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Abstract

There is a long record of research on equity
in schools. As machine learning researchers
begin to study fairness and bias in earnest, lan-
guage technologies in education have an un-
usually strong theoretical and applied foun-
dation to build on. Here, we introduce con-
cepts from culturally relevant pedagogy and
other frameworks for teaching and learning,
and identify future work on equity in NLP. We
present case studies in a range of topics like
intelligent tutoring systems, computer-assisted
language learning, automated essay scoring,
and sentiment analysis in classrooms, and pro-
vide an actionable agenda for research.

1 Introduction

Researchers across machine learning applications
are finding unintended outcomes from their sys-
tems, with inequitable or even unethical impacts
(Barocas and Selbst, 2016). We are at an inflec-
tion point in the study of fair machine learning;
popular science publications are shedding light on
the widespread impacts of algorithmic bias (No-
ble, 2018; Eubanks, 2018; Angwin et al., 2016)
and specialized technical conferences like ACM
FAT*! and FATML? now provide methods and
examples of research addressing ethics in model
bias, the design of datasets, and user interfaces for
algorithmic interventions. “Impact” investing in
educational technology® has grown (Gates Foun-
dation and Chan Zuckerberg Initiative, 2019) and
these machine learning tools are now pervasive in
educational decision-making (Wan, 2019). Yet in
recent literature reviews of NLP in edtech, the fo-
cus has been on narrowly scoped technical topics,
like speech (Eskenazi, 2009) or text and chat data
(Litman, 2016), but crucially, do not address eq-
uity issues more broadly. NLP applications are

'https://fatconference.org/2019/
*http://www.fatml.org/
3From this point forward, abbreviated as “edtech.”
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mainstays in schools and have great reach, a trend
poised to accelerate with the adoption of interac-
tive, language-enabled devices like Alexa, both at
home and in the classroom (Ziegeldorf et al., 2014;
Horn, 2018; Boccella, 2019). As a field, we risk
unwittingly contributing to harm for learners if we
don’t understand the ethical consequences of our
research — but we don’t have to start from scratch.

Education philosophers have long advocated for
equity in schooling for all learners (Dewey, 1923;
Freire, 1970), and over decades, have built rich
pedagogies to accomplish goals of social justice
for students (Ladson-Billings, 1995); this work
has flourished in progressive schools (Morrell,
2015; Paris and Alim, 2017). Developers of edtech
have already moved from technological innova-
tion for its own sake, to a focus on efficacy and
learning analytics, tying educational data mining
to specific student outcomes (Baker and Inven-
tado, 2014). This paper presents a roadmap for
now incorporating equity into the design, evalua-
tion, and implementation of those systems.

In sections 2 and 3 we give overviews of exist-
ing research, first on fair machine learning, then on
social justice pedagogies in education. The bulk of
our new contributions are in section 4-7, where we
describe key problem areas for NLP researchers in
education. We conclude with practical recommen-
dations in section 8.

2 Primer on Fair Machine Learning

The topic of ethics in technology dates back to
decades ago (Winner, 1989); but uptake of conver-
sations about building equitable algorithmic sys-
tems is fairly recent. The existing literature pri-
oritizes topics of bias and fairness, mostly based
on what some have called “allocational harm”
(Crawford, 2017). Researchers measure the dis-
tribution of outcomes produced by automated
decision-making, and evaluate whether subgroups
received proportional shares of a resource being
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distributed - bail release recommendations, ap-
proval for a mortgage, high test scores, and so on.
Over and over, differential outcomes have been
tied to biased modeling along demographic lines
like gender, race, and age (Friedler et al., 2019).

Some have questioned the value of fairness re-
search, arguing that machine learning may simply
reproduce existing distributions, rather than cause
harm in itself (see Mittelstadt et al. (2016) for an
overview of this debate). But high-profile research
has repeatedly shown an amplifying effect of ma-
chine learning on concrete real-world outcomes,
like racial bias in recidivism prediction in judicial
hearings (Corbett-Davies et al., 2017), or dispro-
portionate error from facial recognition for dark
skin tones, particularly among individuals identi-
fying as female (Buolamwini and Gebru, 2018).

Fairness work in NLP has focused particularly
in dense semantic representations at the lexical or
sentence level. In learned embeddings of meaning,
bias exists along race and gender lines (Caliskan
et al.,, 2017; Garg et al., 2018) and is passed
downstream, producing biased outcomes for tasks
like coreference resolution (Zhao et al., 2018a),
sentiment analysis (Kiritchenko and Mohammad,
2018), search (Romanov et al., 2019), and dia-
logue systems (Voigt et al., 2018; Henderson et al.,
2018). Research beyond metrics, analyzing the
broader social impact of biased NLP, has also be-
gun (Hovy and Spruit, 2016).

Many of these problems stem from training data
selection; models trained on standard written pro-
fessional English, like the Penn Treebank (Mar-
cus et al., 1993), fail to transfer to other writ-
ing styles, especially online where research sug-
gests that NLP performance is degraded for under-
represented language groups, like African Ameri-
can English (Petrov and McDonald, 2012; Blod-
gett et al.,, 2017). Early work on “de-biasing”
NLP has begun, seeking to reduce the amplifica-
tion of bias in dense word embeddings (Boluk-
basi et al., 2016; Zhao et al., 2017, 2018b); but
early results still leave room for improvement (Go-
nen and Goldberg, 2019). Accounting for dialects
and other language variation has been moderately
more successful, with examples in speech recog-
nition (Kraljic et al., 2008), parsing (Gimpel et al.,
2011), and classification (Jurgens et al., 2017).

There are many open questions. Chouldechova
(2017) and Corbett-Davies and Goel (2018) work
to even define fairness, giving several proposals;
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but related research has shown these definitions
are brittle. Classifiers may trivially fail to main-
tain fairness properties when the output from one
classifier is used as input for another, for instance
(Dwork and Ilvento, 2018), or even worsen dis-
parate outcomes after iterating on algorithmic pre-
dictions over time (Liu et al., 2018). Research
in computational ethics (Hooker and Kim, 2018)
may give some guidelines for the NLP commu-
nity broadly, and work on richer formal systems of
guarantees on fairness is underway (Kearns et al.,
2019); but while this research is ongoing, devel-
opers continue to build systems. For NLP re-
searchers working in education, specifically, a key
resource will be the long tradition of educational
equity research and praxis that exists today, and is
being practiced in schools already.

3 Equity in Education Research

Machine learning research in general tends to fo-
cus on recent publication; to counteract this and
set a longer-term context, in the following section
we explain the historical background on learning
science research that considers socio-cultural di-
mensions of learning and their implications for eq-
uity, work that motivates our recommendations for
technologists building educational interventions.

3.1 Sociocultural and Critical Perspectives

While much of the earliest work on learning sci-
ence was purely behaviorist, the field’s expansion
into sociocultural factors that affect learning is old,
beginning nearly a century ago. Driven by Marxist
philosopher and psychologist Lev Vygotsky, the
gaze of research shifted from inner processes of
the mind to interactions between students and their
cultural context and practices (Moll, 1992). This
tradition drove research into individual develop-
ment via socially-mediated processes of learning
(Chaiklin, 2003). The mediated learning experi-
ence is done via a process of scaffolding what the
learner knows and what they need help on, in their
“zone of proximal development” (Hammond and
Gibbons, 2005). This work also acknowledged
the connection between formal school education
and informal education in the world (Scribner and
Cole, 1973), and introduced the idea of learning
as a social process in which students build identity
(Wenger, 2010). This conceptual framework now
dominate the scientific discourse on sociocultural
research in edtech systems (Aleven et al., 2016).



The sociocultural paradigm from Vygotsky has
humanized education compared to purely behav-
iorist approaches; meanwhile, parallel work in the
emerging field of critical pedagogy was taking
more aggressive steps. Led by Brazilian educa-
tional and social philosopher Freire (1970), this
work argued that formal schooling was an ideo-
logical system for preserving existing power struc-
tures, that treats students as receptacles to be filled
with culturally dominant views (i.e. a “banking”
model), rather than giving students the opportu-
nity to learn topics of intrinsic meaning to them.
This alternate approach led to unprecedented gains
in adult literacy during the twentieth century, par-
ticularly in Brazil (Kirkendall, 2010) and in Cuba
(Samuel and Williams, 2016), demonstrating what
pedagogical theorists described as liberatory ed-
ucation and critical consciousness (Freire, 1985).
This, and later work by critical theorists like hooks
(2003), critiqued the banking model where learn-
ing is viewed as providing neutral information to
students. Critical pedagogy instead views teach-
ing as a fundamentally political process, where
students may engage with topics from their life,
ask questions about their contexts, and identify
systemic power relations and institutions. When
applied in school contexts, this approach success-
fully reaches students typically left behind in more
mainstream pedagogies (Morrell, 2015).

Multiculturalist approaches to education build
on this, drawing from cultural, ethnic, and wom-
ens studies to teach by drawing on students’ own
cultural history and practices. The goal is to
promote equity through learning within a stu-
dent’s community and culture, producing a cultur-
ally sustaining pedagogy (Ladson-Billings, 1995).
This approach necessitates educators who come
from, or are deeply competent in, the cultural
norms and expressions of their students, creating
content and opportunities that allow students to
connect with learning in an affirming way. By giv-
ing students tools to engage with and critique soci-
ety, the most recent approaches continue to enable
student growth (Paris and Alim, 2017).

3.2 Application to Algorithms in Edtech

These perspectives can be hard to align with
technological interventions. As direct critiques
of dominant ideologies and institutions that le-
gitimate and maintain inequality for students,
their language is more forceful than most ma-
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chine learning research. Unlike fairness liter-
ature in computer science venues, these works
explicitly describe existing practices as based in
white supremacist patriarchy, heteronormativity,
and colonialism. This makes these pedagogies
more expressive, capable of defining a path for-
ward for equitable technologies; but it also makes
them more suspicious of interventions that scale
without local context and cultural knowledge.
However, educators have successfully applied
these principles in technology-oriented work.
Mislevy et al. (2009) shows how critical analy-
sis can support and define assessment; Morris and
Stommel (2018) uses them to develop a digital
pedagogy. The Gordon Commission shows how
critical work can be a basis for development of
adaptive learning systems (Armour-Thomas and
Gordon, 2013). Across these and other applica-
tions, some principles are immediately clear:

o A shift in the goal of assessment, from mea-
suring static knowledge to assessing forma-
tive process, acknowledging student growth
at least as much as facts they have “banked.”

A vocabulary and willingness to describe ex-
isting systems as oppressive for students, on
lines of race, economic class, gender, physi-
cal abilities, and other aspects of identity.

A demand for cultural competence from the
teachers and designers of learning systems,
aligning the creators of educational environ-
ments with the students they teach.

The remainder of our paper summarizes key
recommendations that lead from these principles.
We reference them in the hope that researchers
will move their conversations about equity in ma-
chine learning beyond model bias and allocational
harm for subgroups. Such work is vital and the
task of bias measurement is not solved yet, but
researchers are already racing to build tools for
these problems. Madnani et al. (2017), for in-
stance, presents a capable tool for evaluating fair
outcomes in automated essay scoring. It would
be a mistake to focus on bias alone Given exist-
ing pedagogical work on equity and its focus on
learning through dialogue, critical discourse, and
action, we can propose broader mindset shifts for
researchers. Our goal is to avoid harm to students
and prevent expenditure of resources on research
that maintains inequity rather than closing gaps in
achievement across student populations.



4 Avoiding Representational Harms

First, beyond allocational harm, there are “rep-
resentational harms” in machine learning (Craw-
ford, 2017). This class of issues includes the ways
in which technologies represent groups of people
or cultures. This may take the form of search
results returning stereotypical images of minori-
ties (Noble, 2018) or other algorithmic stereotyp-
ing (Abbasi et al., 2019); much of the work in
word embeddings falls into this category (Caliskan
etal., 2017), though research on downstream tasks
and outcomes often have more allocational focus.
Machine learning may also marginalize groups
by simply not representing their culture, resulting
in educational systems where learners do not see
themselves in the texts selected by instructors.

These harms can exist even when no disparate
outcomes are observed, and even if there is no
measured gap in predictive accuracy of models
(Binns, 2018). Students whose cultural back-
ground is in the minority in a classroom are less
prone to participate in teacher-student interactions
(Tatum et al., 2013) and in student group dis-
cussion (White, 2011); these variations are pre-
dictable by gender, race, and nationality (Eddy
etal.,2015). We also know that instructor credibil-
ity is tied to demographics (Bavishi et al., 2010),
as are student evaluations of a teacher’s trustwor-
thiness and caring (Finn et al., 2009).

4.1 Case Study: Agent-based Intelligent
Tutoring Systems

In intelligent tutoring systems (ITS), a human-
like agent or visual avatar engages with students
through text or speech. These systems now pair
natural language instruction with parasocial fea-
tures (Lubold et al., 2018) and mimicking nu-
anced human behaviors like finding “teachable
moments” (Nye et al., 2014). They are used indi-
vidually or with groups of students (Kumar et al.,
2007) and to provide narrowly targeted support for
Autistic students (Nojavanasghari et al., 2017) and
deaf students (Scassellati et al., 2018).

When these pedagogical agents are used with
students, regardless of if they play the role of tu-
tors, coaches, or peers (Baylor and Kim, 2005),
representation matters. Decisions for agents’ ap-
pearance, language, and behavior may impact
learners’ perceptions of the cultural identity of the
agents (Haake and Gulz, 2008), and may impact
learners perceptions of their own belongingness
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and identity (c¢f. (Fordham and Ogbu, 1986)). Past
work on agent representation also lacks alignment
with modern understanding of identity, relying on
binary definitions of gender (West and Zimmer-
man, 1987; Keyes, 2018) and failing to account for
identities at the intersection of multiple marginal-
ized groups (Crenshaw, 1990), especially in less
developed countries (Wong-Villacres et al., 2018).

Incorporating representation improves embod-
ied tutors, with improved student outcomes
(Finkelstein et al., 2013). One of the simplest,
most valuable steps for developers of ITS agents is
to view the choice of the agent’s identity presen-
tation (identity factors such as race, appearance,
voice, language, gender) as a non-neutral, polit-
ical choice. The agents designed by researchers
express to students beliefs about what a “model
teacher” or “model student” look and sound like.
Pracitioners and researchers alike often have great
flexibility, at no additional expense, to intention-
ally design of the characters and content of the ap-
plications they create. This is different from the
models themselves in a machine learning system,
which rely on expensive training data, and which
are often pretrained before development even be-
gins, making it an attractive and high-leverage
point for technologists to intervene.

5 Culturally Relevant Pedagogy

A lack of representation more broadly has con-
tributed to an educational curriculum that privi-
leges dominant cultures and which actively harms
student engagement. The consequences are con-
crete - for instance, in recent bans on Chicano
texts in the Southwest United States (Wanberg,
2013). One can draw a straight line back to his-
torical policies that have devalued cultures, partic-
ularly for indigenous populations (Adams, 1995)
and descendants of Black slaves (Alim et al., 2016;
Lanehart, 1998). Historically, students coming
from marginalized cultures have been measured
by a “deficit model” (Brannon et al., 2008), where
their home culture was viewed merely as a lack of
knowledge about the dominant majority culture.
But there are alternatives in the existing peda-
gogy literature, like Moll et al. (2005)’s “funds of
knowledge” model. This approach defines the ac-
cumulated and culturally developed bodies of in-
formation and skills that students learn at home
and in their communities, essential to their func-
tioning and well-being. An equitable approach



treats cultural knowledge instead as an asset, and
allows students to build on what they know. This
extends to technologies used in the everyday lives,
homes, and communities of students - influencing
their ability to impact student learning outcomes.

5.1 Case Study: Reading Comprehension

For early readers, speech recognition systems have
been developed for children’s voice and language
(Gerosa et al., 2009) and are used to improve stu-
dents’ early reading skills (Mostow et al., 2003),
or for speech-based vocabulary practice (Kumar
et al., 2012). Yet these systems are often unable
to generate questions for texts from nonstandard
linguistic groups (e.g. with the syntactic and mor-
phological transformations in African-American
English (Siegel, 2001)). Systems today may also
fail to recognize speech from students speaking
certain dialects or accents, though progress in
recognition for marginalized language variation is
improving rapidly (Blodgett et al., 2016; Stewart,
2014; Jgrgensen et al., 2015).

After basic literacy skills are acquired, NLP
tools for language understanding are widely
used to generate reading comprehension questions
(Heilman and Smith, 2010). NLP is also used in
related tasks like the measurement of readability
(Aluisio et al., 2010; Vajjala and Meurers, 2012),
and generation of simplified texts to differenti-
ate homework based on student ability (Xu et al.,
2015). But from a pedagogy perspective, content
from these systems may be inappropriate - for in-
stance, the questions generated are often factual
rather than encouraging critical thinking (Rick-
ford, 2001). This format does not measure stu-
dent skills equally across cultures, and particularly
under-reports progress in students of color, who
tend to thrive when assessed through naturalistic
narrative (Fagundes et al., 1998).

In pursuit of more reliable automated assess-
ment, comprehension tasks may also fail to prior-
itize growth in student ability. Struggling readers
understand texts more effectively when they are
given chances to initiate dialogues and ask ques-
tions about texts, with teachers acting as listen-
ers rather than ask their own questions about texts
(Yopp, 1988). Teachers have difficulty creating
these interactions (Allington, 2005), and intelli-
gent agents have at least the potential for scaffold-
ing tasks through real-time support for students
as they perform their own tasks (Adamson et al.,

448

2014). But to date, work has primarily focused
on factoid assessment (Mostow and Jang, 2012;
Zesch and Melamud, 2014; Wojatzki et al., 2016).
This is an opportunity for future equitable NLP re-
search at the intersection of ITS agents and read-
ing comprehension. Additionally, coaching teach-
ers to perform these dialogues has potential to fill
in gaps in professional development and preser-
vice training (Gerritsen et al., 2018), further in-
centivizing development of culturally responsive
reading comprehension.

5.2 Case Study: Automated Writing
Feedback and Scoring

Algorithmic assessment of student writing has
taken many forms, from summative use in stan-
dardized testing (Shermis and Hamner, 2012) and
the GRE (Chen et al., 2016) to formative use for
classroom feedback (Woods et al., 2017; Wilson
and Roscoe, 2019). This trend has led to so-
phisticated NLP analyses like argument mining
(Nguyen and Litman, 2018) and rhetorical struc-
ture detection (Fiacco et al., 2019). Automated
scoring has seen some more limited use in higher
education, as well (Cotos, 2014; Johnson et al.,
2017). For writers who are proficient or already
working in professional settings, language tech-
nologies provide scaffolds like grammatical error
detection and correction (Ng et al., 2014). These
systems are enabled by rubrics, which give con-
sistent and clear goals for writers (Reddy and An-
drade, 2010). Rubric-based writing has drawbacks
like rigid formulation of tasks (Warner, 2018),
and many applications of rubrics are rooted in a
racialized history difficult for technology to escape
(Dixon-Romén et al., 2019).

Bias creeps into rubric writing and scoring of
training data, unless extensive countermeasures
are taken to maintain reliability across student
backgrounds and varied response types (Loukina
et al., 2018; West-Smith et al., 2018). It also limits
flexibility in task choice and response type from
students, limiting students to writing styles that
mirror the norms of the dominant school culture.
Developers have an opportunity for equity work
here, to the extent that they have leverage over
task definition and training data collection (Lehr
and Ohm, 2017; Holstein et al., 2018). Automated
feedback systems may be improved through tasks
that are flexible, and give culturally aligned oppor-
tunities for topic selection and choice; feedback



on rubrics that align to student “funds of knowl-
edge” rather than the often-racialized language of
deficits; and collaborative opportunities to share
their work, receiving feedback that extends be-
yond algorithmic response.

6 Avoiding Linguistic Imperialism

Beyond selection of which content to teach, a
broader issue is the focus of most language edu-
cation globally on English and other prestige lan-
guages. This creates a privileged medium of com-
munication and learning, and is rooted in colonial-
ism; see for instance English’s position over re-
gional languages in India (Hornberger and Vaish,
2009) and the similar role of Afrikaans in South
Africa (Heugh, 1995; Alim and Haupt, 2017); as
well as how this extends to modern geopolitics in
regions like Asia, with Han Chinese (He, 2013). In
presumed-monolingual environments where stu-
dents already speak the dominant language at
home, this same effect plays out in dialects; ex-
amples include the privileging of white American
or British dialects over stigmatized dialects like
African-American Vernacular English in Amer-
ica (Henderson, 1996; Siegel, 2001), or the role
of Classical Arabic as a prestige language over
regional variants across the Arab world (Haeri,
2000). In language policy, this privileged position
of a dominant language has been described as “lin-
guistic imperialism” (Phillipson, 1992).

This dominant position of specific languages,
especially English, comes despite cognitive
science findings that bilingualism and code-
switching ability has a marked positive effect on
cognitive function (Petitto et al., 2012; Kroll and
Bialystok, 2013) and may even have a positive
economic effect on lifetime earnings (Agirdag,
2014). Moreover, language learning can promote
new language acquisition while preserving respect
for the learner’s home language (or ‘“heritage”
language), helping learners to selectively choose
when and how to communicate in each. Peda-
gogies exist which value pragmatic, socially con-
scious use of code-switching in mixed linguistic
environments (Wang and Mansouri, 2017); these
techniques are applicable to NLP.

6.1 Case Study: Computer-Assisted
Language Learning

Computer-Assisted Language Learning, or CALL
(Thomas et al., 2012), is an effective use of lan-

guage technologies for vocabulary-building, pro-
nunciation training, and practice through speech
recognition, and other less common tasks (Witt,
2012; Levy and Stockwell, 2013). Language
learning is a convenient fit for quantification,
rapid experimentation (Presson et al., 2013),
large dataset collection through “learner corpora”
(Meurers, 2015), and fine-grained descriptions
of progress through second language acquisition
modeling (Settles et al., 2018). For second lan-
guage teachers, NLP can improve their language
awareness and skills (Burstein et al., 2014); for
individual learners, language learning is highly
personalizable and can be gamified for motiva-
tion and engagement (Munday, 2016). Machine
learning models are also a good fit for summa-
tive assessment of student skill, and is used both
in speech (Chen et al., 2018) and writing (Ghosh
et al., 2016), including on high-stakes exams like
the TOEFL (Chodorow and Burstein, 2004).
These systems make numerous design choices
to implicitly or explicitly reject the grammar and
lexicon of minority dialects. Typically, code-
switching is neither taught as a skill nor supported
as input. The relative sparsity of data for these
variations may have resulted in unacceptable mod-
eling accuracy in the past (Blodgett et al., 2016),
but we are now closing that gap (Dalmia et al.,
2018; Sitaram et al., 2019). For this field, an equi-
table language technologies agenda would seek to
support rather than penalize these pragmatic skills.
Such work can take place at multiple levels, be-
ginning in early vocabulary work but particularly
excelling in more sophisticated, scenario-driven
practice for intermediate and advanced learners.

7 Surveillance Capitalism in Edtech

If we accept the premise that dominance hierar-
chies play a key role in education, it follows to
acknowledge large-scale edtech that tracks stu-
dents’ activity in real time as one instantiation
of “surveillance capitalism” in schools (Zuboff,
2015). Recent evaluations suggest that when stu-
dents are aware of such systems in use, they re-
port being anxious, paranoid, and afraid of long-
term repercussions for undesirable behavior (Yu-
jie, 2019). This may lead to short-term undesir-
able changes in students’ behavior or expression
to “game” algorithmic systems (c¢f. (Baker et al.,
2008)). Effects may be greater in the long-term,
with potential consequences to students’ mental
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health from always-on affect monitoring.

This presents an intersection for NLP to col-
laborate with information security and privacy re-
searchers. Those fields are active in education,
and the field has developed deep protections for
students’ personally identifiable data, enforced in
America through laws like COPPA and FERPA
(Regan and Jesse, 2018). While these laws do
have gaps (Parks, 2017), they are largely robust
and respected by technologists. More recent ac-
tions like the EU General Data Protection Regu-
lation (GDPR) have also had meaningful impact
on NLP research and data collection (Lewis et al.,
2017). Legally, aggregating student data in order
to develop and improve edtech provides a bene-
fit to students and thus does not violate any law
(Brinkman, 2013) — but scholars continue to ask
ethical questions on how to account for student
privacy and control (Morris and Stommel, 2018),
and what data is being collected (Mieskes, 2017).

As always-on systems monitor students
throughout their school day and beyond, these
questions of student privacy and control become
compounded in scope and complexity. Addition-
ally, continuous monitoring impacts students’
behavior and well-being: behavioral science has
established that people change their actions when
they are being observed (Harris and Lahey, 1982).
Now, we must understand the impact when the
observer is algorithmic.

7.1 Case Study: Student Engagement and
Sentiment Analysis

One of the most common tasks in NLP research,
for education and elsewhere, is sentiment and
emotion recognition. This is important for educa-
tion, both for design of affect-oriented curriculum
(Taylor et al., 2017) and funding for socioemo-
tional skills (Chan Zuckerberg Initiative, 2018).
This recent turn is driven by promising initial re-
sults of efficacy from socioemotional interventions
in schools (Dougherty and Sharkey, 2017). Mea-
suring instantaneous student affective states is not
only possible to reliably annotate, but also appears
broadly possible to automatically infer (Yu et al.,
2017); affect-aware tutoring systems are the sub-
ject of widespread research (Woolf et al., 2009;
DMello and Graesser, 2012). In text-only settings
online, sentiment has been a key part of predic-
tion of attrition rates in MOOCs (Yang et al., 2013;
Wen et al., 2014), especially when combined with
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micro-level instantaneous data like clickstream
events (Crossley et al., 2016). These systems are
now moving from data collected in text-only or
tech-only environments, to multimodal data col-
lected by always-on platforms like Alexa (Boc-
cella, 2019) and emerging video monitoring plat-
forms like the ’Class Care System” (Yujie, 2019).
With this broad trend, we should question the
implications of these systems as part of a move to-
wards surveillance and monitoring, and their po-
tential for impact on learners’ well-being and be-
havior. Multimodal data are increasingly used
to inform sentiment and affect detection algo-
rithms (Yu et al.,, 2017; DMello and Graesser,
2012; Woolf et al., 2009), but these algorithms are
known to produce discriminatory results, with dis-
parate outcomes by gender (Volkova et al., 2013),
race (Kiritchenko and Mohammad, 2018), and age
(Diaz et al., 2018), perpetuating a quantifiable
trend of disproportionate surveillance impact for
people of color (Voigt et al.,, 2017). In a par-
ticularly illuminating example of bias introduced
during corpus creation, Okur et al. (2018) found
that experts from one culture radically misclassify
affective states when they do not share the same
cultural background as their subjects. A primary
question for educational affect-detection systems
will be to identify whether and how these discrim-
inatory results replicate in educational systems,
and will only become more urgent as real-time
data from cameras, microphones, and other tech-
nologies become ubiquitous in the classroom.

8 An Equity Agenda

8.1 Representation on Teams

A theme of our review is that cultural represen-
tations should be built into NLP systems; here,
though, we refer back to critical pedagogy’s de-
mand for cultural competence on the builders of
these systems. Digital embodiment of characters
from marginalized identities, developed by tech-
nologists without a background in those commu-
nities’ culture and practices, runs significant risks
of negative impacts and appropriation, or “digi-
tal Blackface” (Green, 2006). When NLP inter-
ventions mirror student cultures in purely perfor-
mative ways, that representation is unlikely to be
meaningful; indeed, it may worsen student en-
gagement with agent-based systems. But these
downfalls can be avoided through teams with “cul-
tural competence” through lived experience and



group membership shared with the students they
are building applications for.

A lack of diversity on research teams is a key
contributor to discriminatory outcomes of ma-
chine learning systems in practice (West et al.,
2019). Representational harms can be avoided
by bringing those voices directly into the devel-
opment of systems. Many of the challenges we
have laid out are second nature to researchers with
a cultural background in the communities that they
seek to serve; having those voices in empowered
positions during development can help make these
issues salient before they are implemented - pro-
vided these voices are heard and empowered dur-
ing the design process (cf. Holstein et al. (2018)).

8.2 Intentional Science Communication

As researchers, our work always has the poten-
tial to “go viral” and reshape public discourse. To
illustrate, we can look to early language acquisi-
tion. In Hart and Risley (1995), researchers promi-
nently reported findings of a “30-million word
gap” for children raised in lower-class, predomi-
nantly Black households, hindering their literacy
development. Later research showed this gap was
likely overstated by an order of magnitude (Gilker-
son et al., 2017), and likely excluded race-related
environmental factors like bystander talk (Sperry
et al.,, 2018). The discourse that emerged was
largely discriminatory towards poor parents from
minority backgrounds (Avineri et al., 2015).

But scientists can also cautiously understate
results in public - most prominently in climate
change policy and climate denialism (Dunlap,
2013). In other fields, collective action by re-
searchers has produced unified stands on how their
technology should be used ethically, as in the use
of gene-editing tool CRISPR to modify unborn
children - an action that evoked unified condemna-
tion from governments (Collins, 2018), public fig-
ures (Lovell-Badge, 2019), and peer researchers in
China*. Understanding the wider implications of
research findings on NLP in education and posi-
tioning that work to have maximal impact is part of
the job of effective science writing. Each circum-
stance is specific and there are no universal best
practices - the key is to emphasize findings that are
well-grounded in results, and to be intentional in
how researchers encourage stories to evolve from
those findings.

*https://www.yicai.com/news/100067069.html
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8.3 Transparency and Regulation

If we do not take collective stances on ethical
NLP in education from within our community, en-
forcement may instead come from external reg-
ulation. Some have argued this is a useful tool
for enforcing accountability on algorithmic sys-
tems. Prior work has proposed regulatory frame-
works that may serve as guidance (Whittaker et al.,
2018); legal frameworks for these questions are al-
ready being developed (Kroll et al., 2016); bills
are being introduced into the US Senate (Farivar,
2019). Potential outcomes include waiving trade
secrecy for data science companies, or applying
“truth-in-advertising” laws to Al systems. These
may be general, or may prioritize specific focus
areas like affect recognition.

Should we move in this direction, research
will need to support regulation, improving trans-
parency and governance of algorithmic predic-
tions. NLP researchers have aggressively stud-
ied interpretability, offering explanation of results
rather than predictions alone (Guidotti et al., 2018)
- linguistic information is captured by newer neu-
ral language models of text (Conneau et al., 2018;
Sommerauer and Fokkens, 2018) and speech (El-
loumi et al., 2018; Krug and Stober, 2018), read-
ing comprehension (Kaushik and Lipton, 2018),
and machine translation (Shi et al., 2016; Ra-
ganato and Tiedemann, 2018; Belinkov and Glass,
2019). Other work focuses on replication, al-
lowing consistent tying of modeling choices to
changes in behavior (Dror et al., 2017, 2018).

But the connection to liability is rarely made
explicit, and is worth emphasis. These tools are
not just useful for error analysis and optimization
of model performance; they will also be a crit-
ical step towards liability for harmful decisions
made by algorithms, which cannot alter behav-
ior if it cannot be traced and enforced (Ananny
and Crawford, 2018). Governance can also come
from somewhere in between collective action and
national-level regulation. Some have proposed
best practices for ethical industry research in NLP,
mirroring IRB processes in universities (Leidner
and Plachouras, 2017). This approach would as-
sign responsibility during research, limiting exper-
iments on users of commercial products. Either
unregulated software will cause harm to students
and teachers, or regulation and accountability to
prevent inequitable use will come from some-
where. There is a spectrum of options for NLP,



from interpretability and self-governance to top-
down regulation. It would be better for researchers
to be at the forefront of that conversation.

8.4 Defining Boundaries for Software

As our last recommendation, researchers should
acknowledge the “solutionism” trap endemic in
technical research, which assumes that there is a
methodological change that could fix any problem
while maintaining the primacy of our algorithmic
solutions (Selbst et al., 2019). Some activists ad-
vocate for leaving certain problems unresearched
entirely, due to their intrinsic and systemic risk of
harm for marginalized populations — see for in-
stance this discussion in the case of facial recog-
nition software, in Whittaker et al. (2018). Some-
times, machine learning systems will not be the
right way to solve problems. A valuable contribu-
tion of future work will be to better lay out the tax-
onomies of ethics and equity that apply to NLP re-
search, following work that has begun in algorith-
mic systems more broadly (Ananny, 2016). This
will allow researchers to make consistent choices
about which problems are tractable with techno-
logical solutions, rather than addressing each new
problem in an ad hoc fashion (Chancellor et al.,
2019). This can only improve the quality of the
products we do choose to build.

9 Conclusion

Machine learning has made many promises that
are going to be difficult to fulfill. Throughout the
1960s and 1970s, science fiction author Arthur C.
Clarke described the aim of technology in educa-
tion to be: “Any teacher that can be replaced by
a machine should be.” (Bayne, 2015). As late as
2015, adaptive learning companies like Knewton
argued in favor of “robot tutors in the sky that can
semi-read your mind” to replace traditional teach-
ers (Westervelt, 2015). While this language has
become more muted in recent years, the promise
of Al and attached hype for our work is at an all-
time peak. Language technologies in education
have the potential to enable equity in the “peda-
gogical troika” of teaching, learning, and assess-
ment (Gordon and Rajagopalan, 2016). While that
potential is great, reifying existing power hierar-
chies is easy to do by accident or by choice; we
hope researchers will resist simple answers, and
build equity into future work from the start.
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