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Abstract

We present our deep leaning system submitted
to MADAR shared task 2 focused on twitter
user dialect identification. We develop tweet-
level identification models based on GRUs and
BERT in supervised and semi-supervised set-
tings. We then introduce a simple, yet effec-
tive, method of porting tweet-level labels at the
level of users. Our system ranks top 1 in the
competition, with 71.70% macro F1 score and
77.40% accuracy.

1 Introduction

Language identification (LID) is an important
NLP task that usually acts as an enabling tech-
nology in a pipeline involving another down-
stream task such as machine translation (Salloum
et al., 2014) or sentiment analysis (Abdul-Mageed,
2017b,a). Although several works have focused on
detecting languages in global settings (see Jauhi-
ainen et al. (2018) for a survey), there has not
been extensive research on teasing apart similar
languages or language varieties (Zampieri et al.,
2018). This is the case for Arabic, the term used
to collectively refer to a large number of varieties
with a vast population of native speakers (∼ 300
million). For this reason, we focus on detecting
fine-grained Arabic dialect as part of our contri-
bution to the MADAR shared task 2, twitter user
dialect identification (Bouamor et al., 2019).

Previous works on Arabic (e.g., Zaidan and
Callison-Burch (2011, 2014); Elfardy and Diab
(2013); Cotterell and Callison-Burch (2014)) have
primarily targeted cross-country regional varieties
such as Egyptian, Gulf, and Levantine, in addi-
tion to Modern Standard Arabic (MSA). These

∗The title is word play on the Yiddish linguist Max
Weinreich much quoted metaphor (in Yiddish) “A lan-
guage is a dialect with an army and navy”. See: https:
//en.wikipedia.org/wiki/A_language_is_a_
dialect_with_an_army_and_navy.

works exploited social data from blogs (Diab
et al., 2010; Elfardy and Diab, 2012; Al-Sabbagh
and Girju, 2012; Sadat et al., 2014), the general
Web (Al-Sabbagh and Girju, 2012), online news
sites comments sections (Zaidan and Callison-
Burch, 2011), and Twitter (Abdul-Mageed and
Diab, 2012; Abdul-Mageed et al., 2014; Mubarak
and Darwish, 2014; Qwaider et al., 2018). Other
works have used translated data (e.g., Bouamor
et al. (2018)), or speech transcripts (e.g., Malmasi
and Zampieri (2016). More recently, other works
reporting larger-scale datasets at the country-level
were undertaken. These include data spanning 10-
to-17 different countries (Zaghouani and Charfi,
2018; Abdul-Mageed et al., 2018).

To solve Arabic dialect identification, many re-
searchers developed models based on computa-
tional linguistics and machine learning (Elfardy
and Diab, 2013; Salloum et al., 2014; Cotterell and
Callison-Burch, 2014), and deep learning (Elaraby
and Abdul-Mageed, 2018). In this paper, we focus
on using state-of-the-arts deep learning architec-
tures to identify Arabic dialects of Twitter users
at the country level. We use the MADAR twit-
ter corpus (Bouamor et al., 2019), comprising 21
country-level dialect labels. Namely, we employ
unidirectional Gated Recurrent Unit (GRU) (Cho
et al., 2014) as our baseline and pre-trained Mul-
tilingual Bidirectional Encoder Representations
from Transformers (BERT) (Devlin et al., 2018)
to identify dialect classes for individual tweets
(which we then port at user level). We also apply
semi-supervised learning to augment our training
data, with a goal to improve model performance.
Our system ranks top 1 in the shared task. The
rest of the paper is organized as follows: data are
described in Section 2. Section 3 introduces our
methods, follow by experiments in Section 4. We
conclude in Section 5.

https://en.wikipedia.org/wiki/A_language_is_a_dialect_with_an_army_and_navy
https://en.wikipedia.org/wiki/A_language_is_a_dialect_with_an_army_and_navy
https://en.wikipedia.org/wiki/A_language_is_a_dialect_with_an_army_and_navy
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2 Data

Twitter user dialect identification is the second
sub-task of 2019 MADAR shared task (Bouamor
et al., 2019). This task is set up as fine-grained
multi-class classification where corpus released by
organizers are labeled with the tagset {Algeria,
Bahrain, Djibouti, Egypt, Iraq, Jordan, Kuwait,
Lebanon, Libya, Mauritania, Morocco, Oman,
Palestine, Qatar, Saudi Arabia, Somalia, Sudan,
Syria, Tunisia, United Arab Emirates, Yemen}.
The corpus is divided into train, dev and test (with
the test set shared without labels). For each tweet,
organizers released a user id and tweet id and par-
ticipants needed to crawl the actual tweets. We
were not able to crawl part of the data because of
unavailability on the Twitter platform. The distri-
bution of the data in our splits after crawling is as
follows: 2,036 (TRAIN-A), 281 (DEV) and 466
(TEST). For our experiments, we also make use
of the task 1 corpus (95,000 sentences (Bouamor
et al., 2018)). More specifically, we concatenate
the task 1 data to the training data of task 2, to
create TRAIN-B. Note that both DEV and TEST
across our experiments are exclusively the data re-
leased in task 2, as described above. TEST labels
were only released to participants after the official
task evaluation. Table 1 shows statistics of the
data.

# of tweets

TRAIN DEV TEST

TRAIN-A 193,086 26,588 43,909
TRAIN-B 288,086 – –

Table 1: Distribution of classes within the MADAR
twitter corpus.

3 Methods

3.1 Pre-processing & Architectures

With tweet ids at hand, we crawl users tweets via
the Twitter API. We remove all usernames, URLs,
and diacritics in the data. For evaluation, we use
accuracy and macro F1−score. For modeling, we
use two main deep learning architectures, Gated
Recurrent Unit (GRU) and Bidirectional Encoder
Representations from Transformers (BERT). For
GRU, we tokenize tweets into word sequences by
white-space. For BERT input, we apply Word-
Piece tokenization. We set the maximal sequence

length to 50 words/WordPieces. A GRU (Cho
et al., 2014; Chung et al., 2014) is a simplification
of long-short term memory networks (LSTM),
which in turn are a version of recurrent neural net-
works.

For BERT (Devlin et al., 2018), it was intro-
duced to dispense with recurrence and convolu-
tion. Its model architecture is a multi-layer bidi-
rectional Transformer encoder (Vaswani et al.,
2017). It uses masked language models to enable
pre-trained deep bidirectional representations, in
addition to a binary next sentence prediction task.
The pre-trained BERT can be easily fine-tuned
on large suite of sentence-level and token-level
tasks.We also use semi-supervised learning in our
modeling, as we explain next.

3.2 Semi-supervise Learning

Supervised deep learning requires a large num-
ber of labeled data points. For this rea-
son, we investigate augmenting our training data
with automatically-predicted tweets using semi-
supervised learning (SSL). More specifically, we
use self-training. Self-training is a wrapper
method for SSL (Triguero et al., 2015; Pavlinek
and Podgorelec, 2017) where a classifier is ini-
tially trained on a small set of labeled samples Dl.
Then, the learned classifier is used to classify the
unlabeled sample set Du. Based on the predication
output, the most confident samples with their pre-
dicted labels are added to the labeled set. The clas-
sifier can then be re-trained on the new ‘labeled’
set. This process can be repeated until all the sam-
ples from Du are added to Dl or a given stopping
criteria is reached. We now introduce our experi-
ments.

4 Experiments

We illustrate our four main sets of experiment. We
present (i) our baseline model, GRU (Section 4.1),
(ii) fine-tuning on BERT-Base, Multilingual Cased
model for dialect identification (Section 4.2), (iii)
semi-supervised learning with unlabeled data 4.3,
(iv) user-level dialect identification (DID) 4.4.

4.1 GRU

We train a baseline GRU network with TRIAN-
A. This network has one layer unidirectional GRU
with 500 unites and a linear, output layer. The
input word tokens are embedded by the trainable
word vectors which are initialized with a standard
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normal distribution, with µ = 0, and σ = 1, i.e.,
W ∼ N(0, 1). We apply Adam (Kingma and Ba,
2014) with a fixed learning rate of 1e− 3 for opti-
mization. For regularization, we use dropout (Sri-
vastava et al., 2014) rate of 0.5 on the hidden
layer. We set the maximal length of sequence in
our GRU model to 50, and choose an arbitrary vo-
cabulary size of 10,000 words. We employ batch
training with a batch size of 8 on this model. We
run the network for 10 epochs and save the model
at the end of each epoch, choosing the model that
performs highest on DEV as our best model. We
report our best result on dev in Table 2. Our
best result is acquired with 3 epochs. As Table 2
shows, the baseline obtains accuracy = 46.81%
and F1 = 28.84.

4.2 BERT
As mentioned earlier, we use the BERT-Base Mul-
tilingual Cased model released by the authors 1.
The model is trained on 104 languages (including
Arabic) with 12 layer, 768 hidden units each, 12
attention heads, and has 110M parameters in en-
tire model. The model has 119,547 shared Word-
Pieces vocabulary, and was pre-trained on the en-
tire Wikipedia for each language. For fine-tuning,
we use a maximum sequence size of 50 tokens and
a batch size of 32. We set the learning rate to 2e−5
and train for 10 epochs. We use the same hyper-
parameters in all of our BERT models. We fine-
tune BERT on TRAIN-A and TRAIN-B sets, and
call these BERT-A and BERT-B respectively. As
Table 2 shows, both BERT models acquire bet-
ter performance than the GRU models. On accu-
racy, BERT-A is 1.69% better than the baseline,
and BERT-B is 1.95% better than baseline. BERT-
B obtains 34.87 F1 which is 5.03 better than the
baseline and 0.94 better than BERT-A. Our best
model of above two sets of experiment is BERT-B
which obtains the best accuracy and F1. Hence,
we use BERT-B in our following semi-supervised
learning experiments.

4.3 Semi-supervised Learning
As we mentioned earlier, we apply self-training
in order to augment training set. For this pur-
pose, we use an in-house unlabeled, Arabic dataset
of 9,981,965 tweets. We refer to this unlabeled
dataset as unlabeled-10M. We pre-process
unlabeled-10M using the same method as the rest
of our data. We use the best model from Sec-
tion 4.2 (i.e. BERT-B, which is trained on TRAIN-

Model Acc. F1

Baseline (GRU) 46.81 29.84
BERT-A 48.50 33.93
BERT-B 48.76 34.87

Table 2: Model performance. Baseline is a unidirec-
tional 500-unit, one-layered GRU. Baseline and BERT-
A are trained on TRAIN-A. BERT-B is trained on
TRAIN-B.

# of tweets

New Total

5% SEMI 499,102 787,188
10% SEMI 998,196 1,286,282
25% SEMI 2,495,491 2,783,577

5% Class SEMI 499,087 787,173
10% Class SEMI 998,186 1,286,272
25% Class SEMI 2,495,486 2,783,572

Table 3: Data splits for our emi-supervised learning
experiments. New: The new dataset confidently pre-
dicted with semi-supervised learning that are added to
TRAIN-B.

B) to predict dialect labels for unlabeled-10M.
To obtain the best performance, we investigate
various settings to select the most reliable sam-
ples before adding such samples to our train-
ing data. These settings are based on the per-
class value in the softmax/output layer, as fol-
lows: (i) Top-N%: We select samples which ob-
tain top n% softmax values and add them with
their predicted labels to TRAIN-B. We refer to the
new training set as N SEMI. (ii) Top-N% Class:
We also extract the samples which obtain top
n% softmax value within each county class and
add them to our training data, referring to the
new train set as N Class SEMI. In our experi-
ments, we choose n from the set {5%, 10%, 25%}.
Then, we fine-tune the BERT-Base, Multilingual
Cased model on the resulting six new training sets
(e.g., 5% SEMI, 5% Class SEMI, 10% SEMI)
with the same hyper-parameters as Section 4.2.
We evaluate on DEV. For reference, BERT-N de-
notes the model which is trained on N SEMI, and
BERT-NClass SEMI denotes the model which is
trained on N Class SEMI. We present the de-
scription of these six train sets in Table 3. As
Table 4 shows, most semi-supervised models out-
perform BERT-B. For accuracy, the best model is
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Model Acc. F1

Baseline (GRU) 46.810 29.840

BERT-B 48.755 34.868

BERT-5% 48.958 35.931
BERT-10% 49.394 35.440
BERT-25% 48.751 35.305

BERT-5% Class SEMI 48.706 34.774
BERT-10% Class SEMI 48.842 33.835
BERT-25% Class SEMI 49.097 35.813

Table 4: Semi-supervised learning. All models are
evaluated on DEV, with TRAIN-B as training data. Re-
sults higher than BERT-B are underlined. Best result is
in bold.

BERT 10% (acc = 49.34%) with 4 epochs. It
is 0.639% higher than BERT-B. For F1, the best
model is BERT 5% (F1 = 35.931) with 3 epochs.
We use these two model in the following user-
level DID. Since the official metric of the shared
task is macro F1 score, we also consider BERT-
25% Class SEMI as a candidate model for user-
level DID since it acquires better F1 than BERT-
10% as Table 4 shows.

4.4 User-level DID
Our aforementioned models identify dialect on
the tweet-level, rather than directly detect the di-
alect of a user. Hence, we use tweet-level pre-
dicted labels (and associated softmax values) as
a proxy for user-level labels. For each predicted
label, we use the softmax value as a thresh-
old for including only highest confidently pre-
dicted tweets. Since in some cases softmax val-
ues can be low, we try all values between 0.00
and 0.99 to take a softmax-based majority class as
the user-level predicted label, fine-tuning on our
DEV set. Figure 1 provides performance of the
BERT-25% Class SEMI model on DEV using
different softmax threshold values. Note that the
shared task requires a maximum of three models
submitted. For these, we chose the top 3 mod-
els in Table 4 (i.e., BERT-5%, BERT-10%, and
BERT-25% Class SEMI). As a precauion, we also
use the BERT-B when we fine-tune on the user-
level on DEV. We then use only the 3 models
that perform best on DEV as our official task sub-
mission. As Table 5 shows, the best three sys-
tems on DEV are BERT-B, BERT-5% and BERT-
25% Class SEMI. For the 34 unavailable users,

Figure 1: User-level Performance on DEV using
different softmax value thresholds.

we assigned the majority class in TRAIN-A (i.e.,
‘Saudi Arabia’). According to 5, our best system
on TEST set is BERT-5% with 77.04% accuracy
and 71.70 F1. It rank top 1 in the shared task.

Model Thresh DEV TEST

Acc. F1 Acc. F1

BERT-B 0.91 79.36 75.19 76.40 68.47
BERT-5% 0.89 79.36 76.05 77.40 71.70
BERT-10% 0.92 77.94 74.47 - -
B-25%CS 0.91 80.78 79.25 75.80 69.17

Table 5: User-level results. TEST results come from
the official leaderboard of the shared task. B-25%CS=
BERT-25% Class SEMI.

5 Conclusion

In this paper, we described our submission to the
MADAR shared task 2, focused on user-level Ara-
bic dialect identification. We show how we ac-
quire effective models using various supervised
and semi-supervised methods, porting tweet-level
labels to the user level. Our semi-supervised
model with BERT achieves best results in the of-
ficial task evaluation. In the future, we will inves-
tigate more extensive semi-supervised methods to
improve performance.
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