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Abstract
Automatic extraction of relations and interac-
tions between biological entities from scien-
tific literature remains an extremely challeng-
ing problem in biomedical information extrac-
tion and natural language processing in gen-
eral. One of the reasons for slow progress is
the relative scarcity of standardized and pub-
licly available benchmarks. In this paper we
introduce BioRelEx, a new dataset of fully an-
notated sentences from biomedical literature
that capture binding interactions between pro-
teins and/or biomolecules. To foster repro-
ducible research on the interaction extraction
task, we define a precise and transparent eval-
uation process, tools for error analysis and sig-
nificance tests. Finally, we conduct exten-
sive experiments to evaluate several baselines,
including SciIE, a recently introduced neural
multi-task architecture that has demonstrated
state-of-the-art performance on several tasks.

1 Introduction

Biological interaction databases capture a small
portion of knowledge depicted in biomedical pa-
pers, due to time consuming nature of manual in-
formation extraction. As experimental methodolo-
gies to identify such interactions tend to increase
in scale and throughput, the problem stands to
rapidly update these databases for relevant appli-
cations (Oughtred et al., 2018). The long-term aim
of our efforts is to provide bases for filling this gap
automatically.

Despite significant progress in recent years, ex-
tracting relationships and interactions between dif-
ferent biological entities is still an extremely chel-
lenging problem. Some of those challenges are

due to objective reasons such as lack of very large
annotated datasets for training complex models, or
wide variability in biomedical literature which can
lead to domain mismatch and poor generalization.
Another important challenge, which is the main
focus of the present paper, is the scarcity of pub-
licly available datasets. Indeed, with despite some
notable exceptions (Kim et al., 2003; Dogan et al.,
2017), there is a relative lack of adequate, high-
quality benchmark datasets which would facilitate
reproducible research and allow for robust com-
parative evaluation of existing approaches.

Here we have processed biological texts to an-
notate biological entities and interaction pairs. In
contrast to other related databases, our efforts were
focused on delineation of biological entities from
experimental ones, and on distinguishing between
indirect regulatory interactions and direct physi-
cal interactions. Furthermore, we have performed
grounding via cross-reference of annotated entities
with external databases. This allows for merging
interactions from different sources into a single
network of biomolecular interactions.

The main contributions of this work are:

1. We publish a dataset of 2010 sentences with
complete annotations of biological entities
and binding interactions between the entities,

2. We propose a benchmark task with a well-
defined evaluation system, which follows the
best practices of machine learning research,

3. We perform extensive evaluation of several
competing methods on the dataset and report
the results.
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2 Related work

In this section we briefly summarize prior work on
relation extraction from unstructured text.

Since 2009, NIST has organized Knowledge
Base Population evaluations as part of Text Anal-
ysis Conferences (TAC KPB). Thousands of sen-
tences from newswire and informal web pages
were annotated for training and evaluation pur-
poses (Getman et al., 2018). In 2017, a team from
Stanford released TACRED (Zhang et al., 2017),
a dataset of 106 264 sentences with 42 relation
types. The relations are mainly between people,
places and organizations.

A large number of papers focused on biologi-
cal relation extraction. (Bunescu et al., 2005) built
a manually annotated corpus of 225 abstracts to
evaluate various extraction methods. This dataset
is referred as AIMed in subsequent papers. Later,
(Pyysalo et al., 2007) developed a smaller dataset
called BioInfer with more detailed annotations. In
particular, the authors developed large ontologies
for biological entities and relations between them
and attempted to classify each entity and relation
according to these ontologies. The small number
of sentences and interactions is 1100 and 2662,
respectively, so for many types of relations there
were too few samples. Because of that, almost all
subsequent papers that applied machine learning
techniques on BioInfer discarded the detailed la-
bels and used it as a dataset of binary relations. In
2008, (Pyysalo et al., 2008a) presented a detailed
comparison of AIMed, BioInfer and three other
datasets (IEPA, HPRD50 and LLL) and found sig-
nificant differences in the data collection and eval-
uation procedures.

In (Pyysalo et al., 2008b), the authors concluded
that the results on the five datasets reported in dif-
ferent papers are incomparable and suggested to
unify the datasets in a common format with a pre-
cise evaluation procedure. This proved to be suc-
cessful as a large number of subsequent papers use
the unified versions of the datasets. On the other
hand, these datasets are currently used only for
binary relation classification, as the unified ver-
sions keep the lowest common level of annotations
(only entity locations and binary labels between
the pairs). It means that the models trained on
these datasets cannot be used for end-to-end rela-
tion extraction from text. Moreover, many recent
papers violate evaluation strategies (e.g. perform
cross-validation on splits that do not respect doc-

ument boundaries) and report unrealistically high
scores (Hsieh et al., 2017; Ahmed et al., 2019).

One of the highest quality datasets is devel-
oped as part of GENIA project (Kim et al., 2003).
It involves annotations of entities, syntactic fea-
tures, wide variety of events, including around
2500 binding interactions (Thompson et al., 2017).
GENIA does not have a training/test split, but vari-
ous subsets of it have been used as training and test
sets of BioNLP Shared Tasks in 2009 (Kim et al.,
2009), 2011 (Kim et al., 2011) and 2013 (Nédellec
et al., 2013). Several protein-protein interaction
(PPI) datasets appeared in BioCreative series of
shared tasks. There was a track on PPI extraction
in BioCreative II, including a binary relation ex-
traction subtask from full texts and another sub-
task for finding evidence sentences for the given
interaction (Krallinger et al., 2008). BioCreative
V Track 4 included a subtask on extraction of more
complex data structures called Biological Expres-
sion Language (BEL) statements (Rinaldi et al.,
2016).

Other biological relation extraction datasets in-
clude ADE (Gurulingappa et al., 2012), a dataset
of adverse drug effects; BB3 (Deléger et al.,
2016), a dataset of relations between bacteria and
their habitats, which was used in BioNLP Shared
Task 2016; SeeDev, a dataset of sentences about
seed development of plants; AGAC, a dataset on
gene mutations and diseases. The latter three
datasets are included in BioNLP 2019 Shared
Tasks. Precision Medicine Track of BioCreative
VI (Dogan et al., 2017) introduced a large dataset
of protein-protein interactions that are affected by
mutations.

SemEval 2017 Task 10 (Augenstein et al., 2017)
was about extracting relations from scientific pa-
per abstracts (physics, computer science and ma-
terials science). SemEval 2018 Task 7 focused on
sentences from computational linguistics papers.
SciERC (Luan et al., 2018) is a dataset consist-
ing of 500 research paper abstracts from major AI
conferences with annotated entities, coreference
links and relations between entities.

3 Dataset description

3.1 The choice of sentences

We have annotated 2010 sentences for binding in-
teractions between biological entities. Those sen-
tences came from a much larger set of 40,000 sen-
tences that were automatically extracted from var-
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ious biomedical journals and underwent minimal
manual post-processing (Rzhetsky et. al., 2019).
While the original set contained numerous inter-
action types, here our focus is on binding interac-
tions only. The text of the sentences are mostly
copied from the journal websites and can include
uncommon Unicode symbols. In rare cases we
had to copy the sentences from PDF versions of
the papers and manually fix incorrect characters.

As stated above, the current version of the
dataset is focused on binding interactions. All sen-
tences in the dataset contain one of the following
words: “bind”, “binds”, “binding”, “bound”. This
will potentially limit the applicability of the mod-
els trained on this dataset on other sentences that
contain information about binding interactions.

3.2 Entities

3.2.1 Entity definition
Every annotated entity is a continuous span of
characters in the sentence surrounded by non-
alphanumeric symbols (can include spaces, hy-
phens etc.).

Tokenization of biomedical texts can be a chal-
lenging task. To ensure consistency, we have ver-
ified that all annotated entities in the dataset are
surrounded by the symbols described in Table 3
of Appendix A.3. Note that all these symbols can
also appear inside an entity name.

3.2.2 Entity types
We have annotated 33 types of entities. For
classification of entities we were governed both,
by biological function and by chemical structure.
More specifically, we distinguish between biolog-
ical and experimental entities. For example, if
the sentence refers to an oligonucleotide in an ex-
periment, we do not annotate it as DNA, but as
an experimental-construct. Furthermore, we de-
fine main organic entity types as protein, protein-
family, protein-complex, DNA and RNA, while
refer to the rest of organic compounds as chemi-
cals. The complete list of entity types is listed in
Appendix A.4.

These decisions were motivated by two main
reasons: (a) only biological entities should be an-
notated and cross-referenced in order to arrive at
biologically meaningful interaction networks; (b)
a higher level of annotation that disregards details
(e.g. chemicals) significantly reduces annotation
resources with no loss to our targetted aim. This

contrasts to the Genia ontology, where entity an-
notation was only based on chemical structure of
substances (Thompson et al., 2017).

Note that while the majority of entities are an-
notated to a single type, two entities with the
same name may be annotated to different types
(e.g. protein or protein-family) depending on
the context, and sometimes these cases may co-
occur in the same sentence (e.g. protein and gene
(1.0.train.166)).

3.2.3 Coreference
Pairs of entities may be in is a or part of rela-
tionships. We have undertaken two approaches
to mark such relationships for unambigous place-
ment of entities when merging relations from one
or many sentences.

3.2.4 Links between entities
1. Sometimes the same entity appears in multi-

ple forms in the sentence. We annotate them
with a “synonym” link. Sometimes, one of
the forms is just an acronym for another form,
in which case we use “abbreviation” link.

2. Biologically nested entities are linked with a
part of link. For example, protein-domains
and protein-regions are part of proteins, while
protein subunits are part of complexes. These
links correspond to the substrate chemical
structure ontology presented in Genia dataset
(Thompson et al., 2017).

3.2.5 Grounding
Entities of types gene, protein, protein-family and
chemical have been cross-referenced with external
database identifiers. The aim of grounding is to
introduce unique naming/identification of entities.
This is particularly useful for unambiguous identi-
fication of entities in the process of merging rela-
tions derived from different sentences into a single
network.

Notably, as a side effect, the process of ground-
ing increased the quality of entity annotation for
the specified entity types.

3.2.6 Ambiguities
Entity annotation is not a straightforward task, as
entities usually appear in a variety of grammati-
cal and biological forms. Therefore, we have de-
veloped the following guidelines for standardized
annotations. Formation of these guidelines was a
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result of iterative annotations followed by resolu-
tion of inter-annotator conflicts.

1. Entity modifications

Sometimes the text contains an entity which
is a mutated form of another entity, or it is
an entity in an unusual state. In these cases
we tag the entity with “mutant” and/or “state”
labels (Appendix A.1, example 1).

2. Spanned and nested entities

If an entity contains multiple tokens, those
may be separated by other words in the text,
or may themselves contain nested simpler en-
tities. In cases when the same token is shared
between multiple complex entities, we anno-
tate the shared tokens only as part of the first
entity (Appendix A.1, example 2). A better
solution to these cases would be to annotate
the shared tokens in all the entities that they
are part of and use a text-span notation to
mark those cases. However, considering the
small number of such cases, we didn’t find
this worthwhile. Sometimes a complex entity
name contains a name of another entity. We
annotate both, and both can appear in inter-
actions. In extreme cases, the second entity
can be a single digit. In contrast to our ap-
proach, entity recognizer systems that do not
support nested entities are not be able to find
these cases. In evaluation, we have a separate
score that reports performance on the nested
entities (Appendix A.1, examples 3-5).

3. A/B syntax

In many cases A/B means a complex of the
proteins A and B. In other cases it refers to
separate proteins A and B, and the interac-
tion with A/B means interactions with both
of them. In both cases, we annotate A and B
as individual entities. In case of complexes,
we also annotate A/B as a complex. If A/B
is involved in an interaction with a protein C,
we annotate an interaction between A/B and
C only if A/B is a complex. If A/B is not
a complex, we annotate two interactions be-
tween A and C, and B and C. (Appendix A.1,
example 6)

4. Hidden entity names and implicit corefer-
ences

Sometimes the sentence is about an entity
which is not explicitly mentioned, but there
are words that refer to it. We do not anno-
tate these words as entities and do not an-
notate corresponding interactions (Appendix
A.1, example 7).

3.3 Interactions

We annotate binding interactions between several
types of entities.

3.3.1 Interaction types
We use three labels: 1 if the interaction exists, 0
for speculations (if the sentence does not conclude
whether the interaction exists or not), and −1 for
negations (if the sentence concludes that there is
no binding interaction between the entities).

We conclude that an interaction exists (1) if we
find explicit triggers describing direct physical in-
teractions, such as A binds/ associates with/ in-
teracts with /recuits /phosphorylates B, and their
grammatical varieties.

Speculative interactions (Appendix A.2, exam-
ples 1-2) arise either due to lack of experimental
evidence or due to the sentence not reaching the
conlusion yet. We mark such cases with a “hy-
pothesis” label. Other cases may be sentences that
are actually titles of the sections or even the pa-
pers. In practice, title of the paper might be ex-
tracted both from the title section of the paper and
from the reference sections of other papers. We
tag the sentences extracted from paper, section or
figure titles by “title” label (Appendix A.2, exam-
ples 3-4).

3.3.2 Ambiguities
1. Entity polymorphisms

When an entity participating in an interac-
tion appears in multiple forms in the sentence
(e.g. plural forms, synonyms, etc.), we anno-
tate the one which is the most obvious from
the sentence. In evaluation, we do not penal-
ize the predictions with another form of the
same entity (Appendix A.2, example 5).

2. Static interactions: protein complexes and
domains

Static or implicit interactions refer to cases
where an interaction is inferred from the con-
text, but is not mentioned with any explicit
trigger.
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When the sentence contains a complex of two
or more proteins, and the components of the
complex are present in the sentence, we an-
notate a binding interaction between them
and tag it with a “complex” label. In rare
cases, the same sentence contains another ex-
plicit mention of the interaction between two
proteins. In this cases we do not tag the inter-
action with “complex” label (Appendix A.2,
examples 6-7). In evaluation, we additionally
report the performance on such implicit bind-
ing interactions inside complexes.

Sometimes we annotate a (positive) binding
interaction between entities A and B, where
B is a region (part of ) of another entity C.
The most common scenario is when B is a
protein domain and A and C are proteins. In
this case, we annotate another interaction be-
tween A and C and tag it with an “implicit”
label. The full list of entity types that can
get involved in similar implicit interactions is
presented in Appendix A.4. We have auto-
matically verified that all such implicit inter-
actions are annotated (Appendix A.2, exam-
ples 8-9).

3. Self interactions

There are cases when an entity binds to itself,
especially when the entity is a protein-family
and the binding can refer to different mem-
bers of the same family (Appendix A.2, ex-
ample 10).

In rare cases, the sentence talks about homod-
imers or oligomerization, which implies that
there is a protein which binds to itself. We
tag these cases with an “implicit” label (Ap-
pendix A.2, example 11-12).

4. Interactions with implicit entities

Sometimes the sentences contain interactions
with entities without naming them. We
exclude these interactions from the dataset
(A.2, example 13).

3.4 Dataset statistics

The lengths of sentences vary from 3 to 138. The
median length is 29, the mean is around 30. 95%
of all sentences have less than 50. The average
number of entity clusters per sentence is 3.92,
while the average number of entity mentions per

sentence is 4.91. On average, there are 1.61 inter-
action per sentence.

We used Cytoscape (Shannon et al., 2003) to
construct a graph based on positive interactions
annotated from our dataset. It has 2248 nodes
(entities) and 3235 edges (interactions) (see Fig-
ure 2 in Appendix A.5). The graph had a large
connected component, containing 65% (1475) of
nodes and 81% (2635) of edges. Many interac-
tions were annotated multiple times, with 67%
(2177) of unique interactions, and up to 11 dupli-
cations per entity pair. The graph showed small-
world properties, with average shortest path be-
tween any pairs of nodes being 5, and with very
few hub nodes. Degrees range from 1 to 83 with
median 1.

3.5 Comparison with other datasets

Table 1 compares BioRelEx 1.0 with the popular
related datasets. The original version of AIMed
has similar number of sentences to BioRelEx, but
the number of annotated relations is significantly
lower due to different annotation guidelines and
choice of sentences. BioInfer contains fewer sen-
tences with a lot more detailed annotations, which
is not suitable for the current machine learning
techniques, hence most of the models designed
for BioInfer simply ignore the details of annota-
tions. Both datasets do not have corresponding
well-defined benchmarks. The five datasets in a
unified format from (Pyysalo et al., 2008a) suit
better for machine learning research, but they are
limited to relation classification tasks.

The dataset for BioCreative VI Precision
Medicine Track has 6.5 times more sentences than
BioRelEx 1.0, but has two times less relations, as
it is focused on a more rare kind of interactions.

GENIA corpus is the closest in spirit to ours.
It has more detailed annotations and covers more
relation types. As a result, the density of binding
interactions in GENIA is much lower (only 2448
binding interactions in 9372 sentences). Also,
there is a slight difference in the goals of GENIA
and BioRelEx. GENIA is best suited for func-
tional annotation and biomedical search optimiza-
tion. We however, had a different aim in mind -
to retrieve interactions in a way to make them use-
ful for interaction network generation. This dif-
ference affected the way we have designed the an-
notation guidelines, as described in the previous
subsections. Because of these differences we did
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not use the ontologies developed in GENIA.
In contrast to all mentioned datasets, BioRelEx

includes grounding information for most of the la-
beled entities.

4 Benchmark

We propose a relation extraction benchmark on top
of our dataset. The task is to take the raw text in-
put and produce clusters of entity mentions along
with binding interactions between the clusters. We
define two main evaluation metrics, one for entity
recognition and one for relation extraction. In ad-
dition to these, we define several other evaluation
metrics that can be helpful in error analysis.

The main evaluation metrics are:

• Entity recognition performance in terms of
micro-averaged precision, recall and F-score.
In this metric we count each occurence of
an entity as a separate item, and measure if
the system could find all mentions in the sen-
tence.

• Relation extraction performance in terms of
micro-averaged precision, recall and F-score.
Relation extraction is measured between en-
tity clusters. Each cluster can be represented
by multiple entity names in the sentence. We
consider a relation between two entity clus-
ters correctly detected, if the system predicts
a relation between all pairs of entity names
from the two clusters.

Two common problems of experimental setups
used in relation extraction literature, as described
in (Pyysalo et al., 2008b), are the inconsistent
training/dev/test splits and hyperparameter tuning
on the test set. To prevent these issues, we en-
force a precise evaluation procedure. Following
(Luan et al., 2018), we randomly split the dataset
into training/dev/test sets with 70%/10%/20% ra-
tio. The training, dev and test sets contain 1405,
201 and 404 sentences, respectively. Training and
dev parts are publicly available as JSON files. We
will set up a publicly available evaluation server to
ensure having a truly blind test set. Additionally,
we have released the evalution script used in the
server1. We encourage everyone to use the dev set
for model selection only.

1The dataset files along with the description of the JSON
structure and the evaluation scripts are available at https:
//github.com/YerevaNN/BioRelEx/

4.1 Error analysis

To help with error analysis, we propose few more
evaluation metrics.

Entity names: Each entity name can be men-
tioned multiple times in the sentence. If a model
finds only one of the mentions, it is considered as
a match for this score. This metric helps to verify
the consistency of entity recognition in different
parts of the sentence.

Flat entities: Many relation extraction systems
do not support recognition of nested entities. This
score acts as if there are no flat entities. More pre-
cisely, we do two modifications before calculating
precision and recall:

1. If an entity mention was found by a system,
we remove all entity mentions that intersect
with that one from the prediction and ground
truth.

2. For the remaining entity mentions we keep
only the ones which do not contain another
mention (e.g., only shortest mentions).

Entity coreferences: Sometimes, several entity
names refer to the same actual entity. For each
sentence we construct a graph, where entity names
are the vertices, and two vertices are joined with
an edge if they refer to the same underlying entity
(are synonyms or abbreviations). This graph con-
sists of one or more connected components, where
each component is a clique and refers to a single
unique entity. We measure precision, recall and f-
score of the edges of the abovementioned graph.
This metric helps to measure the impact of syn-
onym or abbreviation detection.

Relation extraction (any): This metric mea-
sures relation extraction in a weaker form. We
consider a relation between two entity clusters cor-
rectly detected, if the system predicts a relation be-
tween any pair of entity names from the two clus-
ters.

Relation extraction (positive): Annotated rela-
tions have one of the three labels: 1 if the sentence
confirms there is an interaction, −1 if the sentence
confirms there is no interaction, and 0 if the sen-
tence is inconclusive. We report scores that do not
penalize if relations with labels 0 or −1 are not
detected.

Relation extraction (non-implicit): Some of
the interactions are marked as “implicit” by the an-
notators. These are the interactions which can be

https://github.com/YerevaNN/BioRelEx/
https://github.com/YerevaNN/BioRelEx/
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Task Split Relation Types Sentences Entities Relations

AIMed (Bunescu et al., 2005) Relation extraction No No 1978 4141 816
BioInfer (Pyysalo et al., 2007) Relation extraction No Ontology 1100 6349 2662

AIMed* (Bunescu et al., 2005) Classification Yes No 1955 4301 978
BioInfer* (Pyysalo et al., 2007) Classification Yes No 1100 6349 2662
HPRD50* (Fundel et al., 2006) Classification Yes No 145 406 160
IEPA* (Ding et al., 2001) Classification Yes No 486 1118 340
LLL* (Nédellec, 2005) Classification Yes No 77 239 162

BioC V BEL (Rinaldi et al., 2016) BEL extraction Yes Yes 6353 N/A 11066
BioC VI PM (Dogan et al., 2017) Relation Extraction Yes No 12751 10325 1629
BioNLP GE (Kim et al., 2003) Classification+Coref Yes Ontology 9372 93293 36114

BioRelEx 1.0 Relation Extraction Yes Only binding 2010 9871 3235

Table 1: Comparison of BioRelEx 1.0 with the most popular protein-protein interaction datasets. The ones men-
tioned by asterisk are the unified versions from (Pyysalo et al., 2008a)

hard to detect, as they require relatively complex
reasoning. We report scores that do not penalize if
an implicit interaction is not detected.

All our evaluation scripts use test set bootstrap-
ping to compute confidence intervals for the scores
and to test whether the difference between two
models is significant.

5 Experiments

5.1 Baselines
We provide several baselines for the benchmark
described in the previous section. First, we report
several trivial baselines with gold standard enti-
ties, as well as using an off-the-shelf named en-
tity recognizer. Next, we evaluate REACH, an
end-to-end biological relation extraction system,
which does not require re-training. Finally, we
train SciIE, an end-to-end neural network which is
known to produce state-of-the-art results on simi-
lar tasks.

5.1.1 Trivial baselines
Following (Pyysalo et al., 2008a), we report scores
produced by co-occurence baselines. First, we
take all gold entities from the dataset and assume
that there are binding interactions between all of
them. This baseline gives a perfect recall and
is called “Co-occur (gold)”. Then, we pass the
sentences to a biomedical named entity recogni-
tion system SciSpacy (Neumann et al., 2019)
(trained on JNLPBA corpus) and assume that there
are binding interactions between all pairs. This
baseline is called “Co-occur (SciSpacy)”.

5.1.2 REACH
REACH (Valenzuela-Escárcega et al., 2018) is a
rule-based relation extraction system The authors

host a web-based service for extracting relations
from biomedical texts. We did not train or tune
the system. The technical details on how we eval-
uated REACH system on our dataset is presented
in Appendix A.6.

5.1.3 SciIE model
SciIE (Luan et al., 2018) is a complex multi-
task neural architecture developed by University
of Washington for relation extraction from com-
puter science paper abstracts. The model produces
candidate spans of tokens, and then attempts to
jointly predict entities, coreferences and relations
between entities based on the spans. SciIE sup-
ports multi-word and nested entities. The techni-
cal details about adapting our data for SciIE archi-
tecture are available in Appendix A.7.

5.2 Results

The results of the four baselines on the test set
of BioRelEx 1.0 are presented in Table 2. If the
entity names are known, getting 35% F-score for
relation extraction is trivial. Recall for relation
extraction of the co-occurrence baseline is less
than 100% because of the self interactions in the
dataset. On the other hand, entity recognition
is not easy. SciSpacy’s named entity recognizer
trained on the famous JNLPBA dataset (derived
from GENIA corpus) gets 67% precision and less
than 53% recall. Part of the low recall is because
SciSpacy’s NER cannot produce nested entities.
The co-occurrence baseline with these entities gets
less than 20% F-score for relation extraction.

SciIE model has a large number of hyperparam-
eters. We kept the values mentioned in the offi-
cial repository for SciERC dataset with one excep-
tion: we have changed max arg width to 5, as
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Entity Recognition Relation Extraction
Co-occur

(SciSpacy)
Co-occur

(Gold) REACH SciIE

Co-occur
(SciSpacy)

P 67.3± 1.4 (64.6− 69.8) 12.6± 1.3 (10.3− 15.2)
0.0% 0.2% 0.0%R 52.6± 1.5 (49.8− 55.5) 45.1± 3.7 (38.5− 52.3)

F1 59.0± 1.3 (56.4− 61.6) 19.6± 1.9 (16.3− 23.5)

Co-occur
(Gold)

P 100.0± 0.0 (100− 100) 21.5± 1.3 (19.2− 24.2)
100.0% 64.8% 0.0%R 100.0± 0.0 (100− 100) 99.2± 0.5 (98.1− 99.9)

F1 100.0± 0.0 (100− 100) 35.3± 1.8 (32.2− 38.9)

REACH
P 70.6± 1.4 (68.1− 73.1) 63.2± 3.9 (55.6− 70.7)

99.8% 35.2% 0.0%R 65.9± 1.3 (63.4− 68.3) 23.2± 2.3 (19.1− 27.6)
F1 68.2± 1.1 (65.9− 70.3) 33.9± 2.8 (28.6− 39.2)

SciIE
P 87.7± 1.0 (85.8− 89.6) 53.2± 2.3 (48.9− 57.9)

100.0% 100.0% 100.0%R 63.3± 1.6 (60.2− 66.3) 47.4± 3.1 (41.1− 53.1)
F1 73.5± 1.3 (71.0− 75.8) 50.1± 2.3 (45.5− 54.3)

Table 2: Results of the four baselines on the test set of BioRelEx 1.0. We report precision (P ), recall (R) and
F-score (F1) for entity recognition and relation extraction. Every metric is calculated n = 1000 times by boot-
strapping on the test set. The table shows mean, standard deviation and 95% confidence interval of 1000 runs. The
right part of the table shows how often one baseline beats the other ones in 1000 evaluations according to F-score
of relation extraction. We consider the difference between two models to be significant if one performs better than
the other in 95% of cases.

there are very few entities with more than five to-
kens. We did several experiments with different
weights for the NER and coreference branches of
the model and picked the combination which per-
formed best on the dev set of our dataset.

SciIE model significantly outperforms REACH
system on the F-score of relation extraction:
50.1% vs 33.9%. On the other hand, REACH has a
better precision for relation extraction. The differ-
ence between REACH and co-occurrence baseline
with gold entities is not significant.

5.3 Error analysis

To measure the impact of nested entities on entity
prediction performance we calculate Flat entities
metric and compare it with the main entity recog-
nition metrics. Recall jumps from 65.8% to 71.2%
for REACH and from 63.3% to 68.9% for SciIE.

Our error analysis tools measure coreference
detection performance. Both REACH and SciIE
baselines do not output coreferences. SciIE is ca-
pable of producing coreference clusters, but the
best performance on the dev set.

The relaxed versions of relation extraction eval-
uation do not change the results significantly. In
particular, Relation extraction (any) metric gives
35.5% (vs. 33.9%) for REACH and 51.0% (vs.
50.1%) for SciIE.

To understand the impact of sentence lengths on
the performance of the models we calculate our
main metrics on the top and bottom halves of the
list of sentences from dev set sorted by length.

For REACH, F-score on longer sentences is worse
by 1.2 and 0.8 percentage points for entity recog-
nition and relation extraction, respectively. For
SciIE, the differences are much larger, 7.4 and 9.9
percentage points respectively.

5.4 Qualitative analysis

To understand how the SciIE baseline model per-
forms in real-world settings, we did the following
experiment. We took a figure from a paper that
describes MAPK-ERK signaling pathway. Figure
1a shows the schematic representation of the path-
way, as described in the paper (Dantonio et al.,
2018). The caption of the figure in the original
paper reads: “In regular conditions, ligands such
as growth factors or mitogens bind to the RTK,
which is activated by autophosphorylation. Phos-
photyrosine residues recruit adaptor protein Grb2
and Sos, promoting Ras:GTP association. Acti-
vated by GAPs such as NF1, Ras hydrolyzes GTP
and activates Raf, the first effector kinase in the
MAPK pathway. Raf then phosphorylates MEK,
which in turn phosphorylates ERK. p-ERK acti-
vates cytoplasmic and nuclear substrates”.

Figure 1b shows the network extracted by our
SciIE model from the original caption with no
modifications. The original scheme is depicted as
an underlay with light gray shades. The true posi-
tive entities and interactions are highlighted in red.

Our dataset is biased towards sentences with the
verb “bind”. To see how it affects the performance
of our model, we have replaced three triggers in
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Growth factors or
mitogens

RTK

Grb2 Sos

NF1

RAS

Raf

MEK

ERK

GTP

(a)
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Raf

MEK

ERK

GTP
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Growth factors or
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RTK
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GapsNF1

RAS

Raf

MEK

ERK

GTP and Raf

GTP
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(c)

Growth factors or
mitogens

RTK

Grb2 Sos

NF1

RAS

Raf

MEK

ERK

GTP and Raf

GTP

(d)

Figure 1: A network extracted by SciIE model. Refer to Section 5.4 for the details.

the original caption with “binding”. The resulting
network produced by SciIE is presented in Figure
1c. True positives are highlighted with red, while
false positives - with blue. Note that many false
entities, such as “NF1, Ras” are extracted in this
case.

Finally, we removed the sentence containing
the misleading “NF1”, and replaced the ”which
in turn” coreference with “MEK”. Additionally,
the “phospohorylated residues” were replaced by
“phosphorylated RTK” to hint the model that these
residues belong to RTK. The network produced by
SciIE on this version is shown in Figure 1d. The
full captions used in these experiments are shown
in Appendix A.8.

The results demonstrate that our SciIE baseline
works much better when the interactions are ex-
pressed with the verb “bind”. Additionally, we
see that the lack of coreference resolution between
sentences severely limits the applications of this
model.

6 Conclusion

In this paper we have introduced BioRelEx
1.0, a manually annotated corpus for interac-
tion extraction from biomedical literature. We
have developed detailed guidelines for annotat-
ing binding interactions between various bio-
logical entities. The dataset is publicly avail-
able at https://github.com/YerevaNN/
BioRelEx/. Based on the dataset we have de-
signed a benchmark and evaluated several base-
lines on it. Finally, we have demonstrated
the quality of a neural relation extraction model
trained on the dataset in a real-world setting. We
hope this benchmark will help to develop more
accurate methods for relation extraction from un-
structured text.
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A Appendices

A.1 Examples of entity annotation
ambiguities

1. (1.0.train.104) “The inability of
tyrosine-phosphorylated SLP-76 to interact
with nck(SH2*)”. We annotate “nck” as a
protein and “nck(SH2*)” as a protein with
label “mutant”.

2. (1.0.train.45) “... equal amounts of
REGs α and β bound to the proteasome ...”.
We annotate “REGs α” as a protein and link
it to the implicit “REG α”, and annotate “β”
as a protein and link it to the implicit “REG
β”.

3. (1.0.dev.118) “NF-Y binds the HSP70
promoter in vivo.”. We annotate three en-
tities in this sentence: “NF-Y” is a protein,
“HSP70” is a gene, and “HSP70 promoter”
is a DNA. There is a binding interaction be-
tween “NF-Y” and “HSP70 promoter”, but
not with “HSP70”.

4. (1.0.train.964) “...the binding of cor-
tactin to the Arp2/3 complex....”. Here,
“Arp2/3” is annotated as a complex, “Arp2”
is a protein, while “3” is annotated as a pro-
tein and is linked to an implicit entity “Arp3”.

5. (1.0.train.430) “A18 hnRNP Binds
Specifically to RPA2 and Thioredoxin 3’-
UTRs”. Here, “RPA2 3’-UTR” is a region
of “RPA2” RNA. But it is not a continuous
span of characters, so we are forced to anno-
tate only “RPA2”. As a result, the same se-
quence of characters “RPA” is annotated both
as an RNA and as an RNA-region.

6. (1.0.train.121) “JNK/SAPK Binds and
Phosphorylates a MEKK1 Fragment In
Vitro”. Here JNK and SAPK are separate
entities. We annotate binding interaction be-
tween “JNK” and “MEKK1” and between
“SAPK” and “MEKK”.

7. (1.0.train.50) “... Apaf-1 binds cy-
tochrome c and dATP, and this complex re-
cruits caspase-9 ...”. “This complex” refers
to an implicit complex with three entities. We
do not annotate the complex and its interac-
tions.

A.2 Examples of interaction annotation
ambiguities

1. (1.0.train.540) “We also attempted to
examine the actin-binding ability of partially
phosphorylated F-rad.” This sentence moti-
vates the performed experiment, but does not
talk about the outcome.
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Space, full stop “S. cerevisiae” (cell), “S-1.MgADP.Pi” (protein-domain)
Question mark No examples
Comma, colon, semicolon “PI(4,5)P2” (chemical), “f:TFIID” (fusion-protein)
Round brackets “NAD(H)” (chemical), “HMG-1(A-B)” (protein region)
Square brackets “DB[a,l]PDE” (chemical), “[3H]LY341495” (drug)
Hyphen-like symbols “IGF-II promoter” (DNA), “hTcf-4-(180)” (protein-region)
Apostrophe “3’UTR” (RNA), “3’dE5” (chemical)
Asterisk “Rh*” (protein), “C2A* mutant” (protein-domain)
Plus “Ca2+” (chemical), “Na+,K+-ATPase” (protein-complex)
Dot-like symbols “DBAD” (protein-region), “actinϕ” (protein-family)

Table 3: All entities in the dataset are surrounded by any of the symbols described in the first column. On the other
hand, most of these symbols can appear inside entity names. The second column of the table shows examples of
entities which contain these symbols.

2. (1.0.train.755) “We expect that in the
intact BAF complex, the actin monomer is
bound to Brg1 at both of these sites.” This
sentence does not confirm the existence of a
binding interaction.

3. (1.0.train.1397) “Binding of Hairy
derivatives to Gro in vitro.”. This is a title
that uses an indefinite verb, and the contents
of the following paragraphs might imply both
existence and non-existence of the binding
interaction. We annotate the binding interac-
tion between “Hairy derivatives” and “Gro”
with label 0.

4. (1.0.train.1234) “Phosphorylation of
L1 Y1176 inhibits L1 binding to AP-2.” This
is a subsection title, but it clearly implies that
“L1” binds to “AP-2” (which is inhibited by
phosphorylation), so we annotate this inter-
action with label 1.

5. (1.0.train.1154) “... the ORC-Cdc6p
complex (and perhaps other proteins) re-
cruits the six minichromosome maintenance
(MCM) proteins ...”. Here “minichromo-
some maintenance” and “MCM” refer to the
same protein family and are annotated as
synonyms. We annotate binding interaction
between “MCM” and “ORC-Cdc6p”, and
the evaluation script does not penalize the
model if it predicts an interaction between
“minichromosome maintenance” and “ORC-
Cdc6p”.

6. (1.0.train.785) “... TR/RXR binds to
the TRE ...”. Here we annotate a binding in-

teraction between ”TR” and ”RXR” and tag
it as “complex”.

7. (1.0.train.1154) “... Cdc6p most likely
binds to ORC and then the ORC-Cdc6p com-
plex ...”. Here the binding interaction be-
tween “ORC” and “Cdc6p” can be inferred
explicitly from the first part of the sentence
and implicitly from the name of the complex.
In these cases we do not tag the interaction
with “complex” label.

8. (1.0.train.630) “hTcf-4-(180) interacts
directly with the Armadillo repeats of β-
catenin”. Here “hTcf-4-(180)” is annotated
as a domain of “hTcf-4” protein, and “Ar-
madillo repeats” is annotated as a region of
“β-catenin” protein. We annotate the interac-
tion between “hTcf-4-(180)” and “Armadillo
repeats”. Additionally, we annotate three
other interactions: “hTcf-4-(180)” and “β-
catenin”, “hTcf-4” and “Armadillo repeats”,
“hTcf-4” and “β-catenin”, and tag them with
an “implicit” label.

9. (1.0.train.758) “Synaptotagmin binds
β-SNAP, but not α-SNAP...”. Here “Synap-
totagmin” and “SNAP” are annotated as pro-
teins, while “α-SNAP” and “β-SNAP” are
annotated as isoforms of “SNAP”. We anno-
tate a negative binding interaction between
“α-SNAP” and “Synaptotagmin”, but it does
not imply that “Synaptotagmin” does not
bind “SNAP”. This shows that the implicit
“transfer” of an interaction does not hold if
the interaction is negative.

10. (1.0.test.171) “Myozenin binds to both
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α-actinin-2 and -3 but not to itself, whereas
α-actinin-2 and -3 both bind to myozenin as
well as to themselves.” In this sentence we
annotate a negative interaction between “My-
ozenin” and “Myozenin”, and another pos-
itive interaction between “α-actinin-2” and
“α-actinin-2”.

11. (1.0.dev.95) “... thereby inhibiting the
binding of c-Jun homodimer to TRE.” Here
c-Jun homodimer implies that there is a bind-
ing interaction between “c-Jun” proteins.

12. (1.0.train.69) “... Shs1 can bind to
Gin4 and induce Gin4 oligomerization ...”
Here oligomerization implies a binding inter-
action between “Gin4” and “Gin4”.

13. (1.0.train.783) “Binding of IL-1 and
TNF-alpha to their receptors activates several
signaling pathways, including the NFkappaB
and AP-1 pathways.”. We do not annotate
any binding interactions in this sentence, as
“IL-1 receptor” is not an explicitly mentioned
entity.

A.3 Tokenization rules
Table 3 describes the tokenization rules used in
BioRelEx 1.0.

A.4 Entity types
Table 5 lists all entity types with descriptions used
in BioRelEx 1.0 and some useful statistics2.

Table 4 lists the pairs of entity types that are
in part of relationship for which we automatically
add interactions to the dataset.

A.5 BioRelEx 1.0 graph
We have constructed a graph that represents the
whole annotated dataset (Fig. 2) using Cytoscape
tool (Shannon et al., 2003). We use grounding
information to match entities from different sen-
tences. If grounding information is not available,
we fall back to entity names.

A.6 REACH baseline
We use two API calls to get information from
REACH system3:

2We originally annotated DNA-motifs and DNA-regions
as separate entity types, but after some analysis we have seen
inconsistencies: sometimes DNA-motifs were annotated as
DNA. We made a decision to merge all these entity types into
a single cluster with name “DNA”.

3 http://agathon.sista.arizona.edu:
8080/odinweb/api/text

Child Parent

protein-domain protein
protein-region protein
protein-state protein
protein-isoform protein

Table 4: If the sentence contains a positive binding in-
teraction between entities A and B, where A is of a
“child” type listed in this table, and it belongs to an-
other entity C of a corresponding “parent” type, then
we additionally annotate an implicit binding interaction
between B and C.

• In fries mode, the server outputs informa-
tion about entities. Each object corresponds
to one entity mention in the text. Each men-
tion has a text, location in the text, type of
the entity and grounding information. In
rare cases, the same entity name has different
grounding information for different locations
in the text. Our system does not support this
scenario, so we keep the grounding informa-
tion from the first mention.

• In indexcard mode, the server outputs
information about interactions between en-
tities. Entities have grounding identifiers
which can be matched to the output of the
fries mode. We only take the interactions
which have binds type. In one case this API
returned an interaction, where the second par-
ticipant was a list of two entities. In these
cases we take the first one only.

We group multiple mentions of the same entity
name by matching the string. Then we group
multiple entity names into an entity cluster (
unique entity object) by taking into account
the grounding information (the concatenation of
namespace and ID from REACH output).

REACH attempts to detect many entity
types. We keep only the following entity
types: celline, family, protein,
simple-chemical, site. Including other
types (e.g. bioprocess, organ, etc.) de-
creases precision of entity recongition (as these
are not annotated in the dataset).

The implementation of our pipeline based on
REACH is available on GitHub4.

4 https://github.com/YerevaNN/
Relation-extraction-pipeline/

http://agathon.sista.arizona.edu:8080/odinweb/api/text
http://agathon.sista.arizona.edu:8080/odinweb/api/text
https://github.com/YerevaNN/Relation-extraction-pipeline/
https://github.com/YerevaNN/Relation-extraction-pipeline/
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Figure 2: The network of the interactions annotated in BioRelEx 1.0

A.7 SciIE baseline

To use the SciIE model for our dataset we had to
convert our data to the format the model can ac-
cept. We used a tokenzier from scispacy (Neu-
mann et al., 2019), matched the tokens with our
annotated entities, and added entity type, cluster
(coreference) and relation information. The model
supports multiple relation types. We have only
one type: bind. Additionally, we have converted
SciIE code to Python 3, and the converted version
was made available on GitHub5.

Unfortunately, the set of entities produced
by the entity recognizer submodule is not syn-
cronized with the entities that appear in the pre-
dicted coreference clusters and relations. We have
developed another script to convert the output of
SciIE to a JSON format that our evaluation script
can handle. For entities, we used the output of
SciIE entity recognizer submodule (along with the
predicted entity types) and concatenated the enti-
ties that were produced by coreference and rela-
tion extraction submodules (with a label other).
In our JSON, we specify a relation between en-
tity clusters, although SciIE produces relations be-
tween individual entity mentions.

Our preprocessing and post-processing scripts
are available on GitHub6.

5https://github.com/YerevaNN/SciERC/
6https://github.com/YerevaNN/

Relation-extraction-pipeline/

A.8 Captions for Figure 1 of Section 5.4
C In regular conditions, ligands such as growth

factors or mitogens bind to the RTK, which
is activated by autophosphorylation. Phos-
photyrosine residues bind to adaptor protein
Grb2 and Sos, promoting Ras:GTP associa-
tion. Activated by GAPs such as NF1, Ras
binds GTP and Raf, the first effector kinase
in the MAPK pathway. Raf then phosphory-
lates MEK, which in turn binds ERK. p-ERK
activates cytoplasmic and nuclear substrates.

D In regular conditions, ligands such as growth
factors or mitogens bind to the RTK, which
is activated by autophosphorylation. Phos-
photyrosine residues bind to adaptor protein
Grb2 and Sos, promoting Ras:GTP associa-
tion. Ras binds GTP and Raf, the first effec-
tor kinase in the MAPK pathway. Raf then
phosphorylates MEK, afterwards MEK binds
ERK. p-ERK activates cytoplasmic and nu-
clear substrates.

https://github.com/YerevaNN/SciERC/
https://github.com/YerevaNN/Relation-extraction-pipeline/
https://github.com/YerevaNN/Relation-extraction-pipeline/


190

Entity type Statistics Description

protein 3640 / 3777 /
82 / 147

Entities either represented with protein names; or with gene names (X) but factually
standing as actual proteins in the sentence (either explicitly: X protein; or implicitly
X binds the promoter)

protein-family 1086 / 1017 /
0 / 0

Entities represented with protein-family names (e.g. actin) or representing a group
of protein with common properties (e.g. globular proteins; x-domain containing
proteins, etc)

chemical 532 / 295 / 0 /
0

Any chemical compound other than protein or DNA or RNA, excluding experi-
mental reagents/antibodies.

DNA 506 / 468 / 2 /
0

Any entity type that represents a region of or full DNA molecule, except for gene
names. These include explicit ‘DNA’ mentions; DNA-regions, such as gene pro-
moters, DNA elements; DNA sequences represented with nucleotides and DNA-
motifs represented with names; chromosomes and plastids.

protein-complex 419 / 294 / 1 /
0

Protein complexes are either explicitlly mentioned with name followed by ‘com-
plex’ suffix, or with name containing subunits seperated with slashes or dashes, or
with names that do not contain the members, but are known to be complexes.

protein-domain 318 / 134 / 2 /
1

Domains may or may not be explicitly annotated with the suffix ‘domain’. They
may be specific domains of proteins present in the sentence, or general domain
names without reference to the proteins they belong to.

cell 152 / 1 / 3 / 2 Explicit mentions of a cell or entities representing cell names, cell-line, bacterium,
as well as viruses.

experimental-construct 141 / 60 / 0 / 0 Entities refering to artificially merged molecules, including tagged proteins, tagged
RNA and DNA and chemically modified proteins/RNA/DNA.

RNA 137 / 105 / 0 /
0

All the entities representing physical RNA molecules (mRNA, tRNA, rRNA, etc.),
or RNA-motifs (represented by RNA sequence or motif name) or RNA regions
(represented by region names). mRNAs presented in text with corresponding gene
names are also annotated as RNA.

experiment-tag 128 / 35 / 0 / 0 Chemicals or proteins experimentally added to proteins (e.g. GST tag).
reagent 128 / 43 / 0 / 0 Chemicals/biomolecules used in experimental settings (e.g. antibody)
protein-motif 122 / 43 / 0 / 0 Amino acid sequence patterns represented either by motif names or amino acid

sequences, which may or may not be followed by explicit ‘motif’ mention.
gene 109 / 6 / 2 / 0 Entities represented with gene names.
amino-acid 69 / 2 / 0 / 0 Amino acids represented by amino acid names or explicit amino acid mentions.
protein-region 66 / 37 / 0 / 0 Protein regions are entities refering to amino-acid sequences (motif names or actual

sequence representations); or regions on the protein not refering to whole domains.
assay 55 / 0 / 0 / 0 Entities refering to exprimental method names or assays or procedures.
organelle 51 / 20 / 0 / 0 Subcellular entities represented with their names (e.g. ribosome).
peptide 37 / 24 / 0 / 0 Short amino-acid polymers represented by their names, which may or may not be

followed by explict ‘peptide’ mentions.
fusion-protein 32 / 25 / 0 / 0 Fusion-proteins
protein-isoform 32 / 33 / 0 / 0 Protein sub-types encoded by the same gene, but resulting from its differential

post-processing. These entities may or may not appear in a sentence with explicit
isoform mentions.

process 31 / 0 / 0 / 0 Entities refering to sequences of events at molecular, cellular or organismal lev-
els. These may be pathway names (represented either by member gene names
or target process names, with or without explicit ‘pathway’ mentions); process
names/descriptions (e.g. autophagy); disorders and biological phenotypes.

mutation 20 / 0 / 0 / 0 Specifications of mutations in the form of nucleotide-to-nucleotide (A55G) or
amino acid-to-amino acid transitions (Ala55Ser) or sequence to sequence transi-
tions (ACGT to AGGT).

protein-RNA-complex 20 / 11 / 0 / 0 Complexes composed of proteins and RNA, mentioned either with component
names or the complex alias, with or without explicit ‘protein-RNA’ mention.

drug 18 / 8 / 0 / 0 Drug names
organism 7 / 0 / 0 / 0 Multi-cellular organisms (i.e. excluding cells, bacteria and viruses)
disease 6 / 0 / 0 / 0 Entities representing disease names.
protein-DNA-complex 5 / 7 / 0 / 0 Complexes composed of proteins and DNA, mentioned either with component

names or the complex alias, with or without explicit ‘protein-DNA’ mention.
brand 4 / 0 / 0 / 0 Entities representing company names or reagent/drug brands.
tissue 2 / 0 / 0 / 0 Entities representing tissues.
RNA-family 2 / 1 / 0 / 0 Entities representing groups of RNA with common properties.
gene-family 2 / 0 / 0 / 0 Entities representing sets of genes encoding for protein-families or combined by a

common characteristic. Usually mentioned with name followed by ‘gene family’.
fusion-gene 1 / 1 / 0 / 0 Entities representing fusion products of two genes. Usually represented by gene

names separated with dashes followed (or not) by ‘fusion’ suffix.

Table 5: Entity types annotated in the dataset. The second column shows the number of mentions of those entities
in the sentences, number of binding interactions involving those entities, number of mutated entities and number
of entities that appear in a special state (e.g. phosphorylated).


