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Abstract

Derivation is a type of a word-formation pro-
cess which creates new words from exist-
ing ones by adding, changing or deleting af-
fixes. In this paper, we explore the potential
of word embeddings to identify properties of
word derivations in the morphologically rich
Czech language. We extract derivational re-
lations between pairs of words from DeriNet,
a Czech lexical network, which organizes al-
most one million Czech lemmata into deriva-
tional trees. For each such pair, we compute
the difference of the embeddings of the two
words, and perform unsupervised clustering of
the resulting vectors. Our results show that
these clusters largely match manually anno-
tated semantic categories of the derivational
relations (e.g. the relation ‘bake–baker’ be-
longs to category ‘actor’, and a correct clus-
tering puts it into the same cluster as ‘govern–
governor’).

1 Introduction

Word embeddings are a way of representing dis-
crete words in a continuous space. Embeddings
are used in neural networks trained for various
tasks, e.g. in neural machine translation (NMT),
or can be pre-trained in various versions of lan-
guage models to be used as continuous represen-
tations of words for other tasks. One of the most
popular frameworks for training word embeddings
is word2vec (Mikolov et al., 2013).

In this paper, we examine whether the word em-
beddings (trained on the whole words, not using
any subword units or individual characters) cap-
ture derivational relations. We do this to better
understand what different neural networks repre-
sent about words and to provide a base for further
development of derivational networks.

Derivation is a type of word-formation process
which creates new words from existing ones by

živitVerb “to nourish”
živenýAdj “nourished”
oživitVerb “to revive”

oživenýAdj “revived”
oživovatVerb “to be reviving”

živnýAdj “nutrient” (e.g. substrate)
živnostNoun “craft”

živnostnı́kNoun “craftsman”

Figure 1: An excerpt from a derivational family rooted
in the word “živit” (to nourish, to feed). Note that
the word “oživený” (revived, rejuvenated), which can
be derived from either “oživit” (to revive) or “živený”
(nourished, fed), is arbitrarily connected only to the for-
mer, in order to simplify the derivational family to a
rooted tree.

adding, changing or deleting affixes. For example,
the word “collide” can be used as a base for deriv-
ing e.g. the words “collider” or “collision”. The
derived word “collision” can be, in turn, used as a
base for “collisional”.

Words derived from a single root create deriva-
tional families, which can be approximated by di-
rected acyclic graphs or (with some loss of infor-
mation) trees; see Figure 1 for an example.

Derivational relations have two sides: form-
based and semantic. For a pair of words to be
considered derivationally related, the two words
must be related both by their phonological or or-
thographical forms and by their meaning.

2 Related work

We have not found any prior work aimed specifi-
cally at derivational relations in word embeddings.

Cotterell and Schütze (2018) present a model of
the semantics and structure of derivationally com-
plex words. Our work differs in that we are exam-
ining how are derivational relations represented in
preexisting applications.
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Gladkova et al. (2016) detect morphological and
semantic relations (including some derivational re-
lations) with word embeddings. Their approach is
analogy-based and they conclude that their “exper-
iments show that derivational and lexicographic
relations remain a major challenge”.

Gábor et al. (2017) explore vector spaces for
semantic relations, using unsupervised clustering.
They evaluate the clustering on 9 semantic relation
classes. Our approach is similar, but we focus on
derivational relations.

Soricut and Och (2015) use word embeddings
to induce morphological segmentation in an un-
supervised manner. Some of the relations between
words that this approach implicitly uses are deriva-
tional.

3 Data

In this section, we describe the network of deriva-
tional relations and the corpora used in our exper-
iments.

3.1 DeriNet

There are several large networks of deriva-
tional relations available for use in research, e.g.
CELEX for Dutch, English and German (Baayen
et al., 1995), Démonette for French (Hathout
and Namer, 2014), DeriNet for Czech (Ševčı́ková
and Žabokrtský, 2014) or DErivBase for German
(Zeller et al., 2014). A more complete listing was
published by Kyjánek (2018).

For our research, we chose to use the DeriNet-
1.6 network mainly due to its large size – with
over a million lemmata (citation forms), it is over
three times larger than the second largest resource
listed by Kyjánek (2018), DErivBase with 280,336
lemmata. Also, the authors are native speakers of
Czech, which was necessary for the annotation of
derivation classes (see Section 4 below). Large
corpora are available for Czech (Bojar et al., 2016;
Hnátková et al., 2014), which we need for training
the word embeddings.

DeriNet is a network which approximates
derivational families using trees – the lemmata it
contains are annotated with a single derivational
parent or nothing in case the word is either not de-
rived or a parent has not been assigned yet. It con-
tains 1,025,095 lemmata connected by 803,404 re-
lations.

There is a fine line between derivation and in-
flection and in general, these processes are hard

to separate from each other (see e.g. ten Hacken,
2014). Both change base words using affixes, but
they differ in the type of the outcome: derivation
creates new words, inflection only creates forms
of the base word. DeriNet differentiates derivation
from inflection the same way the Czech morpho-
logical tool MorphoDiTa (Straková et al., 2014)
does – it considers the processes handled by the
MorphoDiTa tool to be inflectional and other affix-
ations derivational. This is in line with the Czech
linguistic tradition (Dokulil et al., 1986), except
perhaps for the handling of the two main border-
line cases, whose categorization varies: negation
(considered inflectional by us) and verbal aspect
changes (considered derivational).

3.2 Word Embeddings
In our experiments, we compare the word em-
beddings obtained by the standard word2vec
skip-gram model (Mikolov et al., 2013) with
word embeddings learned when training three dif-
ferent neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017). The size of word embed-
dings is 512 for all the models.

NMT models are trained between English and
Czech in both directions. We use the CzEng 1.6
parallel corpus (Bojar et al., 2016), section c-
fiction (78 million tokens) and the Neural Monkey
toolkit (Helcl et al., 2018)1 for training the models.
We experiment with three architectures:

• RNN: a simple recurrent neural (RNN) archi-
tecture (Sutskever et al., 2014) without atten-
tion mechanism, LSTM size 1,024

• RNN+a: RNN architecture with attention
mechanism (Bahdanau et al., 2015), and

• Transf.: the Transformer (big) architecture
(Vaswani et al., 2017) with 6 layers, hidden
size 4,096 and 16 attention heads.

Unlike the standard setting in which embeddings
of the source and the target words are shared
in a common vector space, we use two sepa-
rated dictionaries (each containing 25,000 word
forms). We also do not use any kind of sub-word
units. By this setting, we assure that the word
vectors are not influenced by any other words
that do not belong to the examined language.
We extract the encoder word-embeddings from

1https://github.com/ufal/neuralmonkey

https://github.com/ufal/neuralmonkey
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Czech-English NMT model and the decoder word-
embeddings from the English-Czech model.

The word2vec system is trained on the Czech
National Corpus (Hnátková et al., 2014), version
syn 4, which has 4.6 billion tokens. It is a common
practice (Mikolov et al., 2013) to normalize the re-
sulting vectors, so that the length of each vector is
equal to 1. We report results for both normalized
and non-normalized vectors. In order to compare
word2vec model with NMT models, we also train
word2vec on the Czech part of the data used for
training the NMT models.

All the word embeddings are trained on the
word forms. To assign an embedding to the
lemma from DeriNet, we simply select the embed-
ding of the word form which is the same as the
given lemma.

4 Annotation of Derivational Relations

The derivational relations in DeriNet are not la-
belled in any way. In this section, we describe
a simple method of automatic division of rela-
tions into derivation types according to changes in
prefixes and suffixes and then manual merging of
these types into derivation classes.

When assigning a derivation type to a relation,
we first identify the longest common substring of
the two related words. For instance, for the rela-
tion “padat→ padnout”, the longest common sub-
string is “pad”. Then, we identify prefixes and suf-
fixes using the ‘+’ sign for addition and ‘-’ sign for
deletion. A sign after the string indicates a pre-
fix and a sign before the string indicates a suffix.
Our example “padat→ padnout” would therefore
belong to the derivation type “-at +nout”, which
means deleting the suffix “at” and adding the suf-
fix “nout”. Derivation type “na+” means to add
the prefix “na”, etc.

When applied on the DeriNet relations, we
identified 5,371 derivation types in total. We se-
lected only 71 most frequent types (only those
that have at least 250 instances in DeriNet).2 Af-
ter that, two annotators3 manually merged the 71
derivation types into 21 classes. The classes of
derivations are listed in Table 1. The class super+
contains derivations from nouns to nouns and from
adjectives to adjectives. Except for insignificant

2We count only such relations, for which both the lem-
mata occur at least 5 times in the Czech National Corpus.

3The annotators are both native speakers of Czech and
they worked together in one shared document.

noise in the data, each of the rest of the classes
contain only derivations for one POS pair.

The classes were designed in a way to separate
different meanings of derivations where possible,
and keep different types with the same meaning
together (e.g. ‘+ová’ and ‘-a +ová’, which derive
feminine surnames).

5 Unsupervised Clustering

We want to know whether and how the deriva-
tional relations are captured in the embedding
space. We hypothetize that in that case the dif-
ferences between embedding vectors for the words
in a derivational relation would cluster according
to the classes we defined.

We perform unsupervised clustering of such dif-
ferences using three algorithms:
• kmeans: K-means algorithm (MacQueen,

1967),4

• agg: Hierarchical agglomerative clustering
using Euclidean distance and Ward’s linkage
criterion (Joe H. Ward, 1963),5

• agg (cos): The same hierarchical agglomera-
tive clustering, but using cosine distance in-
stead of Euclidean.

For each word pair W1 and W2, where W1 is the
derivational parent of W2 and their embeddings v1
and v2, the clustering algorithm only gets the diffe-
rience vector d = v2 − v1. The information about
the word forms and their derivation type is only
used in evaluation.

We evaluate the clustering quality by homo-
geneity (H), completeness (C) and V-measure (V)
(Rosenberg and Hirschberg, 2007). These are
entropy based methods, which can be compared
across any number of clusters. Homogeneity is a
measure of the ratio of instances of a single class
pertaining to a single cluster. Completeness mea-
sures the ratio of the member of a given class that
is assigned to the same cluster. V-measure is com-
puted as the harmonic mean of homogeneity and
completeness scores.

Following Gábor et al. (2017), we also report
the accuracy (A) that would be achieved by the
clustering if we assigned every cluster to the class
that is most frequent in this cluster and then used
the clustering as a classifier. The number of

4We used standard Euclidean distance. The cosine dis-
tance does not work at all.

5We experiment also with other linking criteria, however,
they performed much worse compared to the Ward’s crite-
rion.
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POS class syntactic change
A→D adjective→adverb -ý +y, -ı́ +ě, -ý +ě, -ý +e
A→N designation -ý +ec, -ý +ka
A→N feature -ı́ +ost, -ý +ost
A→N subject -ký +tvı́
N→A pertaining to +ový, -a +ový, +nı́, -a +nı́, -ce +čnı́,

+ný, +ský, -e +cký, -ka +cký
N→A possessive +ův, -a +in, -o +ův, -ek +kův, -a +ův
N→N diminutization +ek, -k +ček
N→N instrument / scientist -ie
N→N man→woman -a +ová, +ka, +ová, +vá, -ý +á,

-ı́k +ice
N→N man→woman / diminutization -a +ka

N→N/A→A super super+
N→V noun→verb +ovat
V→A ability +elný
V→A acting -it +ı́cı́, -ovat +ujı́cı́, -t +jı́cı́
V→A general property -t +vý
V→A patient -t +ný, -it +ený, -it +ěný, -nout +lý,

-t +lý, -out +utý
V→A purpose -t +cı́
V→N actor +el, -t +č
V→N nominalization -t +nı́, -at +ánı́, -it +enı́, -it +ěnı́, -out

+utı́, -ovat +ace
V→V imperfectivization -at +ávat, -it +ovat
V→V perfectivization -at +nout, do+, na+, o+, od+, po+,

pro+, pře+, při+, roz+, u+, vy+, z+,
za+

Table 1: Classes of Czech derivations.
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Method cls H C V A
normalized:
kmeans 9 67.77 56.44 61.59 77.00
agg 10 62.30 52.88 57.20 72.81
agg (cos) 8 38.90 63.06 48.12 47.48
not normalized:
agg (cos) 8 37.93 64.97 47.90 46.38
agg 9 41.19 39.92 40.54 50.09
kmeans 7 39.92 37.38 38.61 46.92

Table 2: Comparison of different clustering methods on
differences of normalized and non-normalized word-
vectors trained on Czech National Corpus and cluster-
ing into 21 clusters. The results are ordered according
to V-measure.

model clust. H C V A
baseline 15 3.79 2.70 3.15 30.82
word2vec 15 75.98 57.82 65.66 83.06
baseline 20 5.12 3.30 4.01 31.32
word2vec 20 77.00 54.04 63.50 84.26
baseline 21 5.31 3.37 4.12 30.87
word2vec 21 77.50 53.17 63.07 84.12
baseline 22 5.49 3.43 4.22 30.98
word2vec 22 77.07 52.15 62.20 83.97
baseline 25 6.13 3.68 4.60 31.41
word2vec 25 80.20 53.11 63.89 87.37

Table 3: Effect of number of clusters with K-means
(averaged over 10 runs).

classes (cls) shows how many classes were as-
signed to at least one of the clusters.

6 Results

The results on the vectors trained on Czech Na-
tional Corpus and comparison of normalized and
non-normalized versions are summarized in Ta-
ble 2. We can see that the normalization helps both
clustering methods significantly. The best method,
i.e. the K-means used on the normalized word vec-
tors is used in the next experiments.

In Table 3, we examine the effect of the number
of clusters on the clustering quality. We compare
our models to the baseline, in which each deriva-
tion pair is assigned to a random cluster. The table
shows that regardless of the number of clusters,
the clustering on the word2vec embeddings per-
forms better than the random baseline. It shows
that as we allow the K-means algorithm to form
more clusters, the homogeneity increases and the
completeness decreases. The V-measure is highest

model cls H C V A
word2vec 7.9 77.53 53.70 63.45 84.18
RNN dec. 6.8 73.09 52.20 60.89 83.70
RNN+a enc. 6.4 59.44 44.92 51.14 76.10
Transf. enc. 6.4 60.30 44.24 51.02 78.29
RNN+a dec. 6.8 60.94 40.25 48.48 76.40
RNN enc. 6.4 51.90 45.13 48.25 70.49
Transf. dec. 5.5 44.21 30.56 36.14 63.41
baseline 2.8 5.37 3.41 4.17 31.15
POS baseline 8 52.63100.00 68.97 45.83

Table 4: Results on vectors learned by the NMT models
compared to word2vec. K-means clustering with 21
clusters. The results are averaged over 10 independent
runs.

with the lowest number of clusters. This may be
because the clusters are of uneven size. The accu-
racy on the word2vec model embeddings is high-
est around the number of clusters that corresponds
to the number of classes in the data.

Table 4 presents the results of clustering the dif-
ferences of embedding vectors from NMT models.
The cls columns shows how many different classes
are assigned. Because some classes are more fre-
quent than others, they may form the majority in
multiple clusters. This is why random baseline
assignes less than 3 different classes on average.
We see that word2vec (trained on the Czech side
of the parallel corpus) captures more information
about derivations than NMT models. RNN mod-
els store more information in the embeddings if
they do not utilize the attention mechanism. Even
less information is stored in the embeddings by
the Transformer architecture. This is probably be-
cause while in attention-less model the embedding
is the only set of parameters directly associated
with the given word, in the attention model the
information can be split between embeddings and
the attention weights. The transformer architec-
ture with residual connections has even more pa-
rameters associated with a given word. Decoder
in general stores more information about relation
between words in the embeddings than encoder,
presumably because it partially supplies the role
of a language model.

We also evaluated clustering by POS tags (POS
baseline in Table 4), where we created 8 clusters
based on the POS tags of the parent and child
words in the derivational relation. This cluster-
ing has a high V-measure, because its complete-
ness is 100 % (the super+ class is not present in
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the NMT data and for all the other classes it holds
that each member of a class has the same parent-
child POS tags pair). But it has lower accuracy
than all the other models (except for the random
baseline), showing that the unsupervised cluster-
ing does more than just clustering by POS.

The data naturally contains classes with signif-
icant differences in size. To prevent the small
classes from being underrepresented, we also eval-
uated the clustering on a dataset, where the same
number of derivation pairs was sampled from each
class. Results for the experiment with classes
of the same size are listed in Table 5. The re-
sults show that the classification does not rely only
on changes of part-of-speech. Both imperfecti-
zation and perfectivization classses are classified
well (97 % precision, 83 % recall and 93 % preci-
sion, 66 % recall respectively), even though they
are both derivation from verbs to verbs. The only
classes that have both precision and recall under
50 % are those being confused with diminutiza-
tion: man → woman shares one common deriva-
tion type with diminutization, and the class su-
per, which contains only the prefix “super” and
is therefore opposite to diminutization, sharing the
same semantic axis.

7 Conclusion

Our results show that word-level word embed-
dings capture information about semantic classes
of derivational relations between words, despite
not having any information about the orthogra-
phy or morphological makeup of the words, and
therefore not knowing about the formal relation
between the words.

It is possible to cluster differences between
embeddings in derivational relations, and the as-
signed clusters correspond to the semantic classes
of the relations. The word2vec embeddings gener-
ally result in a better clustering than embeddings
from the NMT models, and embeddings from the
decoder of a plain RNN model perform better than
those from NMT models with attention. All these
methods outperform a random-assignment cluster-
ing baseline and POS clustering baseline.
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