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Abstract

This paper presents a simple but general and
effective method to debug the output of ma-
chine learning (ML) supervised models, in-
cluding neural networks. The algorithm looks
for features that lower the evaluation metric
in such a way that it cannot be ascribed to
chance (as measured by their p-values). Us-
ing this method – implemented as GEval tool –
you can find: (1) anomalies in test sets, (2) is-
sues in preprocessing, (3) problems in the ML
model itself. It can give you an insight into
what can be improved in the datasets and/or
the model. The same method can be used to
compare ML models or different versions of
the same model. We present the tool, the the-
ory behind it and use cases for text-based mod-
els of various types.

1 Introduction

Currently, given the burden of big data and pos-
sibilities to build a wide variety of deep learning
models, the need to understand datasets, intrinsic
parameters and model behavior is growing. These
problems are part of the interpretability trend in the
state-of-the-art research, the good example being
publications at NeurIPS 2018 conference and its
Interpretability and Robustness in Audio, Speech,
and Language Workshop.1

The problem of interpretability is also crucial in
terms of using ML models in business cases and
applications. Every day, data scientists analyze
large amounts of data, build models and sometimes
they just do not understand: why the models work
in a certain way. Thus, we need fast and efficient
tools to look into models in their various aspects,
e.g. by analyzing train and test data, the way in
which models influence their results, and how their
internal features interact with each other. Conse-
quently, the aim of our research and paper is to

1https://irasl.gitlab.io/

present a tool to help data scientists understand the
model and find issues in order to improve the pro-
cess. The tool will be show-cased on a number of
NLP challenges.

There are a few extended reviews on inter-
pretability techniques and their types available at
(Guidotti et al., 2018; Adadi and Berrada, 2018; Du
et al., 2018). The authors also introduce purposes
of interpretability research: justify models, control
them and their changes in time (model debugging),
improve their robustness and efficiency (model val-
idation), discover weak features (new knowledge
discovery). The explanations can be given as: (1)
other models easier to understand (e.g. linear re-
gression), (2) sets of rules, (3) lists of strong and
weak input features or even (4) textual summaries
accessible for humans.

The interpretability techniques are categorized
into global or local methods. “Global” stands for
techniques that can explain/interpret a model as
a whole, whereas “local” stands for methods and
models that can be interpreted around any chosen
neighborhood. Another dimensions of the inter-
pretability categorization are: (1) intrinsic inter-
pretable methods, i.e. models that approximate the
more difficult ones and are also easy to understand
for humans or (2) post-hoc explanations that are
derived after training models. Hence, explanations
can be model-specific or model-agnostic, i.e. need-
ing (or not) the knowledge about the model itself.

As far as model-agnostic (black-box) methods
are concerned, one of the breakthroughs in the do-
main was the LIME method (Local Interpretable
Model-Agnostic Explanations) (Tulio Ribeiro et al.,
2016). LIME requires access to a model and it
changes the analyzed dataset many times (doing
perturbations) by removing some features from in-
put samples and measuring changes in the model
output. The idea has two main drawbacks. The
first is that it requires access to the model to know

https://irasl.gitlab.io/
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the model output for perturbed samples. The other
disadvantage is that it takes a very long time to
process big datasets, which makes the method un-
feasible in case of really large datasets, e.g. several
millions of text documents.

Other interpretability methods concern the in-
ternal model structure in a white-box manner,
e.g. L2X (Chen et al., 2018), which instruments
a deep learning model with an extra unit (layer)
and the analyzed model is trained with this unit
jointly.

We introduce an automatic, easy to use and a
model-agnostic method that does not require ac-
cess to models. The only requirement is access to
the dataset, i.e. input sample data points, model
results and gold standard labels. The method (and
a command-line tool), called GEval,2 is based on
statistical hypothesis testing and measuring the sig-
nificance of each feature. GEval finds global fea-
tures that “influence” the model evaluation score in
a bad way and worsen its results.

Moreover, we present the work of GEval us-
ing examples from various text-based model types,
i.e. named entity recognition, classification and
translation.

In the following sections we introduce the idea
to use p-value and hypotheses testing to debug ML
models (Section 2), describe the algorithm behind
GEval (Section 3), and then show some use cases
for state-of-the-art ML models (Section 4).

2 Using p-values for debugging ML
Models – general idea

Creating an ML model is not a one-off act, but a
whole continuous process, in which data scientist or
ML engineer should analyze what are the weakest
points of a model and try to improve the results by
fixing the pre- or post-processing modules or by
changing the model hyperparameters or the model
type itself. Moreover, regression checks are needed
for new releases of a model and its companion
software, because, even if the overall result is better,
some specific regressions might creep in (some of
them for trivial reasons) and be left unnoticed in the
face of the general improvement otherwise. Thus,
one may look for features, in a broad sense, in the
test data and, during the ML engineering process,
focus on the ones for which the evaluation metric

2https://gonito.net/gitlist/geval.git/;
see also (Graliński et al., 2016) for a discussion of a
companion Web application

significantly goes down below the general average
(in absolute terms or when compared with another
model) as they might reveal a bug somewhere in
the ML pipeline.

Which features are suspicious? We should look
for either the ones for which evaluation metric de-
creases abruptly (even if they are infrequent) or the
ones which are very frequent and which influence
the evaluation metric in a negative manner, even
if just slightly (or the ones which are somewhere
in between these two extremes). We will show (in
Section 4) that natural language processing (NLP)
tasks are particularly amenable to this, as words
and their combinations can be treated as features.
Consider, for example, a binary text classification
task. If you have an ML model for this task, you
could run it on a test set, sort all words (or bigrams,
trigrams, or other types of features) using a chi-
squared statistical test to confront the feature (or its
lack) against the failure or success (using a 2× 2
contingency table) of the classification model and
look at the top of the list, i.e. at words with the
highest value of χ2 statistics, or, equivalently, the
lowest p-value. P-value might be easier to interpret
for humans and they are comparable across statis-
tical tests. As we are not interested in p-values as
such (in contrast to hypothesis testing), but rather in
comparing them to rank features, there is no need to
use procedures for correcting p-values for multiple
experiments, such as Bonferroni correction.

See, for instance, Table 1, where we presented
the results of such an experiment for a specific
classifier in the Twitter sentiment classification task.
The average accuracy for the tweets with the word
“know” is higher than for the ones containing the
word “reading”; still, the accuracy for “know” is
more significant (as it was more frequent). Thus,
when debugging this ML model, more focus should
be given to “know”, and even more to “though”,
for which lower average accuracy and p-value was
found (this is, of course, related to the fact that this
conjunct connects contrastive clauses, which are
hard to handle in sentiment analysis).

WORD COUNT + − ACC χ2 P-VALUE

THOUGH 343 254 89 0.7405 35.2501 0.00000
KNOW 767 619 148 0.8070 13.4284 0.00025
READING 72 57 15 0.7917 2.226 0.1357

Table 1: Example of words from Twitter classification
(see Section 4) task with their statistical properties

https://gonito.net/gitlist/geval.git/
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This kind of analysis is clearly not white-box
debugging (it does not depend on the internals of
the models), but even calling it black-box is not
accurate, as the model is not re-run. What is needed
is just the input and the actual and expected output
of the system. Hence, the most appropriate name
for this technique should be ”no-box” debugging.

2.1 Evaluating ML models for NLP

Counting successes and failures (accuracy) is
just the simplest evaluation metrics used in NLP
and there are actually many more: for the classi-
fication itself, a soft metric such as cross-entropy
could be used, for other tasks we have metrics such
as F1 (sequence labeling tasks), BLEU (machine
translation), WER (ASR) or even more specialized
metrics, e.g. GLEU for grammatical error correc-
tion (Napoles et al., 2015). For such non-binary
evaluation schemes using chi-square test is not
enough, a more general statistical test is needed.

Let us introduce some notation first. A test
set T = (X,Y ) is given, where X =
(X1, . . . , Xp), X1, . . . , Xp ∈ X are inputs and
Y = (Y1, . . . , Yp), Y1, . . . , Yp ∈ Y — corre-
sponding expected outputs (i.e. T consists of p
items or data points and their expected labels).
There are no assumptions as to what Xi and Yi
are, they could be numbers, strings, vectors of
numbers/strings, etc. Also, actual outputs Ŷ =
(Ŷ1, . . . , Ŷp), Ŷ1, . . . , Ŷp ∈ Ŷ from the analyzed
ML system are given. An evaluation metric

Z : Xp ×Yp × Ŷp → R,

is assumed and defined for any p.
No assumption is made for Z here, it does need

to be differentiable, its values does not have to be
interpretable on an interval or ratio scale. All that
is assumed is that higher values of Z represent
a “better” outcome. Z is a the-higher-the-better
metric, a loss function L would need to be turned
into Z as: Z = −L(X,Y, Ŷ ).

The evaluation metric Z is usually run for the
whole test set to get one number, the overall value
summing up the quality of the system.

For the purposes of “no-box” debugging, how-
ever, we are going to use it in a non-standard man-
ner: the evaluation scoreZ is going to be calculated
for each item separately to learn which items are
“hard” and which items are “easy” for an ML model
in question. For a classification tasks, it means sim-
ply partitioning the items, e.g. sentences, into suc-

cesses and failures, but in the case of more “gradual”
evaluation schemes, the items will be ranked more
“smoothly” – from items for which the system out-
put was perfect, through nearly perfect, partially
wrong to completely incorrect. Building on this,
we will be able to compare the distribution of evalu-
ation scores (or rather their ranks) within the subset
of items with a given feature against the subset of
items without it (see Section 2.3).

In other words, a vector ζ = (ζ1, . . . , ζp) of
evaluation scores, one score for each data point
will be calculated:

ζi = Z((Xi), (Yi), (Ŷi)).

This approach is natural for some evaluation
schemes, especially the ones for which the eval-
uation metric for the whole test set is calculated as
a simple aggregate, e.g. as the mean:

Z(X,Y, Ŷ ) =
1

p

p∑
i=1

Z((Xi), (Yi), (Ŷi))

=
1

p

p∑
i=1

ζi.

The examples of metrics having the above property
are accuracy and cross-entropy. There exist, how-
ever, evaluation metrics for which the equality like
this would not hold. For instance, BLEU evalua-
tion metric, widely used in machine translation, is
based on precision of n-grams calculated for the
whole dataset (Papineni et al., 2002). BLEU is not
recommended to be used for single utterances, as
many translations will be scored at 0 in isolation,
even when their quality is not that low (if no 4-gram
from the gold standard is retrieved, BLEU scores
to zero, which is a problem for isolated sentences,
but not when the whole corpus is considered). In
other words, it is not a good idea to use BLEU to
compare sentences (to know which one was hardest
to translate), as many bad and not-so-bad transla-
tions are indistinguishable if BLEU ζi values were
considered. Still, when looking for words which
are “troublesome” for a specific machine transla-
tion system, BLEU ζi value might have enough
signal to be useful. Alternatively, one could switch
to a similar metric, which has better properties for
per sentence evaluation, e.g. to Google GLEU for
machine translation (Wu et al., 2016).

In exploratory data analysis, only sets of X and
Y are usually considered. What we are going to
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do is to treat the output of an ML model (Ŷ ) and
evaluation results (ζ) as additional columns in a
data frame and explore such extended dataset to
find anomalies. It could be viewed as a blend of
machine learning and data science.

2.2 Feature extraction

We are interested in “features”, i.e. factors that
might or might not occur in a data point (features
or “metafeatures” as these are taken not only from
the inputs, but also from the actual and expected
outputs). In the case of textual data, it is words
that could be treated as features to be ranked with
p-value with our approach, so for NLP tasks, after
tokenization (and possibly some normalization),
one could obtain features such as: “input contains
the word ‘der”’, “expected output contains the word
‘but”’, “actual output contains the word ‘though”’.

In general, we need a set of possible features
F and a function φ to extract features from a data
point:

φ : X×Y× Ŷ→ 2F.

Note that in this general form, a feature might be a
combination of simpler features, e.g.: “input con-
tains the word ‘ein’ and expected output contains
the word ‘an”’.

2.3 Using the Mann-Whitney test

The main idea for “no-box” debugging is taken
from hypotheses testing, just as assessing different
methods for medical treatments or in A/B testing
schedule: we assume that we have two datasets –
the results of working procedures (Biau et al., 2010;
Kohavi and Longbotham, 2017). The datasets are
treated as distinct results of different procedures
and compared. In our case, one “dataset” is the
subset (X,Y, Ŷ )+f of items with a chosen particu-
lar feature f ∈ F and the other one – (X,Y, Ŷ )−f

– the data points without the feature f .
We rank the whole dataset (X,Y, Ŷ ) and

then check if the distributions of data points
from the two subdatasets ((X,Y, Ŷ )+f against
(X,Y, Ŷ )−f ) are similar or not. Checking is car-
ried out using the Mann-Whitney rank U test. If
the p-value is very low, we may suspect that the
difference in metric is not accidental. Thus, we
can draw the conclusion that the feature reduces
the evaluation score of our model and should be
looked at.

The (Wilcoxon-)Mann-Whitney signed-ranks
(Wilcoxon, 1945) test is a non-parametric equiva-
lent of the paired t-test when the population might
not be assumed to be normally distributed. It is
most commonly used to test for a difference in the
mean (or median) of paired observations.

The Mann-Whitney test makes important as-
sumptions: (1) the two samples need to be depen-
dent observations of the cases, (2) the paired ob-
servations are randomly and independently drawn,
(3) data are measured on at least an ordinal scale.
The assumptions are fulfilled in our non-standard
(from the point of view of hypothesis testing) case.
One-tailed test will be used, as we want to separate
the “hardest” features from the “easiest” ones.

2.4 Aren’t p-values an abomination?

The p-value is the probability for a given statis-
tical model that, when the null hypothesis is true,
the statistical summary would be greater than or
equal to the observed value. The use of p-values
in hypothesis testing is common in many fields of
science. Criticisms of p-values are as old as the
measures themselves. There is a widespread think-
ing that p-values are often misused and misinter-
preted. There are many critical articles concerning
these problems (Briggs, 2019). In particular, fixed
significance level (α) is often criticized. The sig-
nificance level for a study is chosen before data
collection, and typically set to 5%. One practice
that has been particularly criticized is rejecting the
null hypothesis for any p-value less than 5% with-
out other supporting evidence. The p-value does
not, in itself, support reasoning about the probabili-
ties of hypotheses but is only an additional tool for
deciding whether to reject the null hypothesis or
not. Based on this concept we use p-values only to
select the most promising features. We do not use
significance level but only raw p-values, so that we
could generate a ranked list of features.

Instead of p-value, the “expected improvement”
(how the evaluation score would improve if we
fixed the problem, i.e. the average score were the
same as for the items without it?) could be calcu-
lated for a feature f :

Z((X,Y, Ŷ )−f )− Z(X,Y, Ŷ ).

P-values have, however, some advantages. They
can be calculated for numerical features, not just
binary factors (such as words), using Kendall’s τ .
For instance, in the context of NLP we might be
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interested in questions like: are longer sentences
harder to translate? are shorter utterances harder to
classify? are named entities harder to find in older
texts?

Kendall’s τ coefficient (Kendall, 1938), is a
statistic used to measure the ordinal association
between two measured quantities. It evaluates the
degree of similarity between two sets of ranks given
to a same set of objects. This coefficient depends
upon the number of inversions of pairs of objects
which would be needed to transform one rank or-
der into the other. It is known that when one of the
variables is binary and the other is ordered, with
or without tied values, the Mann-Whitney test is
equivalent to Kendall’s τ test (Burr, 1960). This
means that it is sound to rank numerical features
against 0/1 features such as words. All p-values
reported in the following sections are according to
the Mann–Whitney/Kendall test.

2.5 Most worsening features

Instead of calculating feature p-values for a sin-
gle model, one could compare the results of two
models by looking at the difference in their evalu-
ation scores rather than at the absolute value. Let
us assume that two models M and M ′ are to be
compared and their outputs, respectively Ŷ and
Ŷ ′, are known, hence evaluation scores ζ and ζ ′

can be calculated. Now, we could apply the Mann-
Whitney test for δi = ζi − ζ ′i rather than for ζi
or ζ ′i. This way, features that worsen the results
(when switching from M to M ′) can be tracked,
e.g. whenever a new version of a model or a pro-
cessing pipeline is released. This could be viewed
as a form of regression testing for ML models.

Note that for some evaluation metrics, other
methods for comparing scores (e.g. ζi/ζ ′i rather
than ζi − ζ ′i) may be more sound. Still, simple dif-
ference should give you at least a general direction
for each feature.

3 Implementation

GEval was implemented in Haskell as a
command-line tool. First of all, it is a general
evaluator for a wide variety of tasks, i.e. it simply
calculates the total score for a number of evaluation
metrics. On top of this basic functionality, more
advanced modes are available in GEval, e.g. one
can evaluate the test set item by item (basically
calculate ζi) and sort the items starting from the
ones with the worst score. Calculating p-values

for features is a step even further. Fortunately, this
can be done in an effective manner even for a very
large number of features simply by accumulating
feature ranks, as the sum of the ranks could be
easily turned into Mann-Whitney U and, then, the
final p-value.

As the item-by-item (or “line-by-line”) mode or
calculating p-values can be done for any evalua-
tion metric in GEval, whenever a new metric, even
an exotic or complicated one, is implemented in
GEval, such advanced options for data analysis are
available and ready to use.

This stands in contrast to specialized eval-
uation tools, e.g. SacreBLEU for Machine
Translation (Post, 2018). Moreover, GEval pro-
cessed very large datasets in minutes in contrast
to popular model-agnostic interpretability tool
LIME (Tulio Ribeiro et al., 2016) that works about
14 s per one data point (tests made at GPU DGX
machine). Thus, LIME method is not efficient for
very large datasets.

3.1 Features
First of all, we need to understand the output of

GEval analysis and what is meant as a feature.
Features are combined from the inputs, model

outputs and expected results (i.e. gold standard),
identified respectively as “in:”, “out:”, “exp:”.
There might be an additional index, mainly for
the input data, e.g. ”in<number>” indicates the
index of a column in the file.

A feature generated in GEval listing is of the
following form:

• a token from the input/output/expected output,
e.g. in<1>:though,

• a bigram from the input/output/expected out-
put, e.g. out:even ++ better,

• a word shape based on regular expressions,
e.g. in<1>:SHAPE:99 for two-digit numbers,
in<1>:SHAPE:A+ for acronyms,

• a Cartesian feature – two features occurring
together in one item, but not needing to
stand side by side to each other, e.g. exp:1
˜˜in<1>:sad being a combination of class 1
in the expected output and “sad” occurring in
the input text.

4 Case studies

We analyzed 3 different types of text-based mod-
els – for classification, machine translation and
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named entities recognition. We tested models on
common open-source datasets. Finally, we ob-
served if our tool can help us understand model
problems and their causes. In the following we
show a few tips how the tool can help to find solu-
tions to improve models, get some important find-
ings or post-process model results to improve final
predictions.

4.1 The GEval workflow

At the very beginning we should know the over-
all metric for our validation or development set,
GEval should be run for this as:

g e v a l −−m e t r i c M u l t i l a b e l −F1 − i i n . t s v −
o o u t . t s v −e e x p e c t e d . t s v

Then we analyze GEval listing obtained with
the --worst-features option (even more
features can be derived using extra options
such as --bigrams, --word-shapes,
--cartesians) and look for interesting features,
i.e. features with very low p-value and the metric
value much smaller than the metric value for
overall test set. These features should have
considerably high coverage in the dataset.

When we get the interesting feature listing,
we may specific analyze data points from input
dataset (GEval options: --line-by-line and
--filter) to understand why there is a problem
with those features.

4.2 Sentiment analysis

We tested text classification tasks on the “Twitter”
data set (Go et al., 2009). The models are fitted
using ULMFiT library (Howard and Ruder, 2018).

Results of Twitter sentiment analysis with ULM-
FiT are shown in Table 2. What is worth to note
that the model has a problem with positive tweets
that contain words of negation or words express-
ing sadness or anger by their own (not in a longer
context), e.g. “can’t”, “doesn’t”. Examples of such
hard cases are: “Don’t hate physics. it is lovely.”,
“It doesn’t mean I am angry with him.”.

We performed an additional test with the ULM-
FiT model: We trained the model using half of
the training set (774,998 text samples) and then
found interesting/suspicious features. We added
a set of samples (of size 18,009) with “though”
word, then trained a new model (though-model).
Additionally, we combine preliminary set with
the same additional number (18,009) of random

FEATURE COUNT ACC P-VALUE

in<1>:though 343 0.74 0.00004
in<1>:no++idea 21 0.48 0.001
in<1>:yeah 227 0.76 0.003
in<1>:know 767 0.81 0.004
in<1>:which 98 0.71 0.006
in<1>:wouldn’t 38 0.68 0.029

exp:1 ˜˜in<1>:sad 13 0.38 0.001
exp:1 ˜˜in<1>:though 72 0.67 0.002
exp:1 ˜˜in<1>:can’t 160 0.73 0.002
exp:1 ˜˜in<1>:never 81 0.67 0.001
exp:1 ˜˜in<1>:but 549 0.73 0.0000
exp:1 ˜˜in<1>:not 395 0.71 0.0000
exp:0 ˜˜in<1>:you 958 0.77 0.0000
exp:0 ˜˜in<1>:haha 73 0.63 0.0002

Table 2: GEval feature listing for classification for sen-
timent analysis on Twitter dataset. We used output
from model ULMFiT with 0.86 total accuracy on the
chosen validation set. “Acc” stands for the average ac-
curacy for tweets with a given feature. Labels for pos-
itive sentiment are “1”, i.e. in feature names “exp:1” ,
and for negative sentiment – “0”.

samples (random-model). The “though”-model
achieved better accuracy of 85.704% than random
and preliminary ones (respectively: 85.383% and
85.558%).

In Figure 1, we show the result of LIME method
for one data point (sentence) which contains hard
features gotten from GEval.

Figure 1: LIME visualisation of influence of tokens
on final results. The sentence is marked as positive
in gold annotations. GEval hard feature are ”FAIL”
and ”which” that generate drop in F1 for the whole test
dataset (down to 59% and 71% respectively). They also
contributes negatively into this sample.

4.3 Machine translation

We tested machine translation tasks on a
German-to-English challenge WMT-2017 (WMT).
We compared two models: LIUM (Garcı́a-
Martı́nez et al., 2017) (BLEU score of 30.10) and
the best UEDin (Sennrich et al., 2016) (BLEU
35.12). We checked cases when UEDin is worse
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than LIUM, using the method described in Sec-
tion 2.5. In other words, we were looking the spe-
cific features for which the best model behaves
badly when compared with an inferior model. The
interesting features worsening UEDin in compari-
son with LIUM are shown in Table 3. Inspecting
specific sentences we can see a problem that euro
currency is translated to pounds, which can be a
critical bug in an industry translation system. Obvi-
ously, it is very easy to repair with post-processing.
However the point is not to overlook the source of
model problems, that can be easily and efficiently
achieved with GEval.

Other examples of translation problems are “be”
which is a very difficult word to translate in various
contexts or words like “people” and “Menschen”
that meanings varies in different contexts.

FEATURE COUNT DROP IN BLEU P-VAL

exp:euros 31 -0.0647 0.0000
in<1>:Euro 31 -0.0534 0.0000
exp:be 296 0.0206 0.0004
exp:Federal 12 -0.0529 0.0004
exp:small 21 -0.0288 0.0008
out:$ 36 -0.0193 0.0012

Table 3: Comparison of machine translation models:
LIUM and UEDin – features worsening UEDin (WMT-
17 new task test data).

4.4 Named entity recognition

We tested known NER (named entities recogni-
tion) models with GEval. Here we report results
with FLAIR (Akbik et al., 2018) on CoNLL 2003
dataset (Tjong Kim Sang and De Meulder, 2003).
We achieved 93.06% F1 score3.

Our test procedure is as follows. We generated
GEval listing. Below we explain the findings –
GEval features and we show results in Table 4.
A few input samples and outputs for the chosen
features are presented in Table 5. To understand
the results we need to bear in mind that output
results and annotations (gold standard) are encoded
in CoNLL 2003 files as upper-cased named entity
class (i.e. LOC, PER, ORG, MISC) and the index
in the input sentence, e.g. “LOC:0 PER:7,8”.

3Results reported in authors publication for NER models
on original CoNLL 2003 test set is 93.07%. This result was
not achieved with the current version of the library. See the
discussion at (Flair, 2018).

A few of our finding are presented here (in the
Table 4, the relevant rows are listed in the same
order):
• upper-cased texts are difficult for the

model, e.g. features: in<1>:SHAPE:A+
˜˜in<1>:SHAPE:. (word written in upper case
combined with a punctuation mark, i.e. not a
header);
• there is a problem when named entity is ex-

pected at the beginning of sentence, e.g. exp:0
˜˜out:0,1 or exp:1,2++PER. It means that a named
entity was expected just for the first word, but was
wrongly marked by the ML model for the first two
words);
• there is a problem with MISC class,

especially in upper-cased texts and at the
beginning of texts, e.g. features: out:MISC
˜˜in<1>:SHAPE:A+; out:MISC++0,1;
out:MISC++0,1 ˜˜in<1>:SHAPE:A+;
• localization and organization classes are quite

often mixed, e.g. exp:LOC++: ˜˜out:ORG++:;
• a role of a person is sometimes mixed with the

person name and in such cases there is a problem
with annotation consistency between train and test
dataset, e.g. in<1>:Pope;
• also part of organization names that also are

common words are sometimes misannotated or
not recognized by the model, e.g. in<1>:League;
in<1>:National; in<1>:DIVISION;
• numbers are hard for the model – numbers

for dates, e.g. in<1>:/ ˜˜in<1>:SHAPE:9.999;
exp:ORG ˜˜in<1>:SHAPE:99.99.
• and there are many particular cases that are

worth looking into, e.g. country names that are
might be adjectives as well: in<1>:German;
in<1>:Czech.

5 Conclusions

Interpretability of machine learning models is a
very active field of research. We presented GEval
tool to analyze datasets and ML models. GEval is
a post-hoc model agnostic technique that do not
require any access to the model. The tool is very
efficient so it can be particularly useful for very
big text datasets that are difficult to process us-
ing perturbation-based interpretability methods, e.g.
LIME. We also showed use cases to explain what
kind of conclusions we can drive from the GEval
analysis.
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FEATURE COUNT F1 P-VAL

in<1>:SHAPE:. ˜˜in<1>:SHAPE:A+ 399 0.828 0.000

exp:0 ˜˜out:0,1 17 0.484 0.000
exp:1,2++PER 10 0.767 0.002

exp:MISC 563 0.849 0.000
out:MISC ˜˜in<1>:SHAPE:A+ 176 0.639 0.000
out:MISC++0,1 45 0.289 0.000
out:MISC++0,1 ˜˜in<1>:SHAPE:A+ 35 0.100 0.000

exp:LOC++: ˜˜out:ORG++: 29 0.704 0.000

in<1>:Pope 4 0.748 0.003

in<1>:DIVISION 35 0.495 0.000
in<1>:League 17 0.548 0.000
in<1>:National 25 0.615 0.000

in<1>:/ ˜˜in<1>:SHAPE:9.999 15 0.800 0.000
exp:ORG ˜˜in<1>:SHAPE:99.99 13 0.752 0.000

in<1>:German 15 0.709 0.001
in<1>:Czech 14 0.693 0.000
in<1>:Santa 19 0.727 0.001

Table 4: Named entity recognition on CoNLL 2003 test dataset with FLAIR model (92.36% for the whole test set).

FEATURE & EXAMPLES GOLD STANDARD ANNOTATIONS & MODEL OUTPUTS

in<1>:National
Peters left a meeting between NZ First and National negotia-
tors...

GOLD: ORG:NZ First, ORG:National; OUTPUT: ORG:NZ
First and National

in<1>:SHAPE:(
1. United States III ( Brian Shimer , ... ) one; GOLD: ORG:United States III; OUTPUT: LOC:United States

in<1>:Santa
German Santa in bank nearly gets arrested . GOLD: MISC:German PER:Santa; OUTPUT:

MISC:German Santa

Table 5: Named entity recognition on CoNLL 2003 – items from the dataset for features extracted and shown in
Table 4.
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and Piotr Wierzchoń. 2016. Gonito.net - Open Plat-
form for Research Competition, Cooperation and
Reproducibility. In Proceedings of the 4REAL Work-
shop, pages 13–20.

Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri,
Franco Turini, Fosca Giannotti, and Dino Pedreschi.
2018. A survey of methods for explaining black box
models. ACM Comput. Surv., 51(5):93:1–93:42.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.

Maurice G. Kendall. 1938. A new measure of rank cor-
relation. Biometrika, 30(1/2):81–93.

Ron Kohavi and Roger Longbotham. 2017. Online
Controlled Experiments and A/B Testing, pages 922–
929. Springer US, Boston, MA.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammati-
cal error correction metrics. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers), volume 2, pages 588–593.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. CoRR, abs/1804.08771.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for wmt 16. In Proceedings of the First Con-
ference on Machine Translation: Volume 2, Shared
Task Papers, pages 371–376. Association for Com-
putational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003 - Volume 4,
CONLL ’03, pages 142–147, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestri. 2016. Model-agnostic interpretability of
machine learning. In Proceedings of the Inter-
national Conference on Machine Learning, Work-
shop on Human Interpretability in Machine Learn-
ing (WHI / ICML 2016), Stanford, CA. Morgan
Kaufmann.

Frank Wilcoxon. 1945. Individual comparisons by
ranking methods. Biometrics Bulletin, 1(6):80–83.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint
arXiv:1609.08144.

https://github.com/zalandoresearch/flair/issues
https://doi.org/10.18653/v1/W17-4726
https://doi.org/10.18653/v1/W17-4726
https://www.kaggle.com/kazanova/sentiment140;http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
https://www.kaggle.com/kazanova/sentiment140;http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3236009
http://arxiv.org/abs/1801.06146
http://arxiv.org/abs/1801.06146
https://doi.org/10.1007/978-1-4899-7687-1_891
https://doi.org/10.1007/978-1-4899-7687-1_891
http://arxiv.org/abs/1804.08771
http://arxiv.org/abs/1804.08771
https://doi.org/10.18653/v1/W16-2323
https://doi.org/10.18653/v1/W16-2323
https://doi.org/10.3115/1119176.1119195
https://doi.org/10.3115/1119176.1119195

