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Abstract

A typical medical curriculum is organized in
a hierarchy of instructional objectives called
Learning Outcomes (LOs); a few thousand
LOs span five years of study. Gaining a thor-
ough understanding of the curriculum requires
learners to recognize and apply related LOs
across years, and across different parts of the
curriculum. However, given the large scope of

the curriculum, manually labeling related LOs
is tedious, and almost impossible to scale. In
this paper, we build a system that learns rela-
tionships between LOs, and we achieve up to
human-level performance in the LO relation-
ship extraction task. We then present an appli-
cation where the proposed system is employed
to build a map of related LOs and Learning
Resources (LRs) pertaining to a virtual pa-
tient case. We believe that our system enables
building educational tools to help medical stu-
dents grasp the curriculum better, within class-
room and Intelligent Tutoring Systems (ITS)
settings.

1 Introduction

Learning Outcomes (LOs) encapsulate discrete
knowledge components and provide a framework
for curriculum planning, teaching, learning, and
assessment. In this work, we study the curricu-
lum of the Lee Kong Chian School of Medicine,
Nanyang Technological University, Singapore. At
the highest level, their curriculum is organized into
major Themes, which branch into Fundamentals,
and further into Fundamental Units. A Fundamen-
tal Unit is comprised of multiple related Topics,
and each topic constitutes several LOs. Thus, re-
lated LOs get grouped together at multiple levels
of increasing granularity. This hierarchy is hand-
curated by medical experts and represents a well-
formed, well-understood body of knowledge.
However, qualitative evidence suggests that sig-
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Figure 1: Related Learning Outcomes placed far apart
in the expert-curated curriculum hierarchy.

nificant relationships exist between LOs placed far
apart in the curriculum; these relationships can-
not be uncovered without explicit expert interven-
tion. Figure 1 illustrates one such instance, where
LOs drawn from disjoint sections of the curricu-
lum hierarchy are related as they address multiple
aspects of HIV treatment.

Our main motivation in this work is to auto-
matically discover LO relationships that cannot be
accessed by a straightforward navigation of the
curriculum. Extracting such LO relationships can
help build a knowledge-base that can be founda-
tional to various educational tools. To this end, we
propose looking into the semantic content of dis-
parate LOs, in addition to their relatedness spec-
ified by the curriculum hierarchy. We formulate
this as a three-class classification task. Given a
pair of LOs, they are categorized as being either
strongly related or weakly related, or unrelated.

Although the current study is limited to a med-
ical curriculum, our approach is general. Tech-
niques reported in this paper would extend to
any curricula that take a ‘design down’ approach
(Harden, 2002), where related LOs are nested in
a hierarchical order. An LO-relationship extrac-
tion tool that utilizes both semantic and curricu-
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lum cues, can be exploited by Intelligent Tutor-
ing Systems (ITS) to suggest useful interventions
to both learners and instructors. Potential appli-
cations include: a) improved content recommen-
dation, by proactively suggesting pre-requisites or
guiding the learner to discover LOs that are re-
lated across disjoint sections of the curriculum;
b) designing better assessment items which test
a learner on closely related LOs; and c) accurate
learner modeling, by taking into account all re-
lated LOs when tracking the progress of a learner’s
mastery of an LO. Building upon these motiva-
tions, this work documents our efforts to answer
the following research questions :

RQ1: Which features determine relatedness be-
tween LOs? Information available to us is both
structured (by way of a well-defined curriculum
hierarchy), as well as unstructured (by way of free
text descriptions of LOs). We aim to devise a
method to appropriately integrate the two in order
to compare two LOs.

RQ2: By design, LOs are crisp and compact. A
drawback of their conciseness is that they do not
provide enough information to ascertain related-
ness with other, similarly concise LOs. So, we ask,
can the resources linked to LOs be suitably lever-
aged to improve the quality of LO-relationship ex-
traction?

RQ3: Are there any latent factors beyond curricu-
lum and semantic similarity establishing related-
ness among LOs? If so, are they exploited by the
proposed approach?

RQ4: Can LO relatedness be used to understand
a virtual patient case? Disparate LOs of disease
and symptoms could be related in the context of a
case. We leverage the LO relationship extraction
system to understand the context of a case, and
build a case map from relevant concepts.

2 Related Work

Intelligent Tutoring Systems (ITS) greatly im-
prove students’ user experience, even in compar-
ison to human tutors (Aleven et al., 2004; Van-
Lehn, 2011). Automated methods for creating do-
main ontology from text have been explored in
(Zouaq and Nkambou, 2008). While most previ-
ous work employ semantic networks with frames
and production rules (Stankov et al., 2008), we
tap into state-of-the-art Al - based techniques to
learn semantic relationship between LOs, as op-
posed to enumerating rules to generate them. Our
work comes close in spirit to that of (John et al.,
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2015), that seek to generate knowledge graphs for
closely related math word problems. They employ
a random-walk paradigm on a graph whose edges
are weighed by tf-idf based cosine similarity. Un-
like them, we exploit the existing medical curricu-
lum hierarchy, and use a suite of semantic features
extending beyond tf-idf.

Graphs have been widely used to establish pre-
requisite relationships between domain knowl-
edge concepts (Chen et al., 2015; Kiser et al.,
2014), where a link between concepts indicates a
prerequisite-outcome relation. Guerra et al. (2015)
represent a student model as a graph where links
are gradually added between pairs of knowledge
concepts when a student is able to work with
aforementioned pairs in the same context. Sim-
ilarly, Rihdk and Peldnek (2017) group similar
knowledge concepts using learners’ performance
data and response time metadata. However, miss-
ing here are relations between knowledge concepts
already encoded in the curriculum and its textual
content.

There is a parallel thread of work on Semantic
Textual Similarity (STS), which measures the de-
gree of equivalence in the underlying semantics of
paired snippets of text (Agirre et al., 2015, 2016,
2012). This aligns with our work since it is also
posed as a natural language understanding prob-
lem. However, techniques explored within the am-
bit of STS are agnostic to any domain specific on-
tology. This is a major drawback for our applica-
tion, as the medical curriculum embodies pertinent
domain information, which, as we later show, goes
a long way in establishing accurate relationships
between LOs.

To the best of our knowledge, we are the
first to exploit expert-annotated data from an
extensively detailed medical curriculum for the
LO-relationship extraction task. By establish-
ing semantic relationships among the curricu-
lum concepts, we bridge the gulf between hand-
curated domain-specific ontologies and state-of-
the-art data driven textual similarity measures, and
show its utility in understanding a patient case.

3 Curriculum and Problem Statement

In this section, we briefly describe the organiza-
tion of LOs in the medical curriculum, and formu-
late the problem statement.

Medical Curriculum : The curriculum content
is designed around 3 Themes that run throughout
the programme: 1) Scientific Basis of Medicine,



Relation Fundamental

with LO . Fundamental

Ref. LO unit

) Reference LO: Explain the normal Embryology Human Structure
development of the embryonic heart & Function

Strong LO1: Explain how the pulmonary and systemic Embryology Human Structure
circulations are linked in fetal life & Function

Heak LO2: Explain the mechanisms underlying Anatomy/ Human Structure
Starling’s Law of the Heart Physiology & Function

L1 . . History, Exam. Integrated
None LO3: List the clinical uses of pulse oximetry and MSE Clinical Practice

Table 1: Example LO relationships along with their placement in curriculum hierarchy.

2) Clinical Management and Patient Centred Care,
and 3) Healthcare Delivery and Professional Stan-
dards. The themes correspond to cognition, atti-
tude, and skills of the spiral curriculum, as sug-
gested by Harden (1999).

Figure 1 depicts the organization of LOs into

themes that consist of Fundamentals, branching
in order into Fundamental Units and Topics. Ad-
ditionally, an LO is not constrained to belong to a
unique fundamental unit, and may span a small set
of relevant themes, fundamentals and fundamen-
tal units. Overall, our curriculum contains 4, 251
LOs, organized into 670 Topics, 81 Fundamental
Units, and 16 Fundamentals.
Learning Outcomes and Resoures : In addition,
curriculum designers have manually linked a ma-
jority of the LOs to relevant study material, termed
Learning Resource (LR). These LRs could be se-
lected pages from textbooks, transcripts of video
lectures, links to online reading material, or ex-
tracts from presentations. In this work, we restrict
ourselves to LRs that are well-curated slide decks,
in the form of pdf files. We also note that all LOs
and corresponding LRs are authored in English.

3.1 Problem Statement

Since our goal is to predict the degree of related-
ness between a pair of LOs, we define our problem
statement as follows: Given two LOs and their po-
sitions in the curriculum, classify the relationship
between them as St rong, Weak, or None. More
precisely, we seek to learn a function that, for a
pair of LOs p and ¢, maps them to one of three
possible classes, i.e.,

f:(p,q) = {Strong, Weak, None}

Such a function could then be employed to predict
relationships between any unseen pair of LOs.
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Figure 2: Proposed approach to classify an LO pair.

Expert-annotated Data : Annotations are ob-
tained from Subject Matter Experts (SMEs), who
are both doctors and faculty. The annotated data
consists of pairs of LOs, each pair labeled as
Strong, Weak, or None. Additionally, SMEs
were requested to provide guided comments to
help us understand their mechanism for coping
with ambiguity. For a subset of LO-pairs, anno-
tations were obtained separately from two SMEs
to ascertain inter-annotator agreement.

4 Proposed Solution

Our approach for LO-relationship extraction is
summarized in the block diagram in Figure 2.
The pipeline involves choosing features meaning-
ful for the task, followed by a cascaded classifier
design. In sections that follow, we detail and mo-
tivate individual components of the pipeline. Sub-
sequently, we investigate the benefit of employing
LRs and additional metadata in our task.

4.1 Features

Observations from data indicate that two classes
of features, curriculum and semantic, are critical
for LO-relationship extraction. Thus, final repre-
sentation for a pair of LOs is the concatenation of
their curriculum and semantic features.



4.1.1 Curriculum-based Features

Curriculum-based features characterize the rela-
tive position of LOs within the curriculum hier-
archy, which is used to obtain spatial and temporal
proximity estimates, as follows:

Spatial Proximity: We hypothesize that the
closer LOs are located in the curriculum hierar-
chy, the more likely they are to be related. In Ta-
ble 1, we compare a reference LO against LOs
that are placed gradually farther in the curricu-
lum (same fundamental unit, separate fundamen-
tal units within the same fundamental, and sepa-
rate fundamentals, respectively). In this specific
example, we note that the degree of relatedness de-
creases with decreasing spatial proximity from the
reference LO.

As discussed in previously, each LO may span
multiple fundamentals, fundamental units, and
themes. For LOs p and ¢, let their set of themes,
fundamentals, and fundamental units be Tie{p,q},
Fic(p.qy- and Uicyp o1, respectively. Proximity of
the LO pair is represented as:

SP(p,q) = [J(Tpv Tq)7 J(va Fq)a J(Upv Uq)}

where Jaccard similarity J between sets A and
B is defined as J(A, B) = |AN B|/|AU B|.
Temporal Proximity: Related concepts are
taught successively within a course curriculum,
hence, the time of delivery of LOs is an indicator
of their relatedness. For LOs p and ¢, let y;c(,, 1
and w;c(, 43 be their year and week of delivery,
respectively. Temporal proximity is then encoded
as

TP(p,q) = [|Yp — Yql, lwp — wyl]

The year information is encoded separately since
curriculum focus differs year-wise, i.e., content
taught in the last week of year 1 may not always
be related to first week of year 2.

4.1.2 Semantic Features

While curriculum hierarchy encodes one paradigm
for grouping related LOs, it misses the rich seman-
tic information contained in the text of the LO. Re-
visiting our example, consider the LOs : 1) Iden-
tify the particular ethical and legal issues perti-
nent to HIV testing. and 2) List some of the com-
mon HIV indicator conditions and HIV-related op-
portunistic infections. They are far apart in the
hierarchy, however there exists a Strong rela-
tionship between them as they are related in the
context of treating an HIV-infected patient. Thus
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we explore features that encode semantic similar-
ity between LOs.

Embedding based Features: Semantic related-
ness between LOs is often encapsulated by the
similarity of their constituent tokens. As an ex-
ample, the LOs : 1) List the common symptoms
of sudden cardiac arrest, and 2) List the com-
mon symptoms of myocardial infarction, are re-
lated since term pairs (cardiac, myocardial) and
(arrest, infarction) refer to similar entities. Since
exact token matching (as in Eq. 2) is deficient in
modelling such semantic overlap, we utilize word
embeddings (Chiu et al., 2016) to represent indi-
vidual tokens, which are further used to compute
the following similarity measures.

e Word Overlap: Each LO text is treated as a
bag-of-words. We define that a word w; in LO p
overlaps with a word w; in LO ¢, if their cosine
similarity in the word embedding space exceeds a
certain threshold 4. Based on this soft matching
of words, we define semantic word overlap to be
the fraction of matching word pairs across the two
bags-of-words, as:

Zwi Zw 1 [COS(Wi, WJ) Z 5]
WOlp,q) = =5 ]eqlpllql

ey

where 1 [] is an operator that evaluates to 1 if cor-
responding condition is True, and 0 otherwise.

¢ Histogram of Partial Similarities (HoPS):

We employ HoPS (Saha et al., 2018) to model the
similarity profile between two LOs. For each word
w; in LO p, first its similarity score is computed
with respect to LO q as:

S(w;, q) = max cos (Wi, Wj), wWhere w; € p
w;Eq

This strategy pairs each word in LO p with its clos-
est matching counterpart in LO q. These similarity
scores are then partitioned into N bins and nor-
malized, resulting in a histogram of scores for p.
We obtain another normalized histogram by bin-
ning the similarity scores for each word in g with
respect to p.

HoPS(p,q) = [Histogram ({.S(w;, q)|w; € p})
Histogram ({S(wj, p)|w; € q})]

Unlike word overlap, HoPS considers all tokens
in the LO text without thresholding on a similarity
score, and hence provides a more granular similar-
ity profile between LOs.
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Figure 3: Distribution of the length of LO and LR texts
on a logarithmic scale.

TF-IDF based Feature: For LOs p and ¢, let
p € Rl"'and q € RI"! be their respective rep-
resentations as tf-idf vectors (Ramos et al., 2003);
where v is the vocabulary set. Then tf-idf based
similarity is encoded as their absolute difference
and Hadamard product

TI(p,q) =[lp—alpod] 2)
Essentially, our representation encodes the infor-
mation gap between LOs in a pair, in terms of their
exact token overlap weighed by importance of said
token in the LO corpus.

The final feature representation for an LO pair
is the concatenation of spatial proximity, temporal
proximity, word-overlap, and HoPS features. As
explained in Section 5, we drop the tf-idf based
feature owing to its poor performance. Instead,
it serves as a useful baseline for comparison with
word-overlap and HoPS based semantic features.

4.2 Learning Resources

What makes “understanding” the curriculum par-
ticularly challenging is the diversity of curricu-
lum documents. The length of an LO text varies
considerably, as does the scope of its underpin-
ning concept. While a few LOs are independent,
most are better understood in the context of their
LRs, which elaborate on the dense information
contained in the LO. In fact, Figure 3 depicts that
most LOs are pithy, comprising fewer than 50 to-
kens (median token length = 6). In sharp contrast,
LRs are lengthy documents with extensive detail
(median token length = 578).

Whenever an LO is linked to an LR, we can ob-
tain features from both of them. As mentioned in
Section 3, LRs are well-curated slide decks. In-
spired from Query Expansion (Vechtomova and
Wang, 2006), we append the bold text from all
slides of the linked LR to the LO text. Various
semantic features, as detailed in Section 4.1.2, are
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Figure 4: An LO annotated with relevant Physiologic
and Pathologic states.

then extracted from the expanded LO text and uti-
lized in the proposed pipeline.

4.3 Expert Medical Codes (EMC)

To further enrich the feature space, we incorporate
additional domain specific knowledge. For each
LO, SMEs added a medical code indicating its 1)
location or physiologic (Phys.) state, and/or 2) dis-
ease or pathologic (Patho.) state.

The physiologic code of an LO indicates the or-
gan system it deals with, whereas the pathologic
code specifies the nature of the disease or dysfunc-
tion covered by the LO. Experts hand-curated a to-
tal of 13 distinct physiologic states and 7 distinct
pathologic states. Each LO could pertain to multi-
ple physiologic and pathologic states, as depicted
in Figure 4. Overlap between the EMCs of an LO
pair is encoded as:

Categorical Similarity: Jaccard indices are ob-
tained between 1) pathologic states and 2) physio-
logic states of the LOs in a pair, to ascertain over-
lap between their respective medical codes.
Semantic Similarity: While categorical similar-
ity treats each physiologic and pathologic code
as a distinct label, closer inspection reveals that
there is inherent relatedness among the codes. For
instance, the physiologic state ‘“Pulmonary/Lung
and Pleura” is closer in meaning to the state “Lar-
ynx, trachea, bronchi and alveoli”, than it is to the
state “Renal/Kidney”. Thus, while comparing two
LOs, we encode the word overlap of their respec-
tive medical codes as detailed in Eq. 1.

The final representation for the EMCs of an LO-
pair is the concatenation of categorical similarity
and semantic similarity features of the codes.

4.4 Cascaded Classification

A crucial aspect of this dataset is its extreme class
imbalance. As Tables 2 and 3 demonstrate, LO
pairs with None relationship vastly outnumber
Strong or Weak pairs. This is to be expected,
since the medical curriculum is extensive, and a



. . Annotator 1
Confusion Matrix Strong[Weak [None || Total |
Strong 54 24 1 79
Annotator 2| Weak 38 64 25 127
None 1 22| 3231 346
[ Total [ 93 [ 110 [ 349 H 552 ]

[ Macro-Average F1= 69.9, Accuracy= 79.9 ]

Table 2: Inter-Annotator agreement between two ex-
perts on the test set (note the substantial disagreement
in annotating LO pairs as St rong and Weak).

‘ Dataset H Strong ‘ Weak ‘ None ‘ Total ‘
Train || 235 (14%) | 344 (20%) | 1,145 (66%) | 1,724
Test 79 (14%) | 127 (23%) 346 (63%) 552
Total || 314 (14%) | 471 (21%) | 1,491 (65%) | 2,276

Table 3: Train-Test splits. Note the class imbalance.

particular LO is likely to be related only to a small
number of other LOs scattered in the curriculum.

While the priors of St rong and Weak classes
are low, the risk in missclassifying them is high.
Failure to identify a Strong LO pair is more
detrimental than failure to identify a None pair.
When we fail to recommend an LO strongly re-
lated to the one that a student is currently pursu-
ing, it leads to a gap in their knowledge acqui-
sition, whereas recommending an unrelated LO
only leads to a degradation in user experience.

Additionally, we believe that the semantic gap
between the three class labels is not identical.
While it is relatively easier to distinguish None
from Strong or Weak, the separation between
Strong and Weak pairs is not as discernible.
This is borne out further by the inter-annotator
agreement in Table 2; for a large number of
LO pairs, expert annotators disagree between
Strong and Weak labels.

Aforementioned factors prompt us to split the 3-
way classification task into two sequential binary
classification tasks, as illustrated in Figure 2. The
first classifier is trained on all input LO pairs, and
classifies them as Related or Unrelated. In
the next step, Related LO pairs are passed to the
second classifier, which learns the degree of the re-
lationship and further classifies them as Strong
or Weak. LO pairs classified as Unrelated by
the first classifier are directly labeled as None.

5 Experiments and Results

In all our experiments, we use NLTK for stop-
word removal and scikit-learn for the classifiers.
We use N = 20 bins for HoPS features and set
similarity threshold § = 0.6 for embedding-based
features. We trained an SVM and Random For-
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est model for our task. Owing to space constraints
and sub-par performance of the SVM, we report
results for a Random Forest classifier with 100
estimators; all other parameters of the model are
tuned using 5-fold cross validation on the training
data. We use macro-F1 of the classifier on held out
test data as our metric. Mean and standard devia-
tions of macro-F1 are reported over 10 runs of the
random forest. We use BioNLP(Chiu et al., 2016)
word-embeddings.

For a subset of 552 LO-pairs, we obtain separate
annotations from two SMEs. Inter-annotator per-
formance (Table 2) on this held-out test set serves
as a skyline for comparative evaluation. Owing
to data-labeling constraints, only a subset of LOs
could be linked to respective LRs by the SMEs.
Similarly, tagging LOs with one of several pos-
sible physiologic/pathologic states entails signif-
icant cognitive engagement, and could be done
only for a subset of LOs. For uniformity, we en-
sured that both subsets have a class label distribu-
tion identical to the total distribution in Table 3.

We perform three sets of experiments to 1) eval-
uate the effectiveness of the proposed approach, 2)
evaluate the utility of LRs, and 3) evaluate utility
of expert medical codes (EMC).

5.1 Evaluation

We compare five feature variants in an ablated
study. Since the proposed approach stipulates cur-
riculum and semantic features (CR+SM), we per-
form a comparison when individual curriculum
(CR) or semantic features (SM) are used. To gauge
the efficacy of tf-idf based features, experiments
are performed using these features alone (TF), and
along with curriculum features (CR+TF). For each
feature variant, we contrast results obtained with a
baseline 3-way monolithic classifier, and the pro-
posed cascaded classifier. In the monolithic clas-
sifier, we ensure that the misclassification penalty
for each class is inversely proportional to its fre-
quency in the training data. This accounts for class
imbalance, and ensures fair comparison against
the cascaded classifier. Results of experiments are
reported in Table 4. Our the key observations are :
Exact vs Embedding-based Features: Tf-idf
features (TF) perform exact token matching which
gets derailed whenever similar concepts are ad-
dressed differently (such as myocardial and car-
diac). Instead, embedding-based features (SM)
are more adept at capturing semantic relatedness
as by construction, context vectors for related con-



Features Classiﬁers
Baseline | Cascaded
CR 57.64£2.5 | 58.84£2.9
TF 43.1+0.9 | 49.84+1.2
CR+TF | 53.2+1.3 | 55.9+2.0
SM 58.4+2.0 | 59.9+1.8
CR+SM | 63.6+1.1 | 66.11+2.3

| Inter-annotator agreement: 69.9 |

Table 4: Macro-F1 (mean+std) values on the test set
for two classifier variants and different features.

Features Classifiers
Baseline [ Cascaded
CR+SM without LR | 63.3+1.5 | 65.94+1.3
CR+SM with LR 65.1+2.2 | 67.2+1.7

[ Inter-annotator agreement: 70.0 ]

Table 5: Macro-F1 (mean+std) on LR-linked test set.

cepts are closely located in the embedding space.
Similarly, CR+SM outperforms CR+TF.
Importance of Feature Concatenation: A com-
bination of both curriculum and semantic features
(CR+SM) significantly outperforms their individ-
ual performance. Answering RQ1, we conclude
that curriculum and semantics encode distinct as-
pects of an LO-pair’s relatedness, and our system
improves when information encoded in each fea-
ture class is jointly represented.
Effectiveness of Cascaded Classifier: For all
feature combinations, the cascaded classifier out-
performs the monolithic baseline.  This sup-
ports our hypothesis that the decision boundary
between Related (Strong + Weak) and
Unrelated pairs is more discernible than the de-
cision boundary between St rong and Weak.
For the rest of our experiments, we utilize
CR+SM features with a cascaded classifier, since
this combination yields best results, and ap-
proaches near human performance (refer Table 4).
The proposed pipeline can now be used to es-
tablish LO relationships on the whole curricu-
lum. This effectively circumvents the scale prob-
lem that manual annotation of all LO-pairs (~1
million) in the curriculum entails, while maintain-
ing the accuracy of an expert.

5.2 Utility of Learning Resources

As reported in Table 5, it is clear that using LR text
along with LO text improves LO-relationship ex-
traction. This satisfactorily answers the question
raised in RQ2. The dearth of adequate informa-
tion and context in a concise LO poses a challenge
for data-driven methods to ascertain semantic re-
latedness. LRs help plug this gap since they are
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Features C lassifiers
Baseline [ Cascaded
CR 65.84+2.3 | 68.14+2.1
SM 64.84+3.2 | 68.34+2.9
CR+SM 70.5+2.4 | 72.61+2.0
CR+SM+EMC | 69.9+2.5 | 729+ 2.3

Table 6: Macro-F1 (mean4std) values on ten random
splits comparing the baseline, and inclusion of EMCs.

more detailed and help expand the scope of both
of our algorithms.

5.3 Utility of EMCs

Using features extracted from EMCs (detailed in
Section 4.3), we compare the following combi-
nations : curriculum (CR), semantic (SM), pro-
posed concatenation of both (CR+SM), and sub-
sequent concatenation with features from EMCs
(CR+SM+EMC). Table 6 reports comparative re-
sults over 10 random 75-25% train-test splits.

We note that contrary to expectation, inclusion
of EMC features (CR+SM+EMC) does not im-
prove over CR+SM. We hypothesize that this may
be because the classifier trained over CR+SM fea-
tures learns an intermediate representation that
correlates closely with the patho and physio states,
thus their explicit inclusion provides no additional
information to the classifier. While we may not
know precisely what form the internal representa-
tion takes, it is interesting to note that our hand-
crafted features (CR+SM) and cascaded classifier
design are both powerful enough to uncover un-
derlying patterns of similarity between LOs. To
answer RQ3, our approach does exploit latent pat-
terns in the data.

6 Case Map Generation

The LO relationship extraction system can be ap-
plied to uncover LOs relevant to a virtual patient
case (thus addressing RQ4). A virtual patient
case describes a real-life scenario where a patient
presents at the clinic with certain symptoms, and
is administered specific tests. The medical student
is expected to assume the role of a health-care pro-
fessional and develop clinical skills such as mak-
ing diagnoses and therapeutic decisions.

Figure 5 depicts part of a clinical case that has
been annotated by SMEs. Crucial aspects of the
case are highlighted as clinical factors, which may
be symptoms (fever, hypotension, etc.) as well as
diagnostic and screening tests. Each clinical fac-
tor is further linked to few pertinent anchor LOs.
Successfully addressing a virtual patient case in-
volves understanding these LOs, which may be



Disease

Symptom

Clinical Case

28 year old male resident in Singapore presents with 6 day history of sweats, hot and
cold spells, lethargy, headache, eye pain, and pain everywhere,
persistent daily vomiting (4x/day), tiredness affecting work and dormitory life. No travel
abroad in last 2 years. No contact with animals/ persons ill. He does not smoke and
does not take alcohol. He does not think there are any illnesses in the family.

Blood tests showed NS1 dengue screen positive, Hb17.1, WCC 3.3, Platelets 20, Na 130,
K 4.4, Urea 6.3, Cr 67, CXR clear. Examination showed vitals T38, HR120, BP 97/80,
respiratory rate 20/min, oxygen saturations 98% on air. Malaria films were negative.
Blood cultures were negative.

Patient deteriorated with nausea, hypotension, respiratory distress; and was transferred
to ICU for supportive care including intubation and inotropic support. Bedside OGD
showed 5

Clinical Factors

= Fever
.

= Nausea / Vomiting

= Hypotension
= Diagnostic Tests and Screens

Figure 5: Annotated clinical case.
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Figure 6: An approach to generate case map based on
proposed LO-relationship extraction.

drawn from different years and disjoint sections
of the curriculum. We aim to construct a case map
that provides learners with a comprehensive view
of the clinical case, in terms of its constituent LOs
and their relationships. The map is envisioned as a
graph, where nodes represent LOs, and edges es-
tablish relationships between them.

In attempting this, we encounter two primary
challenges: 1) While SMEs can annotate a few
anchor LOs, it is not feasible to manually enu-
merate all LOs related to the virtual patient case.
This calls for an accurate LO-relationship extrac-
tion system that does not rely on expert interven-
tion. 2) We must guarantee that these LOs are re-
lated within the context of the case. Since LOs by
themselves do not provide enough textual content,
we must look to LRs to ascertain whether LOs pro-
posed by the system are appropriate in the context
of the case at hand.

Given a disease, its symptoms, and diagnostic
tests, we assume the availability of anchor LOs
pertaining to each of them, and propose an ap-
proach outlined in Figure 6.

LO Expansion: The LO-relationship extraction
system sequentially pairs an anchor LO with ev-
ery LO in the curriculum, and classifies the rela-
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[LOID |LO Text

Recall the clinical presentation and management of Dengue fever and
Chikungunya infection

LO_6704

Describe how the presence of a viral infection may trigger off production

LO-4880] of endogenous pyrogens leading to development of fever

Describe how bacterial infections may produce exogenous pyrogens

LO-4881 resulting in the development of fever

LO_4882 | Briefly describe how fever complements the immune response in infection
LO_6170
LO-6174

LO_6175

List the other abdominal organs that maybe responsible for abdominal pain

Explain the pathways controlling vomiting and nausea

Recall the use of vomiting patterns in differential diagnosis

Describe the role of relevant investigations for fever, including: Blood
tests - hematology, chemistries, serology; Clinical samples - blood,
respiratory, stool, urine, body fluids; Microbiology tests - cultures, PCR,
serology; Imaging - Xrays, CT, MRI, ultrasound

LO_7793

Describe the role of relevant investigations for common infections,

LO-7794 specific pathogens including dengue, malaria, typhoid, HIV, TB, MRSA

Define (and perform if relevant) appropriate resuscitation , immediate life
support and acute management of: septic shock, neutropenic sepsis,
dengue shock syndrome, severe malaria, acute bacterial meningitis

LO_7834

Table 7: Identifiers and text of the LOs that are part of
the generated case graph in Figure 7 .

L0_6174
Nausea

L0_6175
Nausea

L0_4882
Fever

L0_6170
Abdomin
al Pain, GI

pg. [19,20,22)

L0_4880
Fever

L0_6704
Dengue

L0_7834
Hypotens

ion K
/ Mmoo
pg. [21,23,24]}

[ loass ¥
'

| Fever 7
L0_7794
Screens

L0_7793
Screens

pg. [67,69-71,78]

Figure 7: Case map extracted using proposed approach
(see Table 7 for LO text corresponding to the LO IDs).

tionship between them. For our purpose, we retain
LOs that are labeled St rong, and disregard the
rest. Thus, starting with a small set of anchor LOs,
we obtain an expanded set of LOs that is strongly
related to them.
Disease-Symptom Relatedness: We pair a
disease-specific LO with a symptom (or diagno-
sis) specific LO, and measure the semantic over-
lap between their linked LRs. Higher the overlap,
more relevant is the symptom (or diagnosis) LO
to the disease LO. Thus, for each symptom (or di-
agnosis), their LOs are ranked by relevance to the
disease LOs.
Truncation: The ranked list can be pruned to se-
lect the topmost k symptom (or diagnosis) LOs.
Truncation ensures that for each symptom (or di-
agnosis), we select high-precision relationships
with the disease specific LOs (characterized by
overlap between their LRs). In the case map, this
translates to at most k edges between a disease and
each of its symptoms.

Figure 7 depicts the constructed case map for



the dengue clinical case presented in Figure 5. Of
the five clinical factors, four correspond to symp-
toms, namely : 1) Fever, 2) Abdominal Pain and
GI bleed, 3) Nausea and Vomiting, and 4) Hy-
potension. The last factor corresponds to diagnos-
tic tests and screens for dengue. We set k = 3,
permitting at most 3 edges between dengue and
each clinical factor. The generated case map was
evaluated by an SME; one LO (LO_4881) is found
to be spuriously a part of the map, whereas rest of
the connections are deemed valid, thus establish-
ing the efficacy of our approach.

7 Conclusion and Future Work

This work summarizes our effort to extract LO
relationships using both semantic and curriculum
cues. Owing to its human-level performance, our
system serves as a reliable building block in con-
structing a case map from a virtual patient case.

Going forward, we would like to generate a con-
cept map for all five years of the curriculum. We
could then employ network analysis tools to un-
cover central LOs that drive most of the linkages.
Secondly, we would like to characterize relation-
ships between edges. Given a pair of related LOs,
a simple characterization would be to assert if one
of them is a pre-requisite to the other. Besides,
we have observed that the classifier learns an in-
termediate representation that corresponds closely
to EMCs. We could investigate if this can be har-
nessed to predict the states, thereby enriching cur-
riculum metadata.
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