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Abstract

Al systems’ ability to explain their reasoning
is critical to their utility and trustworthiness.
Deep neural networks have enabled significant
progress on many challenging problems such
as visual question answering (VQA). How-
ever, most of them are opaque black boxes
with limited explanatory capability. This pa-
per presents a novel approach to developing a
high-performing VQA system that can eluci-
date its answers with integrated textual and vi-
sual explanations that faithfully reflect impor-
tant aspects of its underlying reasoning pro-
cess while capturing the style of comprehen-
sible human explanations. Extensive exper-
imental evaluation demonstrates the advan-
tages of this approach compared to competing
methods using both automated metrics and hu-
man evaluation.

1 Introduction

Deep neural networks have made significant
progress on visual question answering (VQA),
the challenging Al problem of answering natural-
language questions about an image (Antol et al.,
2015). However successful systems (Fukui et al.,
2016; Anderson et al., 2018; Yang et al., 2016; Wu
etal., 2018a; Jiang et al., 2018) based on deep neu-
ral networks are difficult to comprehend because
of many layers of abstraction and a large number
of parameters. This makes it hard to develop user
trust. Partly due to the opacity of current deep
models, there has been a recent resurgence of in-
terest in explainable Al, systems that can explain
their reasoning to human users. In particular, there
has been some recent development of explainable
VQA systems (Selvaraju et al., 2017; Park et al.,
2018; Hendricks et al., 2016, 2018).

One approach to explainable VQA is to gen-
erate visual explanations, which highlight image
regions that most contributed to the system’s an-
swer, as determined by attention mechanisms (Lu
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Question: What sport is pictured? Answer: Surfing
Explanation: Because the [iilld is riding a wave on a surfboard.

Figure 1: Example of our multimodal explanation. It
highlights relevant image regions together with a tex-
tual explanation with corresponding words in the same
color.

et al., 2016) or gradient analysis (Selvaraju et al.,
2017). However, such simple visualizations do not
explain how these regions support the answer. An
alternate approach is to generate a textual expla-
nation, a natural-language sentence that provides
reasons for the answer. Some recent work has gen-
erated textual explanations for VQA by training a
recurrent neural network (RNN) to directly mimic
examples of human explanations (Hendricks et al.,
2016; Park et al., 2018). A multimodal approach
that integrates both a visual and textual explana-
tion provides the advantages of both. Words and
phrases in the text can point to relevant regions in
the image. An illustrative explanation generated
by our system is shown in Figure. 1.

Recent research on such multimodal VQA ex-
planation is presented in (Park et al., 2018) that
employs a form of “post hoc justification” that
does not truly follow and reflect the system’s ac-
tual processing. We believe that explanations
should more faithfully reflect the actual process-
ing of the underlying system in order to provide
users with a deeper understanding of the system,
increasing trust for the right reasons, rather than
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trying to simply convince them of the system’s
reliability (Bilgic and Mooney, 2005). In order
to be faithful, the textual explanation generator
should focus on the set of objects that contribute
to the predicted answers, and receive proper super-
vision from only the gold standard explanations
that are consistent with the actual VQA reasoning
process. Towards this end, our explanation mod-
ule directly uses the VQA-attended features and is
trained to only generate human explanations that
can be traced back to the relevant object set using
a gradient-based method called GradCAM (Sel-
varaju et al., 2017). To enforce local faithfulness,
we also align the gradient-based visual explana-
tions generated by the textual explanation module
and the VQA module during training.

In addition, our explanations provide direct
links between terms in the textual explanation and
segmented items in the image, as shown in Fig-
ure 1. The result is a nice synthesis of a faith-
ful explanation that highlights concepts actually
used to compute the answer and a comprehensible,
human-like, linguistic explanation. Below we de-
scribe the details of our approach and present ex-
tensive experimental results on the VQA-X (Park
et al., 2018) dataset that demonstrates the advan-
tages of our approach compared to prior work us-
ing this data (Park et al., 2018) in terms of both
automated metrics and human evaluation. Further,
in order to evaluate the faithfulness, we design two
metrics: (1) We first measure the degree of similar-
ity between the highlighted image segments in our
textual explanations and the influential segments
determined by the LIME explainer (Ribeiro et al.,
2016); (2) we also measure the consistency be-
tween the gradient-based visual explanation (Sel-
varaju et al., 2017) of the predicted answer and the
generated textual explanation.

2 Related Work

In this section, we review related work includ-
ing visual and textual explanation generation and
VQA.

21 VQA

Answering visual questions (Antol et al., 2015)
has been widely investigated in both the NLP and
computer vision communities. Most VQA mod-
els (Fukui et al., 2016; Lu et al., 2016) embed im-
ages using a CNN and questions using an RNN
and then use these embeddings to train an answer
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classifier to predict answers from a pre-extracted
set. Attention mechanisms are frequently applied
to recognize important visual features and filter
out irrelevant parts. A recent advance is the use
of the Bottom-Up-Top-Down (Up-Down) atten-
tion mechanism (Anderson et al., 2018) that at-
tends over high-level objects instead of convolu-
tional features to avoid emphasis on irrelevant por-
tions of the image. We adopt this mechanism, but
replace object detection (Ren et al., 2015) with
segmentation (Hu et al., 2018) to obtain more pre-
cise object boundaries.

2.2 Visual Explanation

A number of approaches have been proposed to
visually explain decisions made by vision systems
by highlighting relevant image regions. Grad-
CAM (Selvaraju et al., 2017) analyzes the gradient
space to find visual regions that most affect the de-
cision. Attention mechanisms in VQA models can
also be directly used to determine highly-attended
regions and generate visual explanations. Unlike
conventional visual explanations, ours highlight
segmented objects that are linked to words in an
accompanying textual explanation, thereby focus-
ing on more precise regions and filtering out noisy
attention weights.

2.3 Textual and Multimodal Explanation

Visual explanations highlight key image regions
behind the decision, however, they do not explain
the reasoning process and crucial relationships be-
tween the highlighted regions. Therefore, there
has been some work on generating textual expla-
nations for decisions made by visual classifiers
(Hendricks et al., 2016). As mentioned in the in-
troduction, there has also been some work on mul-
timodal explanations that link textual and visual
explanations (Park et al., 2018). A recent exten-
sion of this work (Hendricks et al., 2018) first gen-
erates multiple textual explanations and then filters
out those that could not be grounded in the image.
We argue that a good explanation should focus on
referencing visual objects that actually influenced
the system’s decision, therefore generating more
faithful explanations.

3 Approach

Our goal is to generate more faithful multimodal
explanations that specifically include the seg-
mented objects in the image that are the focus of
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Figure 2: Model overview: We first segment the image and then predict the answer for the visual question with
a pretrained VQA module. Then, we learn to embed the question, answer, and the VQA-attended features to
generate textual explanations. During training, we only use the faithful human explanation whose gradient-based
visual explanation is consistent with that of the predicted answer. In the example, our explanation module is
only trained to generate “Explanation 1” and further enforces the consistency between this explanation and the
predicted answer. “Explanation 2” is filtered out since its visual explanation is mainly focused on the waves and is
not consistent with VQA module’s focus on the surfer. Dashed arrows denote gradients, gray and yellow arrows
denote fixed and trainable parameters, respectively. The three smaller images denote the visual explanations for

the predicted answer and the two textual explanations.

the VQA module. Figure 2 illustrates our model’s
pipeline in the training phase, consisting of the
VQA module (Section 3.2), and textual explana-
tion module (Section 3.4). We first segment the
objects in the image and predict the answer using
the VQA module, which has an attention mech-
anism over those objects. Next, the explanation
module is trained to generate textual explanations
conditioned on the question, answer, and VQA-
attended features. To faithfully train the explana-
tion module, we filter out human textual explana-
tions whose gradient-based visual explanation is
not consistent with that of the predicted answer.
For example, in Figure 2 “Explanation 1 is ac-
cepted as the textual explanation since it is mainly
focused on the surfer and “Explanation 2” is re-
jected. For the consistent textual explanations, we
also train the explanation module to align its visual
explanation with the predicted answer’s to enforce
local faithfulness.

3.1 Notation

We use f to denote the fully-connected fc layers
of the neural network, and these fc layers do not
share parameters. We notate the sigmoid functions
as 0. The subscript ¢ indexes the elements of the
segmented object sets from images. Bold letters
denote vectors, overlining - denotes averaging, and
[+, -] denotes concatenation.
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3.2 VQA Module

We base our VQA module on Up-Down (Ander-
son et al., 2018) with some modifications. First,
we replace the two-branch gated tanh answer clas-
sifier with single fc layers with Leaky ReLU ac-
tivation (Maas et al., 2013). In order to ground
the explanations in more precise visual regions,
we use instance segmentation (Hu et al., 2018) to
segment objects in over 3,000 categories. Specif-
ically, we extract at most the top V' < 80 ob-
jects in terms of segmentation scores and concate-
nate each object’s fc6 representation in the bound-
ing box classification branch and mask_fcn[1-4]
features in the mask generation branch to form a
2048-d vector. This results in an image feature
set V containing V' 2048-d vectors v; for each im-
age. We encode each question as the last hidden
state q of a gated recurrent unit (GRU) with 512
hidden units. We learn visual attention over all
the segments a9 € RV, and use the attended
visual features v! together with the question em-
bedding to produce a joint representation h. Then
the model predicts the logits s9* for each answer
candidate using a 2-layer fc networks, which is
passed through a sigmoid function to compute the
final probabilities. For the detailed network ar-
chitecture, please refer to (Anderson et al., 2018).
The parameters in the VQA module are fixed dur-
ing the training of the explanation module.



3.3 Question and Answer Embedding for
Explanation Generation

As suggested in (Park et al., 2018), we also encode
questions and answers as input features to the ex-
planation module. In particular, we regard the nor-
malized answer prediction output as a multinomial
distribution, and sample one answer from this dis-
tribution at each time step. We re-embed it as a
one-hot vector a; = one-hot(multinomial(s)).

u =v; O f(a;) © f(q) (1
Next, we element-wise multiply the embedding of
q and a, with v! to compute the joint representa-
tion u;. Note that u faithfully represents the focus
of the VQA process, in that it is directly derived
from the VQA-attended features.

3.4 Explanation Generation

In this section, we describe the Explanation Mod-
ule depicted by the yellow box in Figure. 2. The
explanation module has a two-layer-LSTM archi-
tecture whose first layer produces an attention over
the u;, and whose second layer learns a represen-
tation for predicting the next word using the first
layer’s features.

t hi
hi_  — Language LSTM —
g «—2 51 QTb
at s|
wi = | o0 | | centiver
hi
hi_,— Attention LSTM —

xt = [W; hi_y; wi]

Figure 3: Overview of the explanation module.

In particular, the first visual attention LSTM
takes the concatenation th of the second language
LSTM’s previous output h?_,, the average pooling
of u;, and the previous words’ embedding as input
and produces the hidden presentation h}. Then, an
attention mechanism re-weights the image feature
u; using the generated h; as input shown in Eq. 2.
For the detailed structure, please refer to (Ander-
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son et al., 2018).

= f(tanh(f(u;) + f(hy)))

softmax(oy)

2
3)

At
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For the purpose of faithfully grounding the gen-
erated explanation in the image, we argue that the
generator should be able to determine if the next
word should be based on image content attended
to by the VQA system or on learned linguistic con-
tent. To achieve this, we introduce a “source iden-
tifier” to balance the total amount of attention paid
to the visual features u; and the recurrent hidden
representation h} at each time step. In particular,
given the output h} from the attention LSTM and
the average pooling u; over u;, we train a fc layer
to produce a 2-d output s = o(f([h}, w])) =
(so,s1) that identifies which source the current
generated word should be based on (z.e. sg for the
output of the attention LSTM! and s; for the at-
tended image features).

s = o(f([h, W)

“)

We use the following approach to obtain train-
ing labels s for the source identifier. For each
visual features u;, we assign label 1 (indicating
the use of attended visual information) when there
exists a segmentation u; whose cosine similarity
between its category name’s GloVe representation
and the current generated word’s GloVe represen-
tation is above 0.6. Given the labeled data, we
train the source identifier using cross entropy loss
Ls as shown in Eq. 5:

1
Ly == 8;logs;+ (1—5;)log(l—s;))
=0
&)

where the 5q, §; are the aforementioned labels.

Next, we concatenate the re-weighted h! and u;
with the output of the source identifier as the in-
put x? = [h}sg, W;s1] for the language LSTM.
For more detail on the language LSTM structure,
please refer to (Anderson et al., 2018).

With the hidden states h? in the Language
LSTM, the output word’s probability is computed

"We tried to directly use the source weights so in the lan-
guage LSTM’’s hidden representation h_; and found that us-
ing h{ works better. The reason is that directly constraining
h?_, makes the language LSTM forget the previously en-
coded content and prevents it from learning long term de-
pendencies.



using Eq. 6:

p(yelyi—1) = softmaz(f(h}))  (6)

where y; denotes the ¢-th word in the explanation
y and y;.;—1 denotes the first ¢ — 1 words.

Faithful Explanation Supervision. Directly col-
lecting faithful textual explanations is infeasible
because it would require an annotation process
where workers provide explanations based on the
attended VQA features. Instead, we design an on-
line algorithm that automatically filters unfaithful
explanations from the human ones in the VQA-
X data (Park et al., 2018) based on the idea that a
proper explanation should focus on the same set of
objects as the VQA module and be locally faith-
ful. As recent research suggested that gradient-
based methods more faithfully present the mod-
els’ decision making process (Zhang et al., 2018;
Wu et al., 2018b; Wu and Mooney, 2019; Jain and
Wallace, 2019), we define a faithfulness score Sy
as the cosine similarity between the Grad-CAM
(Selvaraju et al., 2017) visual explanation vectors
of the textual explanation and the predicted answer
as shown in Eq. 7:

vqa
Spred’

(N

where g denotes the Grad-CAM operation and the
result is a vector of length |V| indicating the con-
tribution of each segmented object. s;?Zd is the
logit for the predicted answer.

Then, we filter out the explanations in the train-
ing set whose faithfulness scores are less than
¢ max(0.02 it, 1), where £ is a threshold and the
max(0.02 it, 1) term is used to jump-start the ran-
domly initialized explanation module. For exam-
ple, during training, we only accept “Explanation
1” in Figure 2 because the visual explanations of
the predicted answer and the textual explanation
are consistent and reject “Explanation 2”.

Since the VQA-X dataset only has explanations
for the correct answers, we also discard the ex-
planations when the predicted answers are wrong.
With the remaining human explanations, we mini-
mize the cross-entropy loss £Lx g in Eq. 8:

Sy(y) = cos(g(8ppeq: V9), g(log p(y), v9))

T

Lxp =Y log(p(yilyri1)) (8)
t=1

To enforce local faithfulness, we further align

these two gradient vectors using cosine distance
Ly=1-8;.
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Figure 4: The distribution of explanations’ faithfulness
scores in the last epoch during training.

In Figure 4, we report the distribution of the ex-
planations’ faithfulness scores S in the last epoch
during training (¢ is set to 0.3). We observe that
about 30% of the human explanations in the train-
ing set cannot be traced back to similar image seg-
ments that highly contribute to the predicted an-
swer using our trained explanation module. These
textual explanations cannot be seen as faithful ei-
ther because the explanations themselves are not
faithful or because the explanation module fails
to develop the correct mappings between the tex-
tual explanations and the VQA-attended features.
There are only a small fraction of the explanations
whose faithfulness scores are in the interval of
[0.1, 0.6] indicating that there is a clear boundary
between whether or not an explanation is deemed
faithful according to our metric.

3.5 Training

We pre-train the VQA module on the entire VQA
v2 training set for 15 epochs using the Adam opti-
mizer (Kingma and Ba, 2014) with a learning rate
of 0.001. After that, the parameters in the VQA
module are frozen. Our VQA module is capa-
ble of achieving 82.9% and 80.3% in the VQA-
X train and test split respectively. and 63.5% in
the VQA v2 validation set which is comparable
to the baseline Up-Down model (63.2%) (Ander-
son et al., 2018). Note that VQA performance is
not the focus of this work, and our experimental
evaluation focuses on the generated explanations.
Finally, we train the explanation module using the
human explanations in the VQA-X dataset (Park
et al., 2018) filtered for faithfulness. VQA-X con-
tains 29,459 question answer pairs and each pair is
associated with a human explanation. We train to
minimize the joint loss £ (Eq. 9), and £ is empiri-
cally set to 0.3. We ran the Adam optimizer for 25
epochs with a batch size of 128. The learning rate
for training the explanation module is initialized
to 5e-4 and decays by a factor of 0.8 every three
epochs.

L=Lxg+Ls+ Ly 9)



Textual Visual

Ls F Ly |#Expl. | B4 M RL C S EMD
PJ-X (Park et al., 2018) 29K 195 182 437 713 151 | 2.64
Ours (Justification) 29K 23,5 19.0 462 81.2 17.2 | 246
Ours (Justification) v 29K 244 195 474 888 179 | 241
Ours (Justification) v 15K 241 18.6 46.2 834 162 | 2.59
Ours (Explanation) v oV 15K 247 192 47.0 851 16.6 | 2.56
Ours (Explanation) v v Vv 15K 251 19.7 482 86.7 17.2 | 252

Table 1: Explanation evaluation results, the top half shows results using the entire train set and the bottom half
shows results using about 15K explanations. F denotes whether to filter out the unfaithful training explanations.
With F, the 15K explanations are the remaining explanation and without F, the 15K explanations are randomly
sampled from train set. £,, £y denote the losses of the source identifier and the faithful gradient alignment, respec-
tively. B-4, M, R-L, C and S are short hand for BLEU-4, METEOR, ROUGE-L, CIDEr and SPICE, respectively.

3.6 Multimodal Explanation Generation

As a last step, we link words in the generated
textual explanation to image segments in order to
generate the final multimodal explanation. To de-
termine which words to link, we extract all com-
mon nouns whose source identifier weight s1 in
Eq. 4 exceeds 0.5. We then link them to the seg-
mented object with the highest attention weight o,
in Eq. 2 when that corresponding output word y;
was generated, but only if this weight is greater
than 0.2.2

4 Experimental Evaluation

This section experimentally evaluates both the tex-
tual and visual aspects of our multimodal explana-
tions, including comparisons to competing meth-
ods and ablations that study the impact of the vari-
ous components of our overall system. Finally, we
present metrics and evaluation for the faithfulness
of our explanations.

4.1 Textual Explanation Evaluation

Similar to (Park et al., 2018), we first evaluate
our textual explanations using automated metrics
by comparing them to the gold-standard human
explanations in the VQA-X test data using
standard sentence-comparison metrics: BLEU-4
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005), ROUGE-L (Lin, 2004), CIDEr
(Vedantam et al., 2015) and SPICE (Anderson
et al., 2016). Table 1 reports our performance,
including ablations. In particular, “Justification”
denotes training on the entire or randomly sam-
pled VQA-X dataset and “Explanation” denotes

*Due to duplicated segments, we use a lower threshold.
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training only on the remaining faithful explana-
tions. We outperform the current state-of-the-art
PJ-X model (Park et al., 2018) on all automated
metrics by a clear margin with only about half
the explanation training data. This indicates that
constructing explanations that faithfully reflect the
VQA process can actually generate explanations
that match human explanations better than just
training to directly match human explanations,
possibly by avoiding over-fitting and focusing
more on important aspects of the test images.

4.2 Multimodal Explanation Evaluation

In this section, we present the evaluations of our
model on both visual and multimodal aspects.

Automated Evaluation: As in previous work
(Selvaraju et al., 2017; Park et al., 2018), we first
used Earth Mover Distance (EMD) (Pele and Wer-
man, 2008) to compare the image regions high-
lighted in our explanation to image regions high-
lighted by human judges. In order to fairly com-
pare to prior results, we resize all the images in the
entire test split to 14 x 14 and adjust the segmenta-
tion in the images accordingly using bi-linear in-
terpolation. Next, we sum up the multiplication
of attention values and source identifiers’ values
in Eq, 2 over time () and assign the accumulated
attention weight to each corresponding segmenta-
tion region. We then normalize attention weights
over the 14 x 14 resized images to sum to 1, and
finally compute the EMD between the normalized
attentions and the ground truth.

As shown in the Visual results in Table 1, our
approach matches human attention maps more
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Question: What sport is this?
Answer: Snowboarding
Explanation: The [fillll is going
down a snowy hill on single board.

Figure 5: Sample positively-rated explanations.

closely than PJ-X (Park et al.,, 2018). We at-
tribute this improvement to the following reasons.
First, our approach uses detailed image segmenta-
tion which avoids focusing on background and is
much more precise than bounding-box detection.
Second, our visual explanation is focused by tex-
tual explanation where the segmented visual ob-
jects must be linked to specific words in the textual
explanation. Therefore, the risk of attending to un-
necessary objects in the images is significantly re-
duced. As a result, we filter out most of the noisy
attention in a purely visual explanation like that in
PJ-X.

Human Evaluation: We also asked AMT work-
ers to evaluate our final multimodal explanations
that link words in the textual explanation directly
to segments in the image. Specifically, we ran-
domly selected 1,000 correctly answered ques-
tion and asked workers “ How well do the high-
lighted image regions support the answer to the
question?” and provided them a Likert-scale set
of possible answers: “Very supportive”, “Support-
ive”, “Neutral”, ‘Unsupportive” and “Completely
unsupportive”. The second task was to evaluate
the quality of the links between words and im-
age regions in the explanations. We asked workers
“How well do the colored image segments high-
light the appropriate regions for the correspond-
ing colored words in the explanation?” with the
Like-scale choices: “Very Well”, “Well”, “Neu-
tral”, “Not Well”, “Poorly”. We assign five ques-
tions in each AMT HIT with one “validation” item
to control the HIT’s qualities.

Relevance of the highlighted segments

. I
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%  100%
= Very suportative = Supportive ~ Neural = Unsupportive m Completely unsupportative
Quality of the textual-visual links
I L

0% 10% 20% 30%

= Very well

40%

well

50%
Neutral

60%  70%  80%
Not well = Poor

90%  100%

Figure 6: Human evaluation results.
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As shown in Figure 6, in both cases, about 70%
of the evaluations are positive and about 45% of
them are strongly positive. This indicates that
our multimodal explanations provide good con-
nections among visual explanations, textual expla-
nations, and the VQA process. Figure 5 presents
some sample positively-rated multimodal explana-
tions.

4.3 Faithfulness Evaluation

In this section, we measure the faithfulness of
our explanations, i.e. how well they reflect the
underlying VQA system’s reasoning. First, we
measured how many words in a generated expla-
nation are actually linked to a visual segmentation
in the image. We analyzed the explanations from
1,000 correctly answered questions from the test
data. On average, our model is able to link 1.6
words in an explanation to an image segment,
indicating that the textual explanation is actually
grounded in objects detected by our VQA system.

Faithfulness Evaluation using LIME. We use
the model-agnostic explainer LIME (Ribeiro et al.,
2016) to determine the segmented objects that
most influenced a particular answer, and measure
how well the objects referenced in our explanation
match these influential segments. We regard all
the detected visual segments as the “interpretable”
units used by LIME to explain decisions. Using
these interpretable units, LIME applies LASSO
with the regularization path (Efron et al., 2004) to
learn a linear model of the local decision bound-
ary around the example to be explained. In partic-
ular, we collect 256 points around the example by
randomly blinding each segment’s features with a
probability of 0.4. The highly weighted features
in this model are claimed to provide a faithful ex-
planation of the decision on this example (Ribeiro
et al., 2016). The complexity of the explanation is
controlled by the number of units, K, that can be
used in this linear model. Using the coefficients
w of LIME’s weighted linear model, we compare
the object segments selected by LIME to the set of
objects that are actually linked to words in our ex-
planations. Specifically, we define our faithfulness
metric as:

ZLZ‘I |w;| max ez cos(vi, v;)

4
i=1

where v; denotes the visual feature of the i-th
segmented object and the £ denotes the set of

score =

(10)

|w|



explanation-linked objects. For each object in the
LIME explanation, it finds the closest object in our
explanation and multiplies its LIME weight by this
similarity. The normalized sum of these matches
is used to measure the similarity of the two expla-
nations.

We collect all correctly answered questions in
the VQA-X test set, and Table 2 reports the av-
erage score for their explanations using models
trained on 15K training explanations with differ-
ent numbers of interpretable units K. The influ-
ential objects recognized by LIME match objects
that are linked to words in our explanations with
an average cosine similarity around 0.7. This in-
dicates that the explanations are faithfully making
reference to visual segmentations that actually in-
fluenced the decision of the underlying VQA sys-
tem. Also, we observe that training with faith-
ful human explanation outperforms purely mim-
icking human explanations in terms of our faithful
metric, and further enforcing the local faithfulness
achieves a better result.

| K=1|K=2[K=3

Ours (Random) 0.588 | 0.601 | 0.574
Ours (Filtered) 0.636 | 0.651 | 0.643
Ours (Filtered+Lys) | 0.686 | 0.705 | 0.678

Table 2: Evaluation of LIME-based faithfulness scores
for different numbers of interpretable units K using
15K training explanations. “Random” means the train-
ing explanations are randomly sampled from the train
set, and “Filtered” means the models are trained using
the remaining faithful explanations.

Faithfulness Evaluation using Grad-CAM. We
also evaluated the consistency between the Grad-
CAM visual explanation vectors from the textual
explanation and the predicted answer using the
faithful score Sy defined in Eq. 7. Table 3 re-
ports the results from using filtered verses ran-
domly sampled explanations for training. We ob-
serve that with faithful human explanations, the
average faithfulness evaluation score increases 7%
over training with randomly sampled explana-
tions. Moreover, with the faithfulness loss Ly, the
model can better align the visual explanation for
the textual explanation with that for the predicted
answer, leading to a further 11% increase.

We also report the distribution of the generated
explanations’ cosine similarity between their vi-
sual explanation and the visual explanation of the
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‘ #Expl. | Average Sy

Ours (Random) 15K 0.38
Ours (Filtered) 15K 0.45
Ours (Filtered+L ¢) 15K 0.56

Table 3: Average faithfulness evaluation score using
different explanations models. “Random” means the
training explanations are randomly sampled from the
train set, and “Filtered” means the models are trained
using the remaining faithful explanations.

answers in Figure 7. The fraction of the faithful-
ness scores between the interval [0.0, 0.1] is sig-
nificantly decreased by over 17% when using the
faithful human explanations for supervision and
further enforcing the local faithfulness with the
faithfulness loss, L.

)
ant
po2 2.1

25
20.1

13.8
639 74100
523528 4335 4353 397839 424843 454658 5863

[00,01]  [01,02] [02,03] [03,04] [04,05 [05 06 [06,07) [07,08] [08,09] [09. 10]

Random, without Faithful Loss Filtered, without Faithful Loss Filtered, with Faithful Loss

Figure 7: The distribution of explanations’ cosine sim-
ilarity between the visual explanation of the textual ex-
planation and the predicted answer.

5 Conclusion and Future Work

This paper has presented a new approach to gen-
erating multimodal explanations for visual ques-
tion answering systems that aims to more faith-
fully represent the reasoning of the underlying
VQA system while maintaining the style of hu-
man explanations. The approach generates tex-
tual explanations with words linked to relevant im-
age regions actually attended to by the underlying
VQA system. Experimental evaluations of both
the textual and visual aspects of the explanations
using both automated metrics and crowdsourced
human judgments were presented that demonstrate
the advantages of this approach compared to a
previously-published competing method. In the
future, we would like to incorporate more infor-
mation from the VQA networks into the explana-
tions. In particular, we would like to integrate net-
work dissection (Bau et al., 2017) to allow recog-
nizable concepts in the learned hidden-layer rep-
resentations to be included in explanations.
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