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Abstract

Grammatical error correction can be viewed
as a low-resource sequence-to-sequence task,
because publicly available parallel corpora are
limited. To tackle this challenge, we first
generate erroneous versions of large unanno-
tated corpora using a realistic noising func-
tion. The resulting parallel corpora are sub-
sequently used to pre-train Transformer mod-
els. Then, by sequentially applying transfer
learning, we adapt these models to the domain
and style of the test set. Combined with a
context-aware neural spellchecker, our system
achieves competitive results in both restricted
and low resource tracks in ACL 2019 BEA
Shared Task. We release all of our code and
materials for reproducibility. 1

1 Introduction

Grammatical error correction (GEC) is the task of
correcting various grammatical errors in text, as
illustrated by the following example:

[Travel→ Travelling] by bus is [exspensive→
expensive], [bored→ boring] and annoying.

While the dominant approach following the
CoNLL-2014 Shared Task (Ng et al., 2014)
has been different adaptations of phrase-based
and statistical machine translation (PBSMT)
models (Junczys-Dowmunt and Grundkiewicz,
2016), more recent work on GEC increas-
ingly adopted partial (Grundkiewicz and Junczys-
Dowmunt, 2018) or exclusive (Junczys-Dowmunt
et al., 2018; Chollampatt and Ng, 2018a) use
of deep sequence-to-sequence (seq2seq) architec-
tures (Sutskever et al., 2014; Cho et al., 2014),
which showed immense success in neural ma-
chine translation (NMT) (Bahdanau et al., 2015;
Gehring et al., 2017; Vaswani et al., 2017).

∗Equal contribution. Listed alphabetically.
1https://github.com/kakaobrain/helo_

word

In GEC, unlike NMT between major languages,
there are not enough publicly available corpora
(GEC’s hundreds of thousands to NMT’s tens of
millions). This motivates the use of pre-training
and transfer learning, which has shown to be
highly effective in many natural language process-
ing (NLP) scenarios in which there is not enough
annotated data, notably in low-resource machine
translation (MT) (Lample et al., 2018b; Ruder,
2019). As a result, recent GEC systems also in-
clude pre-training on various auxiliary tasks, such
as language modeling (LM) (Junczys-Dowmunt
et al., 2018), text revision (Lichtarge et al., 2018),
and denoising (Zhao et al., 2019).

In this paper, we introduce a neural GEC system
that combines the power of pre-training and trans-
fer learning. Our contributions are summarized as
follows:

• We pre-train our model for the denoising task
using a novel noising function, which gives
us a parallel corpus that includes realistic
grammatical errors;

• We leverage the idea of sequential transfer
learning (Ruder, 2019), thereby effectively
adapting our pre-trained model to the domain
as well as the writing and annotation styles
suitable for our final task.

• We introduce a context-aware neural
spellchecker, which improves upon an
off-the-shelf spellchecker by incorporating
context into spellchecking using a pre-trained
neural language model (LM).

2 Background

2.1 Transformers

Transformers (Vaswani et al., 2017) are powerful
deep seq2seq architectures that rely heavily on the

https://github.com/kakaobrain/helo_word
https://github.com/kakaobrain/helo_word
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attention mechanism (Bahdanau et al., 2015; Lu-
ong et al., 2015). Both the encoder and the de-
coder of a Transformer are stacks of Transformer
blocks, each of which consists of a multi-head
self-attention layer followed by a position-wise
feed-forward layer, along with residual connection
(He et al., 2016) and layer normalization (Ba et al.,
2016). Each decoder block also attends (Luong
et al., 2015) to the encoder outputs, in between its
self-attention and feed-forward layers. Each input
token embedding in a Transformer is combined
with a positional embedding that encodes where
the token appeared in the input sequence.

2.2 Copy-Augmented Transformers

Copy-augmented Transformers (Zhao et al., 2019)
are a class of Transformers that also incorporate
an attention-based copying mechanism (Gu et al.,
2016; See et al., 2017; Jia and Liang, 2016) in
the decoder. For each output token yt at output
position t, the output probability distribution of a
copy-augmented Transformer is a mixture of the
decoder’s generative distribution pgen and a copy
distribution pcopy, which is defined as an encoder-
decoder attention layer that assigns a distribution
over tokens appearing in the source sentence. By
defining a mixture weight parameter αcopy

t per
each decoding step, the output distribution can be
compactly represented as follows:

p(yt) = (1− αcopy
t ) · pgen(yt) + αcopy

t · pcopy(yt)
(1)

The mixture weight balances between how likely
it is for the model to simply copy a source token,
rather than generating a possibly different token.

2.3 Denoising Autoencoders

Denoising autoencoders (DAEs) (Vincent et al.,
2008) are a class of neural networks that learns to
reconstruct the original input given its noisy ver-
sion. Given an input x and a (stochastic) noising
function x 7→ x̃, the encoder-decoder model of a
DAE minimizes the reconstruction loss:

L(x, dec(enc(x̃))) (2)

where L is some loss function.
Within the NLP domain, DAEs have been for

pre-training in seq2seq tasks that can be cast as a
denoising task. For example, in GEC, pre-trained
DAEs have been used for correcting erroneous

sentences (Xie et al., 2018; Zhao et al., 2019). An-
other example is low-resource machine translation
(MT) (Lample et al., 2018b), pre-trained DAEs
were used to convert word-by-word translations
into natural sentences.

3 Related Work

Many recent neural GEC models (Junczys-
Dowmunt et al., 2018; Lichtarge et al., 2018;
Zhao et al., 2019) made use of the Transformer
(Vaswani et al., 2017) architecture and saw re-
sults nearly as good as or better than convolu-
tional (Chollampatt and Ng, 2018a,b) and recur-
rent (Grundkiewicz and Junczys-Dowmunt, 2018;
Ge et al., 2018a) architectures. Recently, Zhao
et al. (2019) further incorporated a copying mech-
anism (Gu et al., 2016; See et al., 2017; Jia and
Liang, 2016) to the Transformer, highlighting the
fact that most (from 83% in Lang-8 to 97% in
CoNLL-2013) of the target tokens are exact copies
of the corresponding source tokens.

Several prior results, both early (Brockett et al.,
2006; Felice and Yuan, 2014) and recent (Ge et al.,
2018a; Xie et al., 2018; Zhao et al., 2019), in-
troduced different strategies for generating erro-
neous text that can in turn be used for model
(pre-)training. One major direction is to intro-
duce an additional “back-translation” model (Ge
et al., 2018a; Xie et al., 2018), inspired by its suc-
cess in NMT (Sennrich et al., 2016a), and let this
model learn to generate erroneous sentences from
correct ones. While these back-translation models
can learn naturally occurring grammatical errors
from the parallel corpora in reverse, they also re-
quire relatively large amounts of parallel corpora,
which are not readily available in low resource
scenarios. The other direction, which can avoid
these issues, is to incorporate a pre-defined noising
function, which can generate pre-training data for
a denoising task (Zhao et al., 2019). Compared to
(Zhao et al., 2019), our work introduces a noising
function that generates more realistic grammatical
errors.

4 Pre-training a Denoising Autoencoder
on Realistic Grammatical Errors

Given the relative lack of parallel corpora for the
GEC task, it is important to define a realistic pre-
training task, from which the learned knowledge
can transfer to an improved performance.
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When pre-training a seq2seq model on an auxil-
iary denoising task, the choice of the noising func-
tion is important. For instance, in low-resource
MT, Lample et al. (2018a,b) made use of a nois-
ing function that randomly insert/replace/remove
tokens or mix up nearby words at uniform proba-
bilities. They showed that this approach is effec-
tive in translating naive word-by-word translations
into correct ones, both because the coverage of
word-to-word dictionaries can be limited and be-
cause word order is frequently swapped between
languages (e.g., going from SVO to SOV).

In GEC, Zhao et al. (2019) used a similar nois-
ing function to generate a pre-training dataset.
However, we find that this noising function is less
realistic in GEC than in low-resource MT. For ex-
ample, randomly mixing up nearby words can be
less effective for GEC than for low-resource MT,
because word order errors occur less frequently
than other major error categories, such as miss-
ing punctuations and noun numbers. Also, replac-
ing a word to any random word in the vocabulary
is a less realistic scenario than only replacing it
with its associated common error categories, such
as prepositions, noun numbers and verb tenses.

To generate realistic pre-training data, we in-
troduce a novel noising function that captures in-
domain grammatical errors commonly made by
human writers.

4.1 Constructing Noising Scenarios

We introduce two kinds of noising scenarios, us-
ing a token-based approach and a type-based ap-
proach.

In the token-based approach, we make use of
extracted human edits from annotated GEC cor-
pora, using automated error annotation toolkits
such as ERRANT (Bryant et al., 2017). We first
take a subset of the training set, preferably one that
contains in-domain sentences with high-quality
annotations, and using an error annotation toolkit,
we collect all edits that occurred in the parallel
corpus as well as how often each edit was made.
We then take edits that occur in for at least k times,
where k is a pre-defined threshold (we fix k = 4
in our experiments), in order to prevent overfitting
to this (possibly small) subset. These extracted ed-
its include errors commonly made by human writ-
ers, including missing punctuations (e.g., adding
a comma), preposition errors (e.g., of → at), and
verb tenses (e.g., has → have). As a result, we

obtain an automatically constructed dictionary of
common edits made by human annotators on the
in-domain training set. Then, we can define a real-
istic noising scenario by randomly applying these
human edits, in reverse, to a grammatically correct
sentence.

In the type-based approach, we also make use
of a priori knowledge and construct a noising sce-
nario based on token types, including prepositions,
nouns, and verbs. For each token type, we define
a noising scenario based on commonly made er-
rors associated with that token type, but without
changing the type of the original token. In partic-
ular, we replace prepositions with other preposi-
tions, nouns with their singular/plural version, and
verbs with one of their inflected versions. This in-
troduces another set of realistic noising scenarios,
thereby increasing the coverage of the resulting
noising function.

4.2 Generating Pre-training Data

Our goal is to come up with an error function that
introduces grammatical errors that are commonly
made by human writers in a specific setting (in
this case, personal essays written by English stu-
dents). Given sets of realistic noising scenarios,
we can generate large amounts of erroneous sen-
tences from high-quality English corpora, such as
the Project Gutenberg corpus (Lahiri, 2014) and
Wikipedia (Merity et al., 2016).

We first check if a token exists in the dictionary
of token edits. If it does, a token-based error is
generated with the probability of 0.9. Specifically,
the token is replaced by one of the associated ed-
its with the probabilities proportional to the fre-
quency of each edit. For example, the token for
may be replaced with during, in, four, and also for
(coming from a noop edit).

If a token is not processed through the token-
based scenario, we then examine if it belongs to
one of the pre-defined token types: in our case,
we use prepositions, nouns, and verbs. If the to-
ken belongs to one such type, we then apply the
corresponding noising scenario.

5 Sequential Transfer Learning

5.1 Transferring Pre-trained DAE Weights

As discussed in (Zhao et al., 2019), an important
benefit of pre-training a DAE is that it provides
good initial values for both the encoder and the
decoder weights in the seq2seq model. Given a
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pre-trained DAE, we initialize our seq2seq GEC
model using the learned weights of the DAE and
train on all available parallel training corpora with
smaller learning rates. This model transfer ap-
proach (Wang and Zheng, 2015) can be viewed as
a (relatively simple) version of sequential transfer
learning (Ruder, 2019).

5.2 Adaptation by Fine-tuning
As noted in (Junczys-Dowmunt et al., 2018), the
distribution of grammatical errors occurring in text
can differ across the domain and content of text.
For example, a Wikipedia article introducing a his-
torical event may involve more rare words than a
personal essay would. The distribution can also be
affected significantly by the writer’s style and pro-
ficiency, as well as the annotator’s preferred style
of writing (e.g., British vs. American styles, syn-
onymous word choices, and Oxford commas).

In this work, given that the primary source
of evaluation are personal essays at various lev-
els of English proficiency – in particular the
W&I+LOCNESS dataset (Yannakoudakis et al.,
2018) – we adapt our trained models to such char-
acteristics of the test set by fine-tuning the model
only on the training portion of W&I, which largely
matches the domain of the development and test
sets.2 Similar to our training step in §5.1, we
use (even) smaller learning rates. Overall, this
sequential transfer learning framework can also
be viewed as an alternative to oversampling in-
domain data sources, as proposed in (Junczys-
Dowmunt et al., 2018).

6 A Context-Aware Neural Spellchecker

Many recent GEC systems include an off-the-
shelf spellchecker, such as the open-source pack-
age enchant (Sakaguchi et al., 2017; Junczys-
Dowmunt et al., 2018) and Microsoft’s Bing
spellchecker (Ge et al., 2018a,b). While the idea of
incorporating context into spellchecking has been
repeatedly discussed in the literature (Flor and Fu-
tagi, 2012; Chollampatt and Ng, 2017), popular
open-sourced spellcheckers such as hunspell
primarily operate at the word level. This funda-
mentally limits their capacity, because it is often
difficult to find which word is intended for with-
out context. For example, given the input sen-
tence This is an esay about my favorite sport.,

2This is analogous to the NUCLE dataset matching “per-
fectly” with the CoNLL dataset, as noted in (Junczys-
Dowmunt et al., 2018).

Source Public? # Sent. # Annot.
Gutenberg Yes 11.6M n/a

Tatoeba Yes 1.17M n/a
WikiText-103 Yes 3.93M n/a

FCE Yes 33.2K 1
Lang-8 Yes 1.04M 1-8
NUCLE Yes 57.2K 1

W&I-Train Yes 34.3K 1
W&I+L-Dev Yes 4.38K 1
W&I+L-Test Yes 4.48K 5

Table 1: Summary of datasets. The first three datasets
are unannotated English corpora, from which we gen-
erate parallel data for pre-training using a pre-defined
noising function.

hunspell invariably suggests easy as its top
candidate for esay, which should actually be cor-
rected as essay.

Our spellchecker incorporates context to
hunspell using a pre-trained neural language
model (LM). Specifically, we re-rank the top
candidates suggested by hunspell through
feeding each, along with the context, to the neural
LM and scoring them.

7 Experiments

Throughout our experiments, we use fairseq3

(Ott et al., 2019), a publicly available sequence-
to-sequence modeling toolkit based on PyTorch
(Paszke et al., 2017). Specifically, we take
fairseq-0.6.1 and add our own implemen-
tations of a copy-augmented transformer model as
well as several GEC-specific auxiliary losses.

7.1 Datasets & Setups

In Table 1, we summarize all relevant data sources,
their sizes, whether they are public, and the num-
ber of annotators.

For pre-training, we use the Gutenberg dataset
(Lahiri, 2014), the Tatoeba4 dataset, and the
WikiText-103 dataset (Merity et al., 2016). We
learned through initial experiments that the quality
of pre-training data is crucial to the final model’s
performance, because our DAE model assumes §4
that these unannotated corpora contain little gram-
matical errors. Our choice of corpora is based
on both the quality and diversity of text: Guten-

3https://github.com/pytorch/fairseq
4https://tatoeba.org/eng/downloads

https://github.com/pytorch/fairseq
https://tatoeba.org/eng/downloads


217

Restricted (§7.5) Low Resource (§7.6) CoNLL-2014 (§7.7)
Error Extraction W&I Train W&I+L Dev-3K NUCLE

Pre-training Gutenberg, Tatoeba, WikiText-103

Training FCE, Lang-8, NUCLE,
W&I+L Dev-3K FCE, Lang-8, NUCLE

W&I Train
Fine-tuning W&I Train n/a NUCLE
Validation W&I+L Dev W&I+L Dev-1K CoNLL-2013

Test W&I+L Test W&I+L Test CoNLL-2014

Table 2: Datasets used for each set of results. For the W&I+L development set, Dev-3K and Dev-1K respec-
tively indicate a 3:1 train-test random split of the development set, such that the original proportions of English
proficiency (A, B, C, N) are kept the same in each split. See Table 1 for more information about each dataset.

Pre-processing
• Fix tokenization errors
• Spellcheck
• BPE segmentation

Pre-training (DAE)
• Error extraction
• Perturbation

Training Fine-tuning 
(optional)

Sequential Transfer Learning Using (copy) Transformers

Post-processing
• <unk> edit removal
• Re-rank
• Error type control

Figure 1: Overall pipeline for our approach. Gray shaded box includes the training steps for a seq2seq model.

berg contains clean novel writings with minimal
grammatical errors, Tatoeba contains colloquial
sentences used as sample sentences in dictionar-
ies, and WikiText-103 contains “Good” and “Fea-
tured” articles from Wikipedia. Our final pre-
training data is a collection of 45M (perturbed,
correct) sentence pairs based on these datasets,
with our noising approach (§4) applied multi-
ple times to each dataset to approximately bal-
ance data from each source (1x Gutenberg, 12x
Tatoeba, and 5x WikiText-103).

Our default setup is the “Restricted Track” sce-
nario (§7.5) for the BEA 2019 Shared Task, where
we use four data sources: the FCE dataset (Bryant
et al., 2019), the Lang-8 dataset5 (Mizumoto et al.,
2011; Tajiri et al., 2012), the NUCLE (v3.3)
dataset (Dahlmeier et al., 2013), and the newly re-
leased Write & Improve and LOCNESS (W&I+L)
datasets (Yannakoudakis et al., 2018).6 For the
“Low Resource Track” (§7.6), we use a 3:1 train-
test random split of the W&I+L development set,
keeping the proportions of proficiency levels the
same. In both tracks, we report our final results on
the W&I+L test set, which contains 5 annotations.
Further, because the W&I+L dataset is relatively

5As in previous results, we remove all duplicates but take
multiple annotations (if available) the Lang-8 dataset, leaving
only 575K parallel examples.

6See Appendix B for an exploratory data analysis.

new, we also include results on the CoNLL-2014
(Ng et al., 2014) dataset, with and without using
the W&I+L dataset during training (§7.7). In Ta-
ble 2, we summarize which datasets were used in
each setup.

7.2 Pre-processing

As part of pre-processing, we first fix minor to-
kenization issues in the dataset using regular ex-
pressions. We use spaCy v1.9 (Honnibal and
Montani, 2017) to make tokenization consistent
with the final evaluation module (ERRANT).

This tokenized input is then fed to our context-
aware neural spellchecker (§6). For the neural LM,
we use a gated convolutional neural network lan-
guage model (Dauphin et al., 2017) pre-trained on
WikiText-103 (Merity et al., 2016).

During spellchecking, we also found it benefi-
cial to fix casing errors within our context-aware
spellchecking process. To fix case errors, we ex-
tract a list of words used in the capital form much
more than their lower-case version (more than 99
times) in WikiText-103 (Merity et al., 2016). We
then include a capitalized version of the word as
a candidate in the LM re-scoring process if it ap-
pears in its capitalized form is in the extracted list
of common capital words.

Before feeding spellchecked text into our
seq2seq model, we apply byte-pair encoding
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(BPE) (Sennrich et al., 2016b) using Sentence-
Piece (Kudo and Richardson, 2018). We first train
a SentencePiece model with 32K vocabulary size
on the original Gutenberg corpus, and apply this
model to all input text to the model. This allows
us to avoid <unk> tokens in most training and val-
idation sets, including the W&I+L development
set.

7.3 Model & Training Details
Throughout our experiments, we use two vari-
ants of the Transformer model: the “vanilla”
Transformer (Vaswani et al., 2017) and the copy-
augmented Transformer (Zhao et al., 2019). We
use two configurations for the vanilla Trans-
former: a base model with 6 blocks of 512-2048
units with 8 attention heads, and a large model
with 6 blocks of 1024-4096 units with 16 at-
tention heads and pre-attention layer normaliza-
tion. We only use the large model for Restricted
Track (§7.5) and for the CoNLL-2014 comparison
(§7.7). For the copy-augmented Transformer, we
follow the default configuration from (Zhao et al.,
2019): 6 blocks of 512-4096 units with 8 attention
heads, along with an 8-head copy attention layer.
For each model configuration, we train two inde-
pendent models using different seeds.

Our model training is a three-stage process, as
illustrated in Figure 1: DAE pre-training, training,
and fine-tuning, except in Low Resource Track
where there is no fine-tuning data (see Table 2).
At each step, we train a model until its ERRANT
score on the development set reaches convergence,
and use the learned weights as initial values for the
next step. In all training steps, we used the Adam
(Kingma and Ba, 2015) optimizer.

Our final model is an ensemble among the dif-
ferent model configurations and seeds. Among the
six (four for Low Resource Track) best models, we
greedily search for the best combination, starting
with the best-performing single model.

7.4 Post-processing
Our post-processing phase involves three steps.
First, we find any <unk> tokens found in the
original input text, and using ERRANT, we re-
move any edits associated with the token. Next,
since many of the model’s corrections can still
be unnatural, if not incorrect, we re-rank candi-
date corrections within each sentence using a pre-
trained neural LM (Dauphin et al., 2017). Specif-
ically, we remove any combination of up to 7

edits per sentence, and choose the combination
that yields the highest LM score. Finally, we
noticed that, as in many previous results, our
neural system performs well on some error cate-
gories (e.g., M:PUNCT) but poorly on others (e.g.,
R:OTHER). Because ERRANT provides a fine-
grained analysis of model performance based on
error types, we found it beneficial to remove ed-
its belonging to certain categories in which the
model performs too poorly. Given our final model,
we randomly remove all edits from a subset of (at
most N ) categories for repeated steps, and choose
to remove the subset of error categories that gave
the highest score on the development set.

7.5 Restricted Track Results

In Table 3, we summarize our results on Restricted
Track. The results illustrate that each step in our
approach substantially improves upon the previ-
ous model, both on the W&I+L development and
test sets. We highlight that our pre-training step
with realistic human errors already gets us at a
54.82 F0.5 score on span-based correction in ER-
RANT for the test set, even though we only indi-
rectly used the W&I training set for error extrac-
tion and no other parallel corpora. This suggests
that pre-training on a denoising task with realistic
and common errors can already lead to a decent
GEC system.

Our final ensemble model is a combination of
five independent models – one base model, two
large models, and two copy-augmented models –
achieving 69.06 F0.5 score on the test set.

7.6 Low Resource Track Results

In Table 4, we summarize our results on Low Re-
source Track. Similar to Restricted Track, each
step in our approach improves upon the previous
model significantly, and despite the lack of parallel
data (3K for training, 1K for validation), our pre-
training step already gets us at 51.71 F0.5 score
on the test set. Compared to Restricted Track,
the only difference in pre-training is that the re-
verse dictionary for the noising function was con-
structed using much fewer parallel data (3K), but
we see that this amount of parallel data is already
enough to get within 3 points of our pre-trained
model in Restricted Track.

Our final model is an ensemble of two indepen-
dent models – one base model and one copy model
– achieving 61.47 F0.5 score on the test set.
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Steps W&I+L Dev W&I+L Test
P R F0.5 ∆ P R F0.5 ∆

Spellcheck 59.28 5.27 19.43 n/a 68.77 10.55 32.69 n/a
+ DAE Pre-train 48.58 24.92 40.82 +21.39 58.33 44.20 54.82 +22.13
+ Train 54.30 28.67 46.07 + 5.25 66.05 50.72 62.28 + 7.46
+ Fine-tune 54.34 32.15 47.75 + 1.68 66.02 53.41 63.05 + 0.77
+ Ensemble (5) 63.54 31.48 52.79 + 5.04 76.19 50.25 69.06 + 6.01

Table 3: ACL 2019 BEA Workshop Restricted Track results. For each training step, we only list results from the
model configuration that achieved the best F0.5 test set score. All evaluation is done using ERRANT’s span-based
correction scorer. Pre-processing and post-processing are included in the first step and last steps, respectively.

Steps W&I+L Dev-1K W&I+L Test
P R F0.5 ∆ P R F0.5 ∆

Spellcheck 61.88 5.29 19.72 n/a 68.77 10.55 32.69 n/a
+ DAE Pre-train 46.26 19.84 36.53 +16.81 57.14 37.46 51.71 +19.02
+ Train 47.97 30.91 43.20 + 6.67 58.60 47.47 55.98 + 4.27
+ Ensemble (4) 58.89 26.68 47.02 + 5.75 69.69 41.76 61.47 + 5.49

Table 4: ACL 2019 BEA Workshop Low Resource Track results. For each training step, we only list results from
the model configuration that achieved the best F0.5 test set score. All evaluation is done using ERRANT’s span-
based correction scorer. Note that 3K examples from the W&I+Locness development set (“W&I+L Dev-3K”)
were used for the training step and is excluded during evaluation. Pre-processing and post-processing are included
in the first step and last steps, respectively.

7.7 CoNLL-2014 Results

In Table 5, we show the performance of our ap-
proach on the CoNLL-2014 (Ng et al., 2014)
dataset, with and without the newly released
W&I+L dataset.7 We also list some of the state-
of-the-art8 results prior to the shared task: copy-
augmented Transformers pre-trained on random
error denoising (Zhao et al., 2019), Transform-
ers pre-trained on Wikipedia revisions and round-
trip translations (Lichtarge et al., 2019), hybrid
statistical and neural machine translation systems
(Junczys-Dowmunt et al., 2018), and convolu-
tional seq2seq models with quality estimation
(Chollampatt and Ng, 2018b).

The results show that our approach is com-
petitive with some of the recent state-of-the-art
results that achieve around 56 MaxMatch (M2)
scores and further achieves 60+ M2 score when
the W&I+L dataset is used. This illustrates that
our approach can also achieve a “near human-
level performance” (Grundkiewicz and Junczys-
Dowmunt, 2018). We also note that the 60.33 M2

score was obtained by the final ensemble model

7See Appendix F for a step-by-step training progress.
8http://nlpprogress.com/english/

grammatical_error_correction.html.

from §7.5, which includes a fine-tuning step to the
W&I model. This suggests that “overfitting” to
the W&I dataset does not necessarily imply a re-
duced performance on an external dataset such as
CoNLL-2014.

8 Analysis & Discussion

8.1 Error Analysis

Here, we give an analysis of our model’s per-
formance on some of the major ERRANT er-
ror categories on the W&I test set. Detailed
information is available in Tabel 10. We ob-
serve that our model performs well on syn-
tax relevant error types, i.e., subject-verb agree-
ment (VERB:SVA) (84.09 F0.5), noun numbers
(NOUN:NUM) (72.19), and prepositions (PREP)
(64.27), all of which are included as part of our
type-based error generation in the pre-training
data (§4.2). Our model also achieves 77.26
on spelling errors (SPELL) and 75.83 on ortho-
graphic errors (ORTH), both of which are im-
provements made mostly by our context-aware
neural spellchecker. Our model also achieves
77.86 on punctuation errors (PUNCT), which hap-
pen to be the most common error category in the

http://nlpprogress.com/english/grammatical_error_correction.html
http://nlpprogress.com/english/grammatical_error_correction.html
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Models Pre-training W&I+L CoNLL-2014
P R F0.5

Our Models
Transformers

(Vanilla + Copy-Aug.)
DAE with Realistic Errors

No
Yes

71.11
74.76

32.56
34.05

57.50
60.33

Previous Results
Copy-Aug. Transformers DAE with Random Errors No 71.57 38.65 61.15

Transformers Revisions + Round-Trip Translations No 66.70 43.90 60.40
ConvS2S + QE LM (Decoder Pre-training) No n/a n/a 56.52
SMT + BiGRU LM (Ensemble Decoding) No 66.77 34.49 56.25

Table 5: Results on CoNLL-2014 as point of comparison. “W&I+L” indicates whether the approach made use of
the (newly released) W&I+L dataset. Evaluation is done using the MaxMatch (M2) scorer, rather than ERRANT.
Pre-processing & post-processing are included before the first step and after the last step, respectively. See §7.7
for details and references.

Step Ours Random ∆

DAE 54.82 32.25 +22.57
+ Train 62.28 57.00 + 5.28
+ Fine-tune 63.05 60.22 + 2.83

Table 6: Comparison of realistic and random error gen-
eration on Restricted Track. ∆ means the difference
between Ours and Random.

Step Ours Random ∆

DAE 51.71 32.01 +19.70
+ Train 55.98 35.44 +20.54

Table 7: Comparison of realistic and random error gen-
eration on Low Resource Track. ∆ means the differ-
ence between Ours and Random.

W&I+L dataset. This may be due to both our
use of extracted errors from the W&I dataset dur-
ing pre-training and our fine-tuning step. Finally,
we find it challenging to match human annota-
tors’ “naturalness” edits, such as VERB (26.76),
NOUN (41.67), and OTHER (36.53). This is pos-
sibly due to the variability in annotation styles and
a lack of large training data with multiple human
annotations.

8.2 Effect of Realistic Error Generation

To see how effective our realistic error based
pre-training is, we compare it with (Zhao et al.,
2019)’s method. According to them, random in-
sertion, deletion, and substitution occur with the
probability of 0.1 at every word, and words are re-
ordered with a certain probability. As seen in Ta-
ble 6 and 7, our pre-training method outperforms

the random based one in both Restricted and Low
Resource Tracks by 22.57 and 19.70, respectively.
And it remains true for each step of the following
transfer learning. The performance gap, however,
decreases to 5.3 after training and to 3.2 after fine-
tuning in Restricted Track. On the other hand, the
gap in Low Resource Track slightly increases to
20.54 after training. This leads to the conclusion
that our pre-training functions as proxy for train-
ing, for our generated errors resemble the human
errors in the training data more than the random
errors do.

8.3 Effect of Context-Aware Spellchecking

We further investigate the effects of incorporating
context and fixing casing errors to the off-the-shelf
hunspell, which we consider as a baseline.
We test three spellchecker variants: hunspell,
hunspell using a neural LM, and our final
spellchecker model.

On the original W&I+L test set, our LM-based
approach improves upon the ERRANT F0.5 score
by 5.07 points, and fixing casing issues further
improves this score by 4.02 points. As a result,
we obtain 32.69 F0.5 score just by applying our
context-aware spellchecker model.

9 Conclusion & Future Work

We introduced a neural GEC system that leverages
pre-training using realistic errors, sequential trans-
fer learning, and context-aware spellchecking with
a neural LM. Our system achieved competitive re-
sults on the newly released W&I+L dataset in both
standard and low-resource settings.
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Spellchecker W&I+L Test
P R F0.5 ∆

Hunspell 53.59 7.29 23.60 n/a
Hunspell + LM 65.14 8.85 28.67 +5.07

Ours 68.77 10.55 32.69 +4.02

Table 8: Effect of incorporating context into a standard
spellchecker.

There are several interesting future directions
following our work. One is to extend sentence-
level GEC systems to multi-sentence contexts, for
example by including the previous sentence, to
better cope with complex semantic errors such as
collocation. Because the W&I+L dataset is also
a collection of (multi-)paragraph essays, adding
multi-sentence contexts can improve these GEC
systems. Also, to better understand the role of sev-
eral components existing in modern GEC systems,
it is important to examine which components are
more necessary than others.
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Copy-augmented Transformers (Zhao et al., 2019)
incorporate an attention-based copying mecha-
nism (Gu et al., 2016; See et al., 2017; Jia and
Liang, 2016) in the decoder of Transformers. For
each output token yt at output position t, given
source token sequence x = (x1, . . . , xT ′), the out-
put probability distribution over token vocabulary
V is defined as:

Henc = enc(x) (3)

hdec
t = dec (y1:t−1;H

enc) (4)

pgen(yt | y1:t−1;x) = softmax
(
Wgenhdec

t

)
(5)

where enc denotes the encoder that maps the
source token sequence x to a sequence of hidden
vectors Henc ∈ Rd×T ′ , dec denotes the decoder
that takes output tokens at previous time steps
along with encoded embeddings and produces a
hidden vector hdec

t ∈ Rd, and Wgen ∈ R|V |×d is a
learnable linear output layer that maps the hidden
vector to a pre-softmax output probabilities (“log-
its”). We denote the resulting distribution as the
(token) generative distribution, denoted as pgen.

A copy attention layer can be defined as an ad-
ditional (possibly multi-head) attention layer be-
tween the encoder outputs and the final-layer hid-
den vector at the current decoding step. The atten-
tion layer yields two outcomes, the layer output ot
and the corresponding attention scores st:

st = softmax

(
(hdec

t )THenc

√
d

)
(6)

ot = Hencst (7)
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The copy distribution is then defined as the atten-
tion scores in (6) themselves9:

pcopy(yt | y1:t−1;x) = st (8)

The final output of a copy-augmented Trans-
former as a mixture of both generative and copy
distributions. The mixture weight10 αcopy

t is de-
fined at each decoding step as follows:

αcopy
t = sigmoid

(
(walpha)Tot

)
(9)

p(yt) = (1− αcopy
t ) · pgen(yt) + αcopy

t · pcopy(yt)
(10)

where walpha ∈ Rd is a learnable linear output
layer. (For simplicity, we omit the dependencies
of all probabilities in (10) on both y1:t−1 and x.)
The mixture weight balances between how likely
it is for the model to simply copy a source token,
rather than generating a possibly different token.

B Exploratory Data Analysis

B.1 Data Sizes

Figure 2 illustrates the number of available paral-
lel corpora (counting multiple annotations) across
data sources. Note that the vertical axis is capped
at 100K for a better visual comparison among
other sources.

For the Lang-8 dataset, we count all available
(ranging from 1 to 8) annotations for each of
1.04M original sentences. Also note that we only
use the subset of Lang-8 whose source and tar-
get sentences are different, leaving only 575K sen-
tences instead of 1.11M.

B.2 Sentence Length vs. Number of Edits

Figure 3 illustrates the distribution of sentence
lengths and the number of edits per sentence
across different data sources.

Table 9 includes our permutation test11 results
on the number of edits per sentence, normalized

9In practice, this involves adding up the copy scores de-
fined for each source token into a |V |-dimensional vector, us-
ing commands such as scatter add() in PyTorch.

10When computing the mixture weight αcopy
t , Zhao et al.

(2019) applies a linear layer to Hencs̃t, where s̃t are the at-
tention scores in (6) before taking softmax. Our formulation
gives essentially the same copying mechanism, while being
more compatible to standard Transformer implementations.

11We used the off-the-shelf mlxtend package to run
permutation tests. See http://rasbt.github.io/
mlxtend/user_guide/evaluate/permutation_
test/.

Figure 2: Data size per source for all Restricted Track
training data. Number includes multiple annotations
for Lang-8. Vertical axis is capped at 100K for a bet-
ter visual comparison among the smaller sources. The
three FCE splits (train, dev, test) are collectively used
for training, and the three W&I+L splits correspond to
three English proficiency levels (“A”, “B”, “C”). After
duplicate removal, only 575K of the Lang-8 parallel
corpus are actually used for training.

by sentence length (i.e., number of word-level to-
kens), between training data sources. Using an ap-
proximate permutation test with 10k simulations
and a significant level of α = 0.05, we find that
there is a statistical difference in the normalized
edit count per sentence between the W&I training
set and each of FCE, NUCLE, and Lang-8. This
serves as a preliminary experiment showing how
the distribution of grammatical errors can be sig-
nificantly different across different sources – even
when they belong to a roughly similar domain.

C Full Noising Algorithm

Algorithms 1 and 2 detail our noising scenarios.

D Results on error categories

Table 10 shows the result on error categories.

E CoNLL-2014 Full Results
(Without Using W&I+L)

In Table 11, we include the training progress for
our result for CoNLL-2014.

A noticeable difference between this result and
our results for Restricted Track and Low Resource
Track is that adaptation via fine-tuning is not nec-
essarily effective here. We hypothesize that this
is mostly due to the fact that the training subset
to which we fine-tune our model (NUCLE) comes

http://rasbt.github.io/mlxtend/user_guide/evaluate/permutation_test/
http://rasbt.github.io/mlxtend/user_guide/evaluate/permutation_test/
http://rasbt.github.io/mlxtend/user_guide/evaluate/permutation_test/
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Algorithm 1 Pseudocode for constructing noise dictionary
function CONSTRUCTNOISEDICTIONARY(ParallelCorpus, min count)

Initialize a dictionary dict
for (CorToken, OriToken) in ParallelCorpus do

dict[CorToken] += OriToken
end for
for CorToken, OriTokenList in dict do

for OriToken in OriTokenList do
if count(OriToken) < min count then

delete OriToken from dict[CorToken]
end if

end for
if length(OriTokenList)==1 and CorToken==OriTokenList[0] then

delete OriToken from dict
end if

end for
return dict
end function

Algorithm 2 Pseudocode for generating noisy sentences
function CHANGE TYPE(word, prob)

preposition set = [∅, for, to, at, · · · ]
if random[0, 1] > prob then return word
else

if word in preposition set then
random choose one from(preposition set)

else if word is Noun then change number(word)
else if word is Verb then change form(word)
end if

end if
return word
end function
function MAKE NOISE(sentence, prob)

dict = ConstructNoiseDictionary(ParallelCorpus, min count)
noised = []
for word in sentence do

if word in dict and random[0, 1] > prob then
candidates = dict[word]
noise = random choose one from(candidates)

else
noise = change type(word)

end if
noised += noise

end forreturn noised
end function
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Figure 3: Sentence length versus the number of edits made in each sentence, across all training data sources for the
Restricted Track. The horizontal axis is capped at 100 words (less than 0.02% of all sentences contain more than
100 words). The vertical axis is capped at 40 edits (less than 0.02% of all sentences contain more than 30 edits).

Source # Sent. # Edits Perm. Test
/ Length vs. W&I

W&I-Train 34.3K 0.0922 n/a
FCE 33.2K 0.0898 p = .002

NUCLE 57.2K 0.0318 p < .001

Lang-8 1.11M 0.1357 p < .001

Table 9: Comparing the average number of edits per
sentence, normalized by sentence length, between the
W&I training set and other available training data
sources for the Restricted Track. “vs. W&I” refers
to the result of an approximate permutation test (10k
rounds) against that in the W&I training set. Under the
significance level of α = 0.05, the number for FCE,
NUCLE, and Lang-8 are all significantly different from
that for the W&I training set.

from a different source than the actual test set
(CoNLL-2014) – despite the fact that both datasets
have similar domains (personal essays from En-
glish students), they can still have many other dif-
ferent characteristics, including the writer’s En-
glish proficiency and annotation styles.

F Training Details

Our model training is a three-stage process: DAE
pre-training, training, and fine-tuning, except in
Low Resource Track where there is no fine-tuning
data. At each step, we train a model until its
ERRANT score on the development set reaches
convergence, and use the learned weights as ini-

Error types P R F0.5
ADJ 71.43 28.57 54.95

ADJ:FORM 100.00 40.00 76.92
ADV 70.59 22.22 49.18
CONJ 100.00 4.76 20.00

CONTR 100.00 91.67 98.21
DET 78.95 47.04 69.52

MORPH 81.18 49.29 71.88
NOUN 64.52 17.24 41.67

NOUN:INFL 100.00 41.18 77.78
NOUN:POSS 81.82 48.21 71.81

ORTH 87.38 49.60 75.83
OTHER 55.93 15.30 36.53
PART 76.19 55.17 70.80
PREP 69.69 49.01 64.27
PRON 78.67 43.70 67.82

PUNCT 79.95 70.48 77.86
SPELL 76.07 82.41 77.26
VERB 66.67 7.88 26.76

VERB:FORM 72.45 73.20 72.60
VERB:INFL 100.00 85.71 96.77
VERB:SVA 83.77 85.43 84.09

VERB:TENSE 71.43 45.64 64.18
WO 67.74 25.61 50.97

Table 10: Results on error types.
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Steps CoNLL-2014
P R F0.5

Spellcheck 54.75 5.75 20.25
+ Pre-train (b) 54.76 15.09 35.89
+ Train (b) 60.43 34.22 52.40
+ Fine-tune (b) 60.81 33.32 52.20
+ Pre-train (c) 65.81 24.17 48.95
+ Train (c) 61.38 30.97 51.30
+ Fine-tune (c) 60.82 32.50 51.79
+ Ensemble (b+c) 71.11 32.56 57.50

Table 11: Training progress on CoNLL-2014. No
W&I+Locness datasets were used in these results. ‘b’
and ‘c’ refer to the base and copy configurations of
the Transformer, respectively. Evaluation is done using
the MaxMatch (M2) scorer. Pre-processing & post-
processing are included before the first step and after
the last step, respectively.

tial values for the next step. For pre-training, we
used a learning rate of 5 · 10−4 for the base and
copy-augmented Transformers and 10−3 for the
large Transformer. For training, we reset the op-
timizer and set the learning rate to 10−4. For fine-
tuning (if available), we again reset the optimizer
and set the learning rate to 5 · 10−5. In all training
steps, we used the Adam (Kingma and Ba, 2015)
optimizer with the inverse square-root schedule
and a warmup learning rate of 10−7, along with
a dropout rate of 0.3.

G Further Analysis

G.1 Effect of Copying Mechanisms &
Ensembles

One of our contributions is to highlight the benefit
of ensembling multiple models with diverse char-
acteristics. As shown in Table 3, the final ensem-
ble step involving different types of models was
crucial for our model’s performance, improving
the test score by over 6 F0.5 points. We first no-

Model (Config.) W&I+L Test
P R F0.5

Vanilla (Large) 63.66 56.82 62.17
Copy (Copy) 66.02 53.41 63.05

∆ +2.36 -3.41 +0.88

Table 12: Single-model ERRANT scores for Re-
stricted Track, using a large Transformer and a copy-
augmented Transformer.

ticed that the copy-augmented Transformer learns
to be more conservative – i.e., higher precision but
lower recall given similar overall scores – in its
edits than the vanilla Transformer, presumably be-
cause the model includes an inductive bias that fa-
vors copying (i.e., not editing) the input token via
its copy attention scores. Table 12 shows this phe-
nomenon for Restricted Track.

Given multiple models with diverse characteris-
tics, the choice of models for ensemble can trans-
late to controlling how conservative we want our
final model to be. For example, combining one
vanilla model with multiple independent copy-
augmented models will result in a more conser-
vative model. This could serve as an alternative
to other methods that control the precision-recall
ratio, such as the edit-weighted loss (Junczys-
Dowmunt et al., 2018).


