
AdaBoostClassifier learning rate = 0.1,

n estimators = 500
81.34 83.09 82.16

AdaBoostClassifier default 80.85 82.36 81.53
KNeighborsClassifier default 81.39 79.88 80.55
GaussianProcessClassifier default 79.41 78.86 79.1
SVC default 87.24 64.06 73.77
baseline (majority class) 53.76 100 69.92

Table 3: Results of classifiers

Feature Weight
only signif 0.21663222
signif type num 0.21341347
signif exact 0.15207938
signif type word 0.10103105
dist min out preceding 0.0919397
out between 0.05683003
dist min out following 0.04683059
concessive between 0.04260114
only out 0.02336161
dist 0.02043495
dist min graph 0.01794923
signif precedes 0.01631646
signif between 0.00058017

Table 4: Feature ranking

(conjunctions) with consessive semantics
(but, however, although, etc.) between the
outcome and the significance level in the pair.

We used the following numerical features:

1. dist: the distance in characters between the
outcome and the significance level in the pair;

2. dist min graph: the minimal syntactic dis-
tance between the words in the outcome and
the words in the significance level;

3. dist min out preceding: the distance from

Algorithm do lower
case

Precision Recall F1

BioBERT True 94.3 94 94
SciBERT
cased

True 93.9 93.6 93.8

SciBERT
cased

False 93.5 93.1 93.3

SciBERT
uncased

False 94.2 92.3 93.3

SciBERT
uncased

True 94 92.8 93.2

BioBERT False 92.8 89.7 91.1
BERT
cased

False 91.6 90.2 90.9

BERT
uncased

True 90.9 90.9 90.8

BERT
uncased

False 90.4 89.8 90

BERT
cased

True 89.6 90.5 89.8

Table 5: Results of relation extraction with
BERT/BioBERT/SciBERT

the outcome of the pair to the nearest preced-
ing outcome.

4. dist min out following: the distance from
the outcome of the pair to the nearest follow-
ing outcome. The two last features are de-
signed to reflect the information about coor-
dination of outcomes (the distances between
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coordinated entities is typically small), as co-
ordinated outcomes are likely to be related to
the same significance level.

We assessed the importance of the features with
the attribute ”feature importances ” of the Ran-
domForestClassifier classifier. The results are pre-
sented in the Table 4.

6 Evaluation

6.1 Entity extraction

The rule-based extraction of significance levels
shows the following per-token performance: pre-
cision of 99.18%, recall of 96.58% and F-measure
of 97.86%.

The results of all the tested approaches to the
extraction of reported outcomes are reported in the
Table 2. The best performance was achieved by
the fine-tuned SciBERT uncased model: precision
was 81.17%, recall was 78.09% and F-measure
was 79.42%.

6.2 Relation extraction

The baseline value is based on assigning the ma-
jority (positive) class to all the entity pairs. Base-
line precision is 53.76%, recall is 100% and F-
measure is 69.95%.

The results of the classifiers are presented in
the Table 3. We present the performance of
the default classifiers and of the classifiers with
tuned hyperparameters. All the classifiers out-
performed the baseline. Random Forest Clas-
sifier with tuned hyperparameters (max depth
= 15, min samples split = 10, n estimators =
300) showed the best results, with F-measure of
91.33%, which is by 21.41% higher than the base-
line.

It is interesting to compare the deep learning ap-
proach using BERT-based fine-tuned models (Ta-
ble 5) to the feature-based classifiers: none of the
Google BERT models outperformed the Random
Forest Classifier, neither did BioBERT with un-
changed input data. However, all the SciBERT
fine-tuned models and the BioBERT model with
lower-cased input outperformed the Random For-
est Classifier. Interestingly, BioBERT, which only
has a cased model pre-trained on unchanged data
and is thus meant to work with unchanged input,
showed the best performance on lower-cased in-
put for the relation extraction task, achieving the
F-measure of 94%.

7 Conclusion and future work

In this paper, we presented a first approach to-
wards the extraction of the relation between out-
comes of clinical trials and their reported signifi-
cance levels. We presented our annotated corpus
for this task and described the ways of reporting
outcomes, significance levels and their relation in
a text. We pointed out the difficulties posed by the
high diversity of the data.

We crafted a feature set for relation extraction
and trained and tested a number of classifiers for
this task. The best performance was shown by
the Random Forest classifier, with the F-measure
of 91.33%. Further, we fine-tuned and evalu-
ated a few deep learning models (BERT, SciBERT,
BioBERT). The best performance was achieved
by the BioBERT model fine-tuned on lower-cased
data, with F-measure of 94%.

Our relation extraction algorithm assumes that
the entities have been previously extracted and
provided as input. An interesting direction for fu-
ture experiments is building an end-to-end system
extracting both entities and relations, as proposed
by (Miwa and Bansal, 2016) or (Pawar et al.,
2017).

As in our algorithm the extraction of the rele-
vant entities (reported outcomes and significance
levels) is essential for extracting the relations,
we reported the results of our experiments for
extracting this task. Extraction of significance
levels reaches the F-measure of 97.86%, while
the extraction of reported outcomes shows the F-
measure of only 79.42%. Thus, improving the out-
come extraction is the main direction of the future
work.

Besides, a very important task for clinical trial
data analysis consists in determining the signifi-
cance level for the primary outcome. This task
requires two additional steps: 1) identifying the
primary outcome, and 2) establishing the corre-
spondence between the primary outcome and a re-
ported outcome. We will present our algorithms
for these tasks in a separate paper.
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