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Abstract

Verbs play a fundamental role in many biomed-
ical tasks and applications such as relation and
event extraction. We hypothesize that per-
formance on many downstream tasks can be
improved by aligning the input pretrained em-
beddings according to semantic verb classes.
In this work, we show that by using semantic
clusters for verbs, a large lexicon of verb
classes derived from biomedical literature, we
are able to improve the performance of com-
mon pretrained embeddings in downstream
tasks by retrofitting them to verb classes. We
present a simple and computationally efficient
approach using a widely-available “off-the-
shelf” retrofitting algorithm to align pretrained
embeddings according to semantic verb clus-
ters. We achieve state-of-the-art results on text
classification and relation extraction tasks.

1 Introduction

Core tasks in biomedical natural language process-
ing (BioNLP) such as relation and event extraction,
text classification, syntactic and semantic parsing,
natural language inference, and entailment can
all benefit from rich computational lexicons
containing information about the behaviour and
meaning of words in biomedical texts. Verbs are
especially important in many of these tasks (Cohen
et al., 2008); for example, describing protein–
protein interactions in biomedical text can often
rely on a wide range of verbs, such as “bind,”
“activate,” “carry,” “facilitate,” “interact,” etc. in
order to determine the specific type of interaction.

Lexical semantic classes for verbs can be used to
abstract away from individual words, or to build a
lexical structure (taxonomy) which predicts much
of the behaviour of a new word by associating it
with an appropriate class (Levin, 1993; Kipper
et al., 2008). For example, the verbs “assess,”
“evaluate,” “estimate,” “explore,” and “analyze”

belong to the class examine, while the verbs
“utilize,” “employ,” and “exploit” belong to the
class use. In addition to simple synonyms of verbs,
semantic classes capture similarity in their use and
behaviour in text by analysing their contexts (Levin,
1993).

In the past, lexical verb classes have been
successfully shown to improve the performance
classifiers in a variety of tasks and down stream
applications in the biomedical domain; such
as relation extraction (Sharma et al., 2010),
biomedical fact extraction (Rupp et al., 2010),
text classification for cancer (Baker et al., 2015),
biomedical discourse analysis (Cox et al., 2017),
and biomedical information retrieval (Mahalak-
shmi, 2015).

Lexical classes are useful for their ability to
capture generalizations about a range of linguistic
properties (Kipper et al., 2000); our hypothesis is
therefore that by retrofitting embedded word repre-
sentations to semantic verb classes, semantically-
similar verbs (i.e. member verbs within the same
lexical class) like “suppress” and “inhibit” will be
pulled together in vector space, whereas verbs like
“collect” and “examine” will not. Consequently,
this allows NLP systems to generalize away from
individual verbs, alleviating the data sparseness
problem of representing each verb in the corpus
individually.

Retrofitting is a graph-based learning technique
for using lexical relational resources to obtain
higher quality semantic vectors (Faruqui et al.,
2015). It is applied as a post-processing step by
running belief propagation on a graph constructed
from lexicon-derived relational information to
update word vectors. It can be applied to any
pretrained word embedding vectors. The intuition
behind retrofitting is to encourage the retrofitted
vectors to be similar to the vectors of related word
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types and similar to their original distributional
representations.

Using a standard “off-the-shelf” retrofitting
algorithm, we apply the idea of retrofitting to
verb clusters to two sets of widely-used pretrained
embedding vectors in BioNLP (those by Pyysalo
et al. (2013a) and by Chiu et al. (2016)) to
obtain improved embeddings. We show that
by doing nothing more than using this simple
approach, we achieve state-of-the-art results on
two text classification tasks (both tasks evaluated
on document and sentence level classification),
and a relation extraction task. We make our
retrofitted embeddings freely available to the
BioNLP community along with our code.1

The main contribution of this work is to be the
first of its kind to apply verb-based retrofitting in
the biomedical domain. Retrofitting has thus far
only been applied for aligning vectors to Medical
Subject Headings (MeSH) (Yu et al., 2016), and
been validated only in an extrinsic setting. We
show that with very little effort, we can achieve
state-of-the art results on various downstream tasks
in a range of biomedical subdomains.

This paper will first describe relevant work on
retrofitting to lexical resources in BioNLP; we
then briefly give an overview of two verb cluster
and lexicons that we use in our methodology, and
then our task-based evaluation. We end with a
discussion of the evaluation results.

2 Related work

Lexical resources can be used to enrich represen-
tation models by providing them other sources of
linguistics information beyond the distributional
statistics obtained from corpora. In recent literature,
various methods to leverage knowledge available
in human- and automatically-constructed lexical
resources have been proposed.

One such method involves modifying the ob-
jectives in the original representation learning
procedures so that they can jointly learn both dis-
tributional and lexical information—for example,
Yu and Dredze (2014) modify the CBOW objective
function by introducing semantic constraints as ob-
tained from the paraphrase database (Ganitkevitch
et al., 2013) to train word representations which
focus on word similarity over word relatedness.

1Our retrofitted embeddings and code are
released under an open license and can be found
here: https://github.com/cambridgeltl/
retrofitted-bio-embeddings

Another class of methods incorporates lexical
information into the vector representations as a
post-processing procedure. The method fine-tunes
the pretrained word vectors to satisfy linguistic
constraints from the external resources. The
method can be applied to any off-the-shelf models
without requiring large corpora for (re-)training
as the joint-learning models do. Among these
methods, retrofitting (Faruqui et al., 2015) is widely
used.

Given any (pretrained) vector-space representa-
tions, the goal of retrofitting is to bring closer words
which are connected via a relation (e.g. synonyms)
in a given semantic network or lexical resource (i.e.
linguistic constraints). For example, Yu et al. (2016,
2017) retrofit word vector spaces of MeSH terms
by using additional linkage information from the
UMNSRS hierarchy to improve the representations
of biomedical concepts. Building on retrofitting,
Lengerich et al. (2018) generalize retrofitting meth-
ods by explicitly modelling individual linguistic
constraints that are commonly found in health
and clinical-related lexicons (e.g. causal-relations
between diseases and drugs).

In theory, the joint-learning models could be
as effective (or better) as those produced by fine-
tuning distributional vectors. However, the perfor-
mance of joint-learning models has not surpassed
that of fine-tuning methods.2 Furthermore, the
joint-learning objectives are usually model-specific
and are tailored to a particular model, making it
difficult to use them with other methods. In this
work, we will use retrofitting to incorporate our
lexical features into the word representations.

3 Verb clusters

In this work, we investigate retrofitting popular
word embeddings to two publicly available3

lexicons for verb clusters. The first is composed
of 192 relatively frequent verbs from a corpus
of 2230 biomedical journal articles which have
been hierarchically classified into three levels: 16,
34, and 50 verb classes. The three levels reflect
different granularity in the semantics of the verb
classes as illustrated in Figure 1. These clusters
were annotated by 4 domain experts and 2 linguists,
were used to create the gold standard (Korhonen

2The SimLex-999 home page (www.cl.cam.ac.uk/
˜fh295/simlex.html) lists state-of-the-art performance
models, none of which have learned representations jointly

3https://github.com/cambridgeltl/
bio-verbnet

https://github.com/cambridgeltl/retrofitted-bio-embeddings
https://github.com/cambridgeltl/retrofitted-bio-embeddings
www.cl.cam.ac.uk/~fh295/simlex.html
www.cl.cam.ac.uk/~fh295/simlex.html
https://github.com/cambridgeltl/bio-verbnet
https://github.com/cambridgeltl/bio-verbnet
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Figure 1: Examples of the verb classes introduced by Korhonen et al. (2006).

et al., 2006). We will refer to this lexicon for the
remainder of this paper as the annotated clusters.

Chiu et al. (2019) developed a methodology
to further extended the annotated clusters auto-
matically using text from PubMed abstracts and
full articles with the goal of facilitating the future
creation of a BioVerbNet resource, a specialized
resource similar to VerbNet (Schuler, 2005). We
will refer to this lexicon for the remainder of this
paper as the expanded clusters.

Chiu et al. (2019) use a two-step method.
In the first step, the best contexts for learning
biomedical verb representations are identified
using a model based on skip-gram with negative
sampling (SGNS). It involves first creating a
context configuration space based on dependency
relations between words, followed by applying
an adapted beam search algorithm to search
this space for the class-specific contexts, and
finally using these contexts to create class-specific
representations.

In the second step, the optimized representation
is used to provide word features for building a verb
classification. This is obtained by expanding the
verbs in the annotated clusters, where the candidate
verbs are selected from BioSimVerb (Chiu et al.,
2018) based on their frequent occurrence in
biomedical journals across 120 subdomains of
biomedicine. A Nearest Centroid classifier is
then used to connect the new candidates to an
appropriate class. The resulting classification
provides 1149 verbs assigned to the 50 classes
in the original annotated clusters. For each
verb, the expanded clusters lists the most frequent
dependency contexts that reflect their syntactic
behaviour along with example sentences.

For the rest of the work, we will investigate the
use of both the annotated and expanded clusters

4 Methodology

We apply retrofitting to our default pretrained
embeddings4 The goal is to change the vector-
space of the pretrained word embeddings to better
capture the semantics represented by the verb
classes in both the annotated and expanded clusters.
These verb classes provide different levels of
generalization to support various tasks, from the
coarse-grained level of 16 classes to a fine-grained
one of 50 classes.

We base our retrofitting method on that proposed
by Faruqui et al. (2015). Given any pretrained
vector-space representation, the main idea of
retrofitting is to pull words which are connected
in relation to the provided semantic lexicon closer
together in the vector space. The main objective
function to minimize in the retrofitting model is
expressed as

|V |

∑
i=1

(
αi

∥∥∥~vi−~̂vi

∥∥∥+ ∑
(i, j)∈S

βi j
∥∥~vi−~v j

∥∥) (1)

where |V | represents the size of the vocabulary,~vi

and~v j corresponds to word vectors in a pretrained
representation, and ~̂iv represents the output word
vector. S is the input lexicon represented as a set of
linguistic constraints—in our case, they are pairs
of word indices, denoting the pairwise relations
between member verbs in each class. For example,

4For our default embeddings, we use the embeddings by
Chiu et al. (2016) for our text classification tasks and Pyysalo
et al. (2013a) for relation extraction.
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Number of verb pairs

Annotated clusters Expanded clusters

16-classes 1,774 96,998
34-classes 638 54,063
50-classes 376 50,104

Table 1: Linguistic constraint counts under each
class as obtained from the Korhonen’s resource and
our automatically-created lexicon.

a pair (i, j) in S implies that the ith and jth words
in the vocabulary V belong to the same verb class.

The values of α i and β i j are predefined and
control the relative strength of associations between
members. We follow the default settings for these
values as stated in the authors’ work by setting
α = 1 and β = 0.05 in all of the experiments.
To minimize the objective function for a set of
starting vectors~v and produce retrofitted vectors ~̂v,
we run stochastic gradient descent (SGD) for 20
epochs. An implementation of this algorithm has
been published online by the authors;5 we used this
implementation in the present work.

Table 1 shows the linguistic constraint counts
under each class as derived from the two lexicons.
When retrofitted against the three top levels, the
member verbs at each subclass are merged with its
upper class, as in the work of Faruqui et al. (2015).

5 Evaluation

We apply retrofitting to incorporate the lexical
information into word representations. Then we
evaluate the quality of the retrofitted-representation
as features for two NLP tasks: text classification
and relation classification.

5.1 Task 1: Text classification
We evaluate our word representations using two
established biomedical datasets for text classifi-
cation: the Hallmarks of Cancer (HOC) (Baker
et al., 2015, 2017) and the Exposure taxonomy
(EXP) (Larsson et al., 2017). We evaluate each
based on their document-level and sentence-level
classifications.

The Hallmarks of Cancer depicts a set of
interrelated biological factors and behaviours that
enable cancer to thrive in the body. Introduced
by Weinberg and Hanahan (2000), it has been
widely used in biomedical NLP, including as part of

5https://github.com/mfaruqui/
retrofitting

the BioNLP Shared Task 2013, “Cancer Genetics
task” (Pyysalo et al., 2013b). Baker et al. (2015,
2017) have released an expert-annotated dataset of
cancer hallmark classifications for both sentences
and documents in PubMed. The data consists of
multi-labelled documents and sentences using a
taxonomy of 37 classes.

The Exposure taxonomy, introduced by Larsson
et al. (2017), is an annotated dataset for the
classification of text (documents or sentences)
concerning chemical risk assessments. The
taxonomy of 32 classes is divided into two
branches: one relates to assessment of exposure
routes (ingestion, inhalation, dermal absorption,
etc.) and the second to the measurement of
exposure bio-markers (biomonitoring). Table 2
shows basic statistics for each dataset.

HOC EXP

Document Sentence Document Sentence

Train 1,303 12,279 2,555 25,307
Dev 183 1,775 384 3,770
Test 366 3,410 722 7,100
Total 1,852 17,464 3,661 36,177

Table 2: Summary statistics of the Hallmarks of
Cancer (HOC) and the Chemical Exposure Assess-
ment (EXP) datasets.

The model follows the convolutional neural
network (CNN) model proposed by Kim (2014).
An implementation of this algorithm on HOC
and EXP has been published by Baker and
Korhonen (2017); we use this implementation
in our experiment. The input to the model is
an initial word embedding layer that maps input
texts into matrices, which is then followed by
convolutions of different filter sizes, 1-max pooling,
and finally a fully-connected layer leading to an
output Softmax layer predicting labels for text.
Model hyperparameters and the training setup are
summarized in Table 3.

Parameters Values

Vector dimension 200
Filter sizes 3,4 and 5
Number of filters 300
Dropout probability 0.5
Minibatch size 50
Input size (in tokens) 500 (documents), 100 (sen-

tences)

Table 3: Hyper-parameters used in (Baker and
Korhonen, 2017).

https://github.com/mfaruqui/retrofitting
https://github.com/mfaruqui/retrofitting
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For both tasks, we use the embeddings6 by Chiu
et al. (2016). Performance is evaluated using the
standard precision, recall, and F1-score metrics of
the labels in the model using the one-vs.-rest setup:
we train and evaluate K independent binary CNN
classifiers (i.e. a single classifier per class with the
instances of that class as positive samples and all
other instances as negatives). Due to their random
initialization, we repeat each CNN experiment
20 times and report the mean of the evaluation
results to account for variances in neural networks.
To address overfitting in the CNN, we follow the
authors’ early stopping approach, testing only the
model that achieved the highest results on the
development dataset.

5.2 Task 2: Relation classification
We evaluate our retrofitted representations on the
Bio-Creative VI Chemical–Protein relation ex-
traction dataset (CHEMPROT) (Krallinger et al.,
2017). The corpus provides mention and relation
annotations for complex events related to chemical–
protein interaction in molecular biology. The goal
of this task is to predict whether a given chemical–
protein pair is related or not, and to then verify its
corresponding relation type. There are five types of
relations: Up-regulator, Down-regulator, Agonist,
Antagonist, and Substrate. The corpus is provided
in the Turku Event Extraction System (TEES) XML
format and are installed with the Turku Extraction
System (Björne, 2014). It is parsed with the
the BLLIP parser (Charniak and Johnson, 2005)
with the McClosky bio-model (Mcclosky, 2010),
followed by conversion of the constituency parses
into dependency parses using the Stanford Tools
(MacCartney et al., 2006). Table 4 summarizes key
statistics for the dataset.

Documents Entities Relations

Train 1,020 25,769 4,157
Dev 612 15,571 2,416
Test 800 20,829 3,458
Total 2,432 62,169 10,031

Table 4: Summary statistics of the Chemical-
Protein interaction dataset (CHEMPROT).

The model follows the CNN model proposed by
Björne and Salakoski (2018). We directly use their
published implementation. The model input is an

6https://github.com/cambridgeltl/
BioNLP-2016

initial word embedding layer that maps input texts
into matrices, followed by convolutions of different
filter sizes and 1-max pooling, and finally a fully
connected layer, leading to an output Softmax layer
for predicting labels. Performance is evaluated
using the standard precision, recall, and F1-score
metrics of the labels in the model. Classification
is performed as multilabel classification where
each example may have 0 to n positive labels.
Model hyperparameters and the training setup are
summarized in Table 5.

Parameters Values

Vector dimension 200
Filter sizes 1, 3, 5 and 7
Number of filters 400 (100 of each size)
Dropout probability 0.5
Learning rate 0.001
Minibatch size 50

Table 5: Hyperparameters used by Björne and
Salakoski (2018).

To account for variance in neural networks due to
their random initialization, we adopt the ensemble
settings used by Björne and Salakoski (2018). We
train 20 models and take the n best ones (n = 5),
ranked with their F1-score on the development set,
and use their averaged predictions. The ensemble
predictions are calculated for each label as the
average predicted confidence scores from all the
models. We also incorporate the authors’ early
stopping approach where the model is trained until
the development loss no longer decreases. We train
for up to 500 epochs, stopping once validation
loss has no longer decreased for 10 consecutive
epochs. To focus on the effect of verb classes
on biomedical representations, we experiment
with word representations induced on biomedical
texts; this diverges from the authors who use the
embeddings7 by Pyysalo et al. (2013a), induced on
a combination of biomedical and general-domain
data (PubMed, PMC and Wikipedia texts).

6 Results

We compare the performance of the baseline with
the retrofitted embeddings models by measuring
their precision (P), recall (R), and F1-scores in text
classification and relation extraction when used as
input features.

For the text classification tasks, Tables 6 and 7
show the micro-averaged scores for the HOC and

7obtained from: http://bio.nlplab.org

https://github.com/cambridgeltl/BioNLP-2016
https://github.com/cambridgeltl/BioNLP-2016
http://bio.nlplab.org
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the EXP tasks respectively. Each table shows
the performance on document- and sentence-level
classification (as columns) with different semantic
lexicons (as rows).

For the relation classification task (CHEM-
PROT), Table 8 shows the micro-averaged scores.
The best results are shown in bold and statistically
significant scores are shown with an asterisk. All
statistical tests are performed using a two-tailed
t-test with α = 0.05.

We first describe experiments measuring im-
provements from the retrofitting method, followed
by comparisons against using different sets of
lexicons during retrofitting.

6.1 Retrofitting

We use Equation 1 to retrofit word representations
using linguistic constraints derived from verb
lexicons. Overall, the retrofitted models show
improvements in most tasks.

For text classification, the scores have improved
in three out of the four cases. For the HOC task
(Table 6) all retrofitted models outperform the
baseline in F1-score, which is largely attributed
to a substantial improvement in recall (particularly
for document-level classification, where there is a
15 point increase over the baseline). In total, five
out of the twelve improved scores reported are also
statistically significant.

The results for the EXP task (Table 7) are more
mixed. At the document level, all retrofitted models
achieve a slight F1-score gain and half of the scores
are significant. There is an improvement in recall
at the cost of lower precision when compared to
the baseline.

However, we can see that sentence-level classifi-
cation is more difficult, due to the smaller amount
of context information available. On the sentence
level, the baseline seems to outperform all others,
and only two out of six cases are significant. It
indicates that the lexicons did not aid sentence-
level classification in this particular task.

In relation classification, the word representation
achieves the state-of-the-art result after incorpo-
rating our lexical information (34 classes). From
Table 8, there is approximately a 1.5 point F1-
score increase over the baseline, and half of the
improvements reported are significant. The results
from both tasks suggest that the class-features
provided by verb lexicons improve performance
over the raw verb features.

6.2 Semantic lexicons

We compare the performance of our retro-fitted
embeddings using both expanded clusters and the
manually annotated clusters lexicon. The expanded
clusters retrofitted embeddings outperform the
original annotated clusters retrofitted embeddings
in all evaluated tasks. This is likely due to the
larger size of the expanded clusters in comparison
to annotated clusters (Table 1), thus providing
features for more verbs.

Lexical resources can be useful for NLP tasks
for their abilities to capture generalizations about a
range of linguistic properties; however, the degree
of generalization needed may vary from task to
task. When experimenting with retrofitting with
different levels of verb classes, we observe a
notable difference (1–2 points in F1-score) between
models retrofitted with the coarse-grained level of
16 classes and the fine-grained level of 50 classes.

For document-level text classification in both
datasets (Tables 6 and 7), models appear to benefit
from a finer-grained classification of 50 classes; on
the sentence level a medium level of generalization
(34 classes) seems optimal. The best result for
relation classification (Table 8) is also obtained
with 34 classes.

7 Discussion

The task-based evaluations suggest that verb
clusters and a verb-optimized representation, can
be a useful resource to support biomedical NLP
tasks. In text classification, it has been observed
that the occurrence patterns of verbs can be “topic-
related” and certain set of verbs frequently appear
within a specific topic of documents (Doan et al.,
2009; Hatzivassiloglou and Weng, 2002; Sekimizu
et al., 1998). Regarding this, expanded clusters
appears to have captured some of these topic-
related properties. On the HOC dataset, we note
that some frequent verbs (such as “proliferate”
and “grow”) appearing in documents relating
to the topic Sustaining proliferative signaling
also share the same classes in our automatically-
created lexicon. Similarly, for exposure assessment
documents describing air monitoring data in EXP,
we can frequently see member verbs such as
“inhale” and “breathe” in the proceed class.

Entities–relations described in the biomedical
literature are often expressed in a predicative form
where a trigger word (most commonly a verb)
connects two or more entities; here a range of
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Document classification Sentence classification

Lexicon P R F1 P R F1

No lexicon & SOTA 77.8 51.7 62.1 56.8 30.7 39.9

Annotated clusters
16-classes 75.1 56.4 64.8 47.1 34.6 39.9
34-classes 74.2 56.6 64.3 48.4 35.5 41.0
50-classes 74.9 59.2 66.2 48.4 35.2 *40.7

Expanded clusters
16-classes 75.5 64.4 *69.5 45.2 36.5 *40.4
34-classes 74.3 63.5 *68.5 52.7 35.6 42.5
50-classes 73.9 66.1 *69.8 50.9 34.7 41.3

Table 6: Performance results for the Hallmarks of Cancer task (HOC) when different sets of lexicons are used
for retrofitting the baseline model. Baseline denotes a skip-gram model generated with our optimized training
settings. Scores are adopted from Baker and Korhonen (2017). All figures are micro-averages expressed as
percentages (Bold: the best score, *: statistically significant).

Document classification Sentence classification

Lexicon P R F1 P R F1

No lexicon & SOTA 89.5 87.1 88.3 66.2 62.8 64.5

Annotated clusters
16-classes 88.9 87.7 *88.3 67.1 58.9 62.7
34-classes 89.4 87.8 *88.6 67.2 58.2 *62.4
50-classes 88.9 88.7 88.8 65.6 55.7 60.3

Expanded clusters
16-classes 89.2 87.9 88.5 66.7 60.0 63.2
34-classes 88.7 88.9 *88.8 67.3 58.7 62.7
50-classes 88.6 89.1 88.9 67.5 58.6 *62.7

Table 7: Performance results for the Chemical Exposure Assessment task (EXP). Baseline denotes a skip-
gram model generated with our optimized training settings. The “No lexicon” scores are from Baker and
Korhonen (2017). All figures are micro-averages expressed as percentages. (Bold: the best score, *: statistically
significant).

verbs can be used to describe similar relations.
Understanding the commonalities shared among
individual verbs helps NLP systems to identify the
particular type of relation the text is describing.
Consider as an example the suppress class in our
verb lexicons. It captures the fact that its members
are similar in terms of syntax and semantics, and
they can be used to make similar statements which
describe similar events. In CHEMPROT, member
verbs in the suppress class such as “suppress” and
“inhibit” can often be found in sentences depicting
the down-regulation relation between chemicals
and proteins.

For many NLP applications, lexical classes
are useful for their ability to capture general-
izations about a range of linguistic properties:
by retrofitting word representations to lexical
resources, semantically similar verbs (i.e. member
verbs within the same lexical class) like “suppress”
and “inhibit” will be pulled together in the vector

space, whereas verbs like “collect” and “examine”
will not. Consequently, this allows NLP systems to
generalize away from individual verbs, alleviating
the data sparseness problem of representing each
verb in the corpus individually. The lexical classes
provide different levels of generalization to support
tasks of various needs, from the coarse-grained
level of 16 classes to a fine-grained level of 50. A
notable performance difference is observed when
we evaluate models retrofitted with different levels
of verb classes. Among all three classes, we
observe a larger improvement over models at the
finer-grained levels of 34 or 50 classes, which
reveal that finer-grained levels of verb semantic
distinction seem more contributive in our assessed
tasks.
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Lexicon P R F1

No lexicon 76.9 63.5 *69.5
SOTA 75.1 65.1 69.7

Annotated clusters
16-classes 76.5 64.6 70.1
34-classes 78.2 63.8 *70.3
50-classes 76.5 65.0 *70.3

Expanded clusters
16-classes 76.3 65.2 70.3
34-classes 77.5 65.6 71.0
50-classes 76.2 65.9 *70.7

Table 8: Performance results for the Chemical-
Protein Interaction (CHEMPROT) when different
sets of lexicons are used for retrofitting the baseline
model. Baseline denotes a skip-gram model gen-
erated with our optimized training settings. SOTA
denotes the state-of-the-art result reported by Björne
and Salakoski (2018) using the embeddings by
Pyysalo et al. (2013a). All figures are micro-
averages expressed as percentages. (Bold: the best
score for the task, *: statistically significant).

8 Conclusions

Many core NLP tasks and applications in the
biomedical domain such as relation and event
extraction, text classification, and text mining may
benefit from accurate embedded representation of
verbs.

Verb semantic classes capture generalizations
about a range of linguistic properties, by retrofitting
embedded word representations to semantic verb
classes, semantically similar verbs (i.e. verbs
that are members of the same lexical class) are
pulled together in the vector space. Consequently,
this allows NLP systems to generalize away from
individual verbs, reducing the problem of data
sparseness in representing less frequent verbs.

The key contribution of this work is to show
that by using semantic classes for verbs (such
as those provided by both the annotated and
expanded clusters) we can improve the downstream
performance on several tasks in the biomedical
domain by aligning word embeddings according to
semantic verb classes.

This is achieved by a post-processing retrofitting
procedure, using a standard “off-the-shelf” method,
by running belief propagation on a graph con-
structed from lexicon-derived relational informa-
tion to update word vectors. It can be applied to
any pretrained word embedding vectors.

We applied two lexicons of semantic verb
clusters to two sets of widely used pretrained em-

bedding vectors in BioNLP on several downstream
tasks: two text classification tasks (the Hallmarks
of Cancer, and Chemical Exposure Assessment)
with both document and sentence classification, as
well as a relation extraction task (CHEMPROT).
We used a standard “off-the-shelf” retrofitting
algorithm to obtain improved embeddings, and we
feed the retrofitted representation to the current
state-of-the-art models for their respective tasks.
We controlled the experimental setup by using the
same model implementation, as well as the same
training, development and test data folds.

The results show that using verb clusters to
retrofit embeddings, we achieved new state-of-
the-art performance in the evaluated downstream
tasks (with statistically significant scores); the only
exception being sentence level classification for the
Chemical Exposure Assessment task (however we
do improve SOTA in document level classification
for the same task). We also note a performance
difference when retrofitting with different levels of
verb classes, where we see a larger improvement
when using finer-grained levels of verb semantic
classes (30 or 50 classes), which seem more
contributive.

For future work, we will further investigate the
possibility of using verb lexicons for retrofitting
new generations of word representation models
such as contextualized embeddings; we will further
evaluate on other downstream biomedical tasks, for
instance event and pathway extraction and medical
question answering.
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