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Abstract

Rhetorical elements from scientific publica-
tions provide a more structured view of the
document and allow algorithms to focus on
particular parts of the text. We surveyed the
literature for previously proposed schemes for
rhetorical elements and present an overview of
its current state of the art. We also searched
for available tools using these schemes and ap-
plied four tools for our particular task of rank-
ing biomedical abstracts based on text similar-
ity. Comparison of the tools with two strong
baselines shows that the predictions provided
by the ArguminSci tool can support our use
case of mining alternative methods for animal
experiments.

1 Introduction

We aim to mine alternative methods to animal ex-
periments from the biomedical literature. These
are methods that address any of the so-called 3R
principles of replacement (no animals at all or use
of invertebrates over vertebrates), reduce (use of
less animals), or refinement (cause less harm to
animals) (Gruber and Hartung, 2004; Doke and
Dhawale, 2015). For such complex natural lan-
guage processing (NLP) applications, it is neces-
sary to rely on appropriate tools to precisely un-
derstand the text and better find the potential rele-
vant documents. The rhetorical elements, such as
zones or particular entities, can support NLP algo-
rithms by focusing on the relevant elements of the
text (Mann and Thompson, 1987).

Given a certain document that describes an an-
imal experiment for a certain research goal, here-
after called input document, we would like to find
potential publications, hereafter called candidate
documents, that describe an alternative method for
the same research goal. Thus, some of the scien-
tific elements should be similar between input and

candidate documents, e.g. research goals and out-
comes, while some others should be different, e.g.
methods. Finding an alternative method to animal
experiment requires two tasks: (a) performing a
text similarity task with respect to some aspects
of the publication, and (b) precisely understanding
the proposed method with respect to the 3R prin-
ciples. Therefore, the extraction of rhetorical el-
ements has the potential to boost performance for
these tasks.

Previous works have proposed many schemes
for rhetorical elements in scientific publication, as
reviewed in Webber et al. (2012). In a more re-
cent survey, Nasar et al. (2018) present a good
overview on both metadata and schemes for sci-
entific articles. On the one hand, many of these
schemes are not supported by an annotated corpus
for training suitable information extraction tools.
On the other hand, some tools based on these
schemes are readily available for use.

We surveyed published schemes for rhetorical
elements, whether focused on the biomedical do-
main or not, and we present a short overview on
these. For those schemes for which we could find
available tools, the latter was used to process a col-
lection of 562 biomedical abstracts. We performed
a comparison of the output (rhetorical elements)
from the tools in the scope of a text similarity task
on a manually annotated dataset. In this work, we
limited our evaluation for text similarity but did
not address whether the proposed methods com-
ply with the 3R principles.

In summary, the contributions of this work
are the following: (a) a short survey on exist-
ing schemes and corpora for rhetorical elements
in scientific publications; (b) the identification of
the schemes for which available tools are read-
ily available for use; and (c) the evaluation of the
available tools on a biomedical use case for text
similarity. The next section presents a survey on
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the available schemes, followed by the methodol-
ogy that we propose to compare the tools in the
scope of text similarity. We present the results in
Section 4 and our discussion in Section 5.

2 Schemes for Rhetorical Elements

We classified the schemes according to the anno-
tation level they address, either on the sentence,
entity or relation-level. We present a summary of
all schemes that we found, but give a more de-
tailed description for (selected) schemes for which
an annotated corpus is available (cf. Table 1).

2.1 Sentence-level Schemes
Many schemes model scientific elements on the
level of sentences or phrases, i.e., for document
zoning. It consists of splitting the publications
(whether abstracts or full texts) on zones ac-
cording to its scientific content, e.g. introduc-
tion, methods, results. Shimbo et al. (2003) pro-
posed five categories and used structured abstracts
from Medline while Hirohata et al. (2008) sug-
gested four zoning categories. Further, Mullen
et al. (2005) proposed a schema in which labels
are grouped in three groups. Agarwal and Yu
(2009) defined four categories (IMRAD schema)
and manually annotated 148 articles, which was
also used by Varga et al. (2012) for the annotation
of more than 1,000 biomedical articles. Ruch et al.
(2007) also annotated and tried machine learning
in biomedical abstracts. However, none of the
above data seems to be available for use, but we
found many schemes with available corpora:

AZ (Teufel and Moens, 2002). The Argumen-
tative Zoning (AZ) schema was first proposed by
Teufel and Moens (2002) and an annotated cor-
pus is freely available for download1. The schema
is composed of seven rhetorical categories and
the corresponding corpus contains 80 articles on
computational linguistics. Teufel et al. (2009)
extended the schema to 11 categories (the AZ-
II schema), applied it to chemistry papers, and
later compared it to the CoreSC schema (Liakata
et al., 2010).2 Later, Kovačević et al. (2012)
annotated 110 articles in computational linguis-
tics with a modified version of the AZ labels.
Mizuta et al. (2006) also adapted the AZ schema
to biomedicine by annotating 20 full-text articles.

1https://www.cl.cam.ac.uk/˜sht25/AZ_
corpus.html

2However, the AZ-II corpus was not found.

Guo et al. (2010) compared three zoning schemes
in abstracts, including a reduced version of the AZ
schema composed of seven categories, and anno-
tated 1,000 abstracts with these schemes.3

CoreSC (Liakata et al., 2010). This schema
consists of three layers of labels and the corre-
sponding ART corpus4 is composed of 225 full
texts. The corpus and schema were used in Guo
et al. (2010) (just the first layer) and in Liakata
et al. (2012a) for two life sciences applications,
while Liakata et al. (2012b) compared it to a
schema for biomedical events and developed the
the SAPIENTA software5.

Dr. Inventor (Ronzano and Saggion, 2015;
Fisas et al., 2015). The Dr. Inventor Framework
proposes five categories and annotated 40 Com-
puter Graphics papers, the so-called Dr. Inven-
tor Rhetorically Annotated Corpus. Later, they
also annotated another layer for citation purposes
(Fisas et al., 2016). An extension of this schema
with argumentative components and relations was
recently published (Lauscher et al., 2018b), along
with a tool for the prediction of the scientific ele-
ments (Lauscher et al., 2018a).

MAZEA (Dayrell et al., 2012). This schema
considers six categories and the corpus was an-
notated for 645 abstracts from Physical Sciences
and Engineering and Life and Health Sciences.6 A
Web application is available for tagging abstracts.

PIBOSO (Kim et al., 2011). It was designed for
the clinical domain and proposes six categories of
a modified version of the PICO criteria. It was
used for the ALTA-NICTA shared task7 and recent
works using this corpus include Hassanzadeh et al.
(2014) and Jin and Szolovits (2018). The latter re-
lies on deep learning methods and the implemen-
tation is readily available.

PubMed RCT (Dernoncourt and Lee, 2017).
It is a collection that includes two corpora of
20,000 and 200,000 medical abstracts annotated

3However, the URL informed in a later publication (Guo
et al., 2013) no longer exists.

4https://www.aber.ac.uk/en/cs/
research/cb/projects/art/art-corpus/

5http://www.sapientaproject.com/
software

6http://www.nilc.icmc.usp.br/
mazea-web/downloads.php

7https://www.kaggle.com/c/
alta-nicta-challenge2

https://www.cl.cam.ac.uk/~sht25/AZ_corpus.html
https://www.cl.cam.ac.uk/~sht25/AZ_corpus.html
https://www.aber.ac.uk/en/cs/research/cb/projects/art/art-corpus/
https://www.aber.ac.uk/en/cs/research/cb/projects/art/art-corpus/
http://www.sapientaproject.com/software
http://www.sapientaproject.com/software
http://www.nilc.icmc.usp.br/mazea-web/downloads.php
http://www.nilc.icmc.usp.br/mazea-web/downloads.php
https://www.kaggle.com/c/alta-nicta-challenge2
https://www.kaggle.com/c/alta-nicta-challenge2
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Tools Categories Corpora Topic

Se
nt

en
ce

/P
hr

as
e

AZ AIM, TEXTUAL, OWN, BACK-
GROUND, CONTRAST, BASIC,
OTHER

80 (Teufel and Moens,
2002) and 20 (Mizuta
et al., 2006)

CL,
bio

CoreSC [Level 1] Hypothesis, Motivation,
Background, Goal, Object, Method,
Experiment, Model, Observation, Re-
sult, Conclusion

225 (Liakata et al., 2010) chem

Dr. Inventor Approach, Challenge, Background,
Outcomes, Future Work

40 (Ronzano and Sag-
gion, 2015)

CG

MAZEA background, gap, purpose, method, re-
sult, conclusion

645 abstracts (Dayrell
et al., 2012)

phy,
eng,
LS

PIBOSO Population, Intervention, Background,
Outcome, Study Design, Other

1,000 abstracts (Kim
et al., 2011)

bio

PubMedRCT background, objective, method, result,
conclusion

20,000 and 200,000 ab-
stracts (Dernoncourt and
Lee, 2017)

bio

Wilbur FOCUS, POLARITY, CERTAINTY,
EVIDENCE, DIRECTIONALITY

10,000 sentences
(Shatkay et al., 2008)

bio

E
nt

.

ScienceIE Task, Process, Material 500 (Augenstein et al.,
2017)

CS

R
el

at
io

n

Gábor USAGE, RESULT, MODEL,
PART WHOLE, TOPIC, COM-
PARISON

500 abstracts (Gábor
et al., 2018)

CL

SciDTB [Coarse level] Attribution, Back-
ground, Cause-effect, Comparison,
Condition, Contrast, Elaboration,
Enablement, Evaluation, Explain,
Joint, Manner-means, Progression,
Same-unit, Summary, Temporal

798 abstracts (Yang and
Li, 2018)

CL

H
yb

ri
d

Green [Levels 1-3] 1. Causation, 1.1
One Group, 1.1.1 Agreement Argu-
ments, 1.1.2 Eliminate Candidates,
1.1.3 Explanation-Based, 1.2 Two
Group, 1.2.1 Difference, 1.2.2 Analogy
(Causal), 1.2.3 Explanation-Based, 2.
Other, 2.1 Classification, 2.2 Confirma-
tion

one (Green, 2018) bio

Table 1: Summary of the selected schemes and corresponding categories, size of the annotated corpora, and topic
of the latter. Only the categories from the certain levels were shown for some schemes with various layers. Num-
bers or the corpora refer to full-text documents, unless otherwise stated. Regarding the topics, “CL” stands for
computational linguistics, “bio” for biomedicine, “chem” for chemistry, “CG” for Computer Graphics, “phy” for
Physics, “eng” for Engineering, “LS” for Life Sciences, and “CS” for Computer Science.
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with five categories. The corpus is freely avail-
able8 as well as at least two tools for its detec-
tion, namely the one from Jin and Szolovits (2018)
(cf. PIBOSO above) and one based on AllenNLP
(Achakulvisut et al., 2018).

Wilbur (Wilbur et al., 2006). It consists of a
schema developed for biomedical articles on five
dimensions. Later, the authors annotated 10,000
sentences from full-text publications (Shatkay
et al., 2008), which was made available after a de-
tailed analysis (Rzhetsky et al., 2009).9 The anno-
tation are on the level of fragments, which usually
correspond to either the sentences or phrases.

2.2 Entity-level Schemes
Entity-level schemes aim at annotating the ele-
ments on the level of entities. Gupta and Manning
(2011) proposed a simple schema based on three
concepts and labeled 474 abstracts of computa-
tional linguistics. More recently, Jung (2017) de-
fined five entity types and annotated 1,000 articles
about information and communication technology
(ICT) and chemical engineering. Blake (2010)
also proposed a schema based on various levels
of evidence (implicit and explicit claims) and an-
notated 29 full-text biomedical articles. However,
none of the above data seems to be available but
we found one schema with annotated corpus:

ScienceIE (Augenstein et al., 2017). This
schema proposes three elements on the entity level
as well as the annotation of keyphrases. The cor-
pus contains 500 articles about Computer Science,
Material Sciences and Physics, which were split
into training, development and test datasets and
used for the a SemEval task in 2017. We found
the implementation from two of the participants
on the shared task, namely (Prasad and Kan, 2017)
and (Eger et al., 2017).

2.3 Relation-level Schemes
Previous work also considered schemes that con-
sider relations between scientific elements. Prasad
et al. (2011) defined eight discourse relations in
the Biomedical Discourse Relation Bank (Bio-
DRB) and annotated 24 articles from the GENIA
corpus, which was later used in a couple of works
(Ramesh and Yu, 2010; Polepalli Ramesh et al.,

8https://github.com/
Franck-Dernoncourt/pubmed-rct

9https://doi.org/10.1371/journal.pcbi.
1000391.s002

2012). Tateisi et al. (2013) defined 16 relations
and annotated 30 articles, while Meyers et al.
(2014) proposed five relations and sub-relations
with which they annotated 200 biomedical arti-
cles. However, none of the data above seems to
be available, but we found corpora for the follow-
ing two schemes:

Gábor (Gábor et al., 2016) It is a schema in
the form of an ontology of 18 relations for the
scientific literature, besides three more general re-
lations. Six of these relations were recently ad-
dressed in the SemEval’18 Task 7, for which an-
notated data is available (Gábor et al., 2018). For
sub-task 2 in SemEval’18 Task 7, the code from
the team that obtained the best scores in this task
is available (Luan et al., 2018).

SciDTB (Yang and Li, 2018). It is a discourse
treebank for scientific articles that includes 17
coarse-grained and 26 fine-grained relation types.
They annotated 798 abstracts from the ACL An-
thology that are available for download.10

2.4 Hybrid Schemes
Hybrid schemes contain labels which cover more
than one of the levels above. Tateisi et al. (2016)
created an ontology of entities and relations and
annotated 400 abstracts about computational lin-
guistic. However, we found only one hybrid
schema for which annotated data is available:

Green (Green, 2018). It is schema of 15 argu-
ments annotated for one single article from the
biomedical domain. The schema includes both en-
tities and relations that are organized in a short tax-
onomy. Both schema and the annotated article are
available.11

3 Methods

We evaluated tools that consider some of the
schemes that we found (cf. Section 2) for the
task of text similarity in the scope of our use case
of mining alternative methods for animal experi-
ments. In this section we described the data and
the tools that we used as well as the evaluation
methodology.

3.1 Data
We evaluated the selected schemes and tools for
the task of text similarity. For this purpose, we

10https://github.com/PKU-TANGENT/SciDTB
11https://github.com/greennl/BIO-Arg

https://github.com/Franck-Dernoncourt/pubmed-rct
https://github.com/Franck-Dernoncourt/pubmed-rct
https://doi.org/10.1371/journal.pcbi.1000391.s002
https://doi.org/10.1371/journal.pcbi.1000391.s002
https://github.com/PKU-TANGENT/SciDTB
https://github.com/greennl/BIO-Arg
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model our problem as the following: given an in-
put document that describes an animal experiment,
we would like to mine similar candidate docu-
ments that are potential alternatives to animal test-
ing. Our definition of similarity requires that both
input and candidate documents should have simi-
lar research goal and comparable outcomes. How-
ever, the methods in the input document should be
substantial different from those in the candidate
documents. Therefore, we aim to compare input
and candidate documents based on certain rhetor-
ical elements as opposed to using the whole text.

Our evaluation datasets consist of seven in-
put documents from Medline whose identifiers
(PMIDs) are 11489449, 11932745, 16192371,
16850029, 19735549, 21494637 and 24204323.
For each input document, we collected the top
200 documents (titles and abstracts) retrieved from
PubMed’s “similar articles” functionality. On one
hand, the candidate documents are already very
similar to the input document. On the other hand,
the list of candidates returned by PubMed does not
consider our definition of similarity.

In order to build a suitable test set for our use
case, a biomedical researcher manually validated
at least the top 100 documents with regards to
three degrees of similarity: very similar, similar
and not similar. These three labels only consider
the similarity of the research goals of each pair
of abstracts (input vs. candidate documents) but
do not address the 3R principles. Some docu-
ments were ignored because either they were only
partially similar or because no decision could be
made only based on the title and the abstract.

After manual validation by the expert, our seven
datasets encompass a total of 562 publications (ti-
tles and abstracts). Figure 1 illustrates the distri-
bution of the labels for each input document. Only
four from the seven input documents had very sim-
ilar publications (from only 2 to 8 of them), while
similar ones (from only 4 to 19) could be found for
all of them. However, the non similar publications
are still the largest part (from 56 to 76) of the list.
The annotated data is available for download 12.

Some of the tools that we compared require
some linguistic information not originally in-
cluded in our documents, such as sentences and to-
kens. We utilized syntok13 for both sentence split-
ting and tokenization to build input data for one of

12https://github.com/mariananeves/
scientific-elements-text-similarity

13https://github.com/fnl/syntok

Figure 1: Number of documents according to the de-
gree of similarity to the input document. The number
of the dataset (1-7) is shown before the PMID.

the tools, namely, Prasad and Kan (2017).

3.2 Tools

We found a few available tools that address some
of schemes discussed in Section 2. However, we
had dismiss some of them due to various prob-
lems.

We experienced many problems with the Ten-
sorFlow library while trying the tool14 developed
by (Eger et al., 2017) for the ScienceIE schema.
The tool seems to require a version of the library
that it is no longer available and we could not re-
solve this issue not even after contacting the tool’s
developers. We also dismissed the tool15 from Jin
and Szolovits (2018) for the PIBOSO and Pub-
MedRCT schemes. The installation worked but
we were not able to train it due to memory prob-
lems. Finally, we did not try the tool16 from
Luan et al. (2018) since it addresses a relation-
based schema (Gábor) that requires pre-tagged en-
tities. Using named entities provided by other
tools would probably add too much noise to the
experiment. Finally, we had to dismiss the SAPI-
ENTA tool (Liakata et al., 2012b) because it only
allows uploading documents one by one to the
Web application and we could not overcome this
problem. We describe below the four tools that we

14https://github.com/UKPLab/
semeval2017-scienceie

15https://github.com/jind11/
HSLN-Joint-Sentence-Classification

16https://bitbucket.org/luanyi/
semeval2018/src/master/

https://github.com/mariananeves/scientific-elements-text-similarity
https://github.com/mariananeves/scientific-elements-text-similarity
https://github.com/fnl/syntok
https://github.com/UKPLab/semeval2017-scienceie
https://github.com/UKPLab/semeval2017-scienceie
https://github.com/jind11/HSLN-Joint-Sentence-Classification
https://github.com/jind11/HSLN-Joint-Sentence-Classification
https://bitbucket.org/luanyi/semeval2018/src/master/
https://bitbucket.org/luanyi/semeval2018/src/master/
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tried for the extraction of rhetorical elements. Ex-
amples for the sentence-based (zones) and entity-
based annotations are shown in Figure 2. We re-
leased in the GitHub repository the annotations ex-
tracted by the tools in the JSON format supported
by the TextAE tool17.

Achakulvisut et al.18 (Achakulvisut et al.,
2018) (PubMedRCT schema). It addresses the
PubMed RCT schema, thus provides predictions
for five zoning labels, namely, “Background”,
“Objective”, “Method”, “Results” and “Conclu-
sions”. We utilized the pre-trained models for
Conditional Random Fields (CRF) as provided by
the tool. Given that there is no publication, it is
not clear what methods are behind the available
models, but probably CRF.

ArguminSci19 (Lauscher et al., 2018a) (Dr. In-
ventor schema extended). ArguminSci is avail-
able both for download as well as on-line (Web ap-
plication). It provides predictions for five schemes
but we considered only the “Discourse Role Clas-
sification (DRC)” whose labels are “Background”,
“Challenge”, “Approach”, “Outcome” and “Fu-
ture Work”. ArguminSci’s models are based on
bidirectional recurrent networks with long short-
term memory cells (Bi-LSTMs) and we utilized
the command line version of the tool.

MAZEA tool20 and schema (Dayrell et al.,
2012). The tool addresses six categories,
namely, “Background”, “Gap”, “Purpose”,
“Method”, “Result” and “Conclusion”. It is
currently not available for download but only as
a Web tool that requires to manually upload each
document individually. However, the developers
kindly processed our documents locally and sent
the predictions back to us. The tool utilizes
machine learning algorithms, such as Support
Vector Machines (SVM) and Decision Trees.

Prasad and Kan21 (Prasad and Kan, 2017) (Sci-
enceIE schema). It addresses the three labels
for entities from the ScienceIE schema, namely,
“Task”, “Process” and “Material”. From the

17http://textae.pubannotation.org/
18https://github.com/titipata/

detecting-scientific-claim
19https://github.com/anlausch/

ArguminSci
20http://www.nilc.icmc.usp.br/

mazea-web/
21https://github.com/animeshprasad/

science_ie

repository, we utilized the scripts for feature pro-
cessing and the template to train the model with
CRF++22. We had to correct the provided template
in order to successfully train the system. The en-
tity recognition approach is based on various fea-
tures and uses the CRF algorithm.

3.3 Evaluation

We evaluated the tools for the task of text simi-
larity. Therefore, we calculated the similarity be-
tween the input and candidate documents, either
based on the whole text or on selected rhetorical
elements as provided by the tools. When utiliz-
ing the output from the various tools, we built a
pseudo-document based either on the sentences or
entities that we obtained. For the zoning tools, we
concatenated the sentences to form a single text,
while we printed the entities (one per line) for the
entity-based predictions. Similarly, when evalu-
ating combination of various labels, we concate-
nated the text from various labels into a single file.

We performed text similarity using the
TextFlow tool (Mrabet et al., 2017) and utilized
these similarity scores to rank the candidate doc-
uments. Subsequently, we evaluated the ranked
list with regard the metrics of precision, recall and
f-score at rank 10, i.e. P@10, R@10 and F@10.
P@10 is the rate of correct positive candidate doc-
uments in the top 10 highest ranked documents,
i.e. P@10 = TP@10

10 . The R@10 corresponds to
the rate of positives candidate documents in the
top 10 over the total of all positive instances, i.e.
R@10 = TP@10

Num.Positive . Finally, the F@10 is the
harmonic average of the P@10 and R@10 above,
i.e. F@10 = 2∗P@10∗R@10

P@10+R@10 .
We considered as positive examples all those

publications manually classified by our expert as
“very similar” or “similar”. Given the few of these
instances in our datasets, we decided to make no
distinction between both categories. As a result,
the number of positive examples for the input doc-
uments in Figure 1 are 4, 10, 16, 11, 8, 23 and
6, respectively. We evaluated at rank 10 due to
the reason that only two datasets have more than
20 positive instances, while only two of them over
10 positive instances. For datasets which contain
more than 10 positive examples, we considered the
number of positive instances to be equal to 10 in
the equation of R@10. For the final comparison
between the various tools and baselines, we per-

22https://taku910.github.io/crfpp/

http://textae.pubannotation.org/
https://github.com/titipata/detecting-scientific-claim
https://github.com/titipata/detecting-scientific-claim
https://github.com/anlausch/ArguminSci
https://github.com/anlausch/ArguminSci
http://www.nilc.icmc.usp.br/mazea-web/
http://www.nilc.icmc.usp.br/mazea-web/
https://github.com/animeshprasad/science_ie
https://github.com/animeshprasad/science_ie
https://taku910.github.io/crfpp/
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Figure 2: Visualization in the TextAE tool of the annotations provided by two of the tools that we used.

formed an average of the metrics over the seven
datasets.

We defined two baselines for comparison: (i)
the original order of the candidate documents as
returned by PubMed’s “similar articles” function-
ality; and (ii) string similarity based on the whole
text (title and abstract) without any pre-processing
on the text. For the first baseline, we searched in
PubMed for each of the seven PMIDs and down-
loaded the list of the top 100 similar articles (stand
of March 13th, 2019). Given that the current list of
similar articles might include citations not present
at the time when our corpus was annotated, we dis-
missed any document not included in our dataset
when calculating the above metrics, i.e., we did
not consider them as false positives.

4 Results

We compared the tools based on the metrics of
P@10, R@10 and F@10 that assess the perfor-
mance of the various tools for the ranking task.
We performed a total of 38 experiments which in-
cludes the four tools and baselines, as well as some
combinations of selected labels from the tools.
The combination of labels were decided based on
the performance of the single labels and on our un-
derstanding of which labels are more relevant for
our use case. Table 2 presents the results for our
two baselines and the best results for each tool. In
the following we specify the labels that obtained
the best results:

• Achakulvisut et al: the combination of
all labels, i.e. “Background-Conclusions-
Methods-Objective-Results”

• ArguminSci: two combinations of labels
were equally good: “Background-Challenge-

Tools P@10 R@10 F@10
PubMed 0.30 0.33 0.31

Title+Abstract 0.43 0.51 0.45
Achakulvisut et al 0.44 0.52 0.47

ArguminSci 0.47 0.56 0.50
MAZEA 0.4 0.47 0.42

Prasad and Kan 0.44 0.54 0.47
Min score 0.14 0.16 0.15
Max score 0.83 1.0 0.90

Table 2: Summary of the results from the two base-
lines (two first rows) and when using the selected tools.
The maximum scores represent the maximum value of
P@10, R@10 and F@10 that could have been obtained
by any of the approaches. The minimum scores are the
ones obtained when randomly selecting 10 candidates
in each dataset, averaged over 1,000 experiments.

Outcome” and “Background-Challenge-
Outcome-FutureWork”.

• MAZEA: the combination “Method-Result”.

• Prasad and Kan: the combination “Process-
Material”.

For our datasets, all approaches using rhetori-
cal tools obtained a better performance than the
baseline from PubMed. Further, three tools scored
higher than our strong baseline that uses TextFlow
over the whole text (titles and abstracts). Two of
the tools (Achakulvisut et al and ArguminSci) ad-
dress zoning elements while one of them (Prasad
and Kan) returns entity-level annotations. How-
ever, none of the tools scored close the maximum
possible scores. Given that we do not have at least
10 positive instances (“very similar” or “similar”)
for some of our input documents, our maximum
P@10 is of 0.83 instead of 1.0.

The three zoning tools rely on labels that can
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Tools Labels P@10 R@10 F@10

A
ch

ak
ul

vi
su

t Background 0.28 0.32 0.30
Objective 0.33 0.41 0.35
Methods 0.31 0.40 0.34
Results 0.20 0.25 0.22

Conclusions 0.23 0.26 0.24

A
rg

um
in

Sc
i Background 0.23 0.25 0.24

Challenge 0.23 0.26 0.24
Approach 0.26 0.32 0.28
Outcome 0.41 0.50 0.44

Future Work 0.33 0.41 0.35

M
A

Z
E

A

Background 0.24 0.28 0.25
Purpose 0.24 0.25 0.25
Method 0.30 0.37 0.32
Result 0.28 0.32 0.30

Conclusion 0.23 0.30 0.25

Pr
as

ad

Process 0.37 0.48 0.40
Material 0.31 0.35 0.33

Task 0.28 0.36 0.31

Table 3: Performance of the single labels in the re-
ranking task.

be mapped to one another, as shown by the order
of their labels in Table 3. When examining the
performance of single labels, only the “Outcome”
label from ArguminSci tool could perform close
our strong baseline.

The labels that we expected to be more relevant,
i.e. the ones more related to the background and
outcome sections and less with the methods sec-
tion, did not always perform better in the rank-
ing task. For instance, the F@10 obtained by
the label “Approach” from ArguminSci performed
slightly better (0.28) than the “Background” (0.24)
and “Challenge” (0.24) labels. Similarly, the label
“Method” from MAZEA performed better (0.32)
than “Background” (0.25) and “Purpose” (0.25)
sections. We wonder whether the good perfor-
mance of methods-related labels were actually due
to mistakes in the classification performed by the
tools.

Our experiments showed that a combination
of labels always performed better than the sin-
gle ones, while some combinations of labels per-
formed better than others (cf. Figure 3). We could
not find any difference in the text similarity scores
(as computed by TextFlow) when considering dif-
ferent order of the same labels in the concatenation
of the text.

5 Discussion

We carried out a total of 38 experiments that in-
volved diverse tools, single labels and combina-
tion of various labels. We ran an error analysis to
learn more about the false negatives and false pos-
itives that we obtained.

At least one positive document was missed by
any of the tools, i.e. was not placed among the
top 10 positions. Many of the documents that we
missed are certainly due to the limitation of con-
sidering only the top 10 highest ranked positions.
However, none of the experiments obtained a re-
call of 1.0. The highest recall that we obtained was
0.9 for the dataset 3 (16192371) using the Argu-
minSci tool and either the single label “Outcome”
or the combination of labels “Challenge-Outcome-
FutureWork”.

On one hand, five documents were missed by
all experiments (38 times), namely, candidate doc-
uments “19155551”, “29133591”, “21362567”,
“19667187” and “26047474” from datasets 3, 5, 6,
6, and 7, respectively. On the other hand, the can-
didate document “25174890” from dataset 6 was
the least missed one: only by three experiments. A
total of 333 documents were wrongly classified as
positive, i.e. were placed among the top 10 ones,
by any of the 38 experiments. No candidate docu-
ment was mistakenly classified by all approaches,
but the more frequent ones were: “21501651”
(27 times) and “23571276” (25 times), both from
dataset 4, and “11494364” (25 times) from dataset
7. Our expert checked again the labels assigned
to the top FPs and FNs above described and con-
firmed that their labels are correct and that the doc-
uments have been wrongly classified by the corre-
sponding approaches.

Our experiments have shown that many of the
tools can indeed support our use case, specially
when compared to the original list provided by
PubMed. Regarding the integration of these tools
into a workflow, one of the tools is currently
not available (MAZEA), while all the others need
some adaptations to be used in real-life applica-
tions. With respect to the methods behind the
tools, ArguminSci, which is based on LSTM, per-
formed slightly better than the ones based on CRF
(Achakulvisut et al, Prasad and Kan) and superior
than the machine learning algorithms in MAZEA.
However, we did not evaluate the predictions made
by the tools, but only their impact in a specific text
similarity task.
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Figure 3: Comparison to the baselines of various combinations of labels as provided by the tools.

We expected that the best performing tools
would be the ones that utilized corpora specifically
built for the biomedical domain. From the tools
that we evaluated, only Achakulvisut et al and
MAZEA were specifically trained on documents
from the biomedical or health domains. Nev-
ertheless, ArguminSci, the best performing one,
was trained on documents from computer graph-
ics while and Prasad and Kan utilizes documents
about computational linguistics.

We also investigated whether there was any im-
pact of the document type in the corpora, i.e. ei-
ther full texts or only abstracts, on the performance
of the corresponding tools. However, we did not
observe any clear association between these two
aspects. While the best performing tool (Argu-
minSci) was trained on full texts, Achakulvisut et
al utilizes only Medline abstracts. Similar to Ar-
guminSci, the tool from Prasad and Kan is also
based on full text documents.

We carried out experiments with various tools
but limited to a very specific use case. Even
though our datasets contains a reasonable number
of documents (562), the similarity of the candi-
date documents was computed with respect to only
seven input documents, and datasets were anno-
tated by only one annotator. Further, we only con-
sidered titles and abstracts in our evaluation, while
some tools were trained on full-text documents.
Previous work has already shown the differences
of information and performance of NLP tools in
biomedical abstracts and full texts (Verspoor et al.,
2012; Mons et al., 2004). Our future work will ad-

dress many aspects: (i) use of full texts; (ii) im-
provement of the datasets with additional annota-
tors; (iii) estimation of the compliance with the 3R
principles by a candidate document, in addition to
the calculation of similarity; (iv) evaluation of the
relation-based tool (Luan et al., 2018) and the one
for which we experienced memory problems (Jin
and Szolovits, 2018); and (v) evaluation of other
schemes (e.g. Wilbur et al. (2006)) for which an
implementation is currently not available.

6 Conclusions

We surveyed schemes that model scientific ele-
ments in publications and selected four schemes
for which we could find an available tool. We uti-
lized the predictions from these tools for assessing
the text similarity between documents and further
ranking them in the scope of mining alternative
methods to animal testing. Our experiments show
that a considerable improvement can be obtained
when using ArguminSci, with respect to the origi-
nal ranking returned by PubMed and to the strong
baseline that we considered. However, there is still
much room for improvement given that the ob-
tained scores are still far below the possible maxi-
mum values.
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Milosavljević, and Goran Nenadic. 2012. Mining
methodologies from nlp publications: A case study
in automatic terminology recognition. Computer
Speech & Language, 26(2):105 – 126.

Anne Lauscher, Goran Glavaš, and Kai Eckert. 2018a.
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