
Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, pages 197–206
Florence, Italy, August 2, 2019. c©2019 Association for Computational Linguistics

197

The BLCU System in the BEA 2019 Shared Task

Liner Yang†, Chencheng Wang‡, Tianxin Liao†, Erhong Yang†
†Beijing Language and Culture University, Beijing, China

‡Beijing University of Technology, China
lineryang@gmail.com, hsamswang@gmail.com,

dubhe98@163.com, yerhong@126.com

Abstract

This paper describes the BLCU Group
submissions to the Building Educational
Applications (BEA) 2019 Shared Task on
Grammatical Error Correction (GEC). The
task is to detect and correct grammatical
errors that occurred in essays. We participate
in 2 tracks including the Restricted Track and
the Unrestricted Track. Our system is based
on a Transformer model architecture. We
integrate many effective methods proposed
in recent years, such as Byte Pair Encoding,
model ensemble, checkpoints average and
spell checker. We also corrupt the public
monolingual data to further improve the
performance of the model. On the test data
of the BEA 2019 Shared Task, our system
yields F0.5 = 58.62 for the Restricted Track
and 59.50 for the Unrestricted Track, ranking
twelfth and fourth respectively.

1 Introduction

The GEC task has attracted wide interest in recent
years. The goal of GEC is to detect and correct
errors in essays made by English as a Second
Language (ESL) learners. Since the end of both
CoNLL2013 (Ng et al., 2013) and CoNLL2014
(Ng et al., 2014), many GEC researchers have
used the two test sets as benchmark evaluation
sets. Because of using different training sets,
such as Lang-8, NUCLE, FCE, the performance
of the systems are not comparable, even though
they are evaluated on the same test sets. The
Building Educational Applications 2019 Shared
Task provides a forum for participating teams to
evaluate on the same blind test set using the same
training sets and evaluation metric.

Unlike previous GEC shared tasks, new corpus
provided by the organizers has different CEFR1

1https://www.cambridgeenglish.org/
exams-and-tests/cefr/

A B C N Total
Train 10,493 13,032 10,783 - 34,308
Dev 1,037 1,290 1,069 998 4,384
Test 1,107 1,330 1,010 1,030 4,477
Total 29.3% 36.3% 29.8% 4.6% 43,169

Table 1: Statistics for the sentence pairs of W&I+L
corpus. A, B and C represent different CEFR levels for
describing language ability, from beginner to proficient
user. N denotes essays written by native English
students.

levels. The distribution of different levels is shown
in Table 1. The training set includes essays at
different levels of language ability, but no articles
written by native students. There are three tracks
in this shared task: Restricted Track, Unrestricted
Track and Low Resource Track. Each sub-task
restricts the error-corrected corpus that can be
used except the Unrestricted Track. It means that
the model needs to learn useful information from
a large number of data written by ESL in order to
correct the errors written by native learners.

In this paper, we describe the submissions
from the group of Beijing Language and Culture
University (BLCU) in the first two tracks. This
shared task aims to tackle the full set of grammar
errors, classified into 56 kinds of errors. More
types of errors represent an increase in difficulty.
Subtask one of the shared task (Restricted Track)
restricts participants to use only the learner corpus
provided by the organizers. We believe that
effective use of monolingual data will enable the
model to achieve better performance. Therefore,
we propose a data augmentation method to corrupt
a monolingual corpus with a fixed probability
according to the proportion of errors in the
development set and integrate many techniques
proposed in recent years. We also participate in
the second subtask (Unrestricted Track) which
allows participants to use any learner corpus.

https://www.cambridgeenglish.org/exams-and-tests/cefr/
https://www.cambridgeenglish.org/exams-and-tests/cefr/


198

Example Source Target

A I think that the public transport will
always be in the future .

I think that public transport will always
exist in the future .

B When the concert finished , we went
to cloakroom to get signatures from
musicians .

When the concert finished , we went to
the dressing room to get autographs
from musicians .

C Nevertheless , you have another side to
this reality .

Nevertheless , there is another side to
this reality .

N All professional boxers are at risk from
being killed in his next fight .

All professional boxers are at risk from
being killed in their next fight .

Table 2: Example of sentence pairs with different CEFR levels. Bold font represents the difference between the
source and the target.

The paper is structured as follows: we present
the related work in the next section. In Section
3, we describe the details of our system features.
Section 4, we describe the training procedure for
our system. Section 5 we specify the data sets and
experiments settings. We draw our conclusions in
Section 6.

2 Related Work

To our knowledge, Helping Our Own (HOO)
2011 (Dale and Kilgarriff, 2011) is the first shared
task on grammatical error correction. The aim of
HOO2011 is to correct errors in papers written
by non-native authors (NNS), which have been
published in the proceedings of ACL. Dahlmeier
et al. (2011) use different open-source tools to
detect spelling mistakes, prepositional errors and
article errors and correct them with rule-based
methods. Except for the group of University of
Illinois, all participants score below 20.

Therefore, the HOO2012 shared task (Dale
et al., 2012) focus more specifically on the prepo-
sition and determiner errors made by NNS who
are learning English. Dahlmeier et al. (2012) treat
the error correction as a classification problem
and build different classifiers for determiner errors
and preposition errors. Their system achieves the
highest score.

The Conference on Computational Natural
Language Learning (CoNLL) 2013 (Ng et al.,
2013) believes that the GEC community is ready
for dealing with more error types, including the
two types in HOO2012, noun number, verb form
and subject-verb agreement errors. Although the
number of error types has increased, the most
effective way at that time is still to use a pipeline

of processes that combines the results from
multiple systems, like Rozovskaya et al. (2013).

The CoNLL 2014 shared task (Ng et al., 2014)
is the extension of CoNLL 2013, which requires
participants to correct all 28 error types. Felice
et al. (2014) present a hybrid approach, using
statistical machine translation (SMT) as part of
their pipeline system. Junczys-Dowmunt and
Grundkiewicz (2014) combine Lang-8 large-scale
corpus (Mizumoto et al., 2011) with the Moses
(Koehn et al., 2007) SMT system. These two
studies perform well, ranking first and third
respectively.

Yuan and Briscoe (2016) present the first
study using neural machine translation (NMT)
for grammatical error correction. Xie et al.
(2016a) use a character level RNN structure with
attention. But all their results are worse than SMT
at the same period. Chollampatt and Ng (2018)
use a multilayer convolutional encoder-decoder
neural network with embeddings that make use
of character N-gram information. It is the first
neural approach that outperforms the current
state-of-the-art statistical machine translation-
based approach. In the same year, Grundkiewicz
and Junczys-Dowmunt (2018) combine the RNN
with a phrase-based SMT system to achieve a
similar score to Chollampatt and Ng (2018).

On the other hand, many scholars are commit-
ted to using additional monolingual corpora to
improve the effectiveness of the models. Sennrich
et al. (2016a) argue that the decoder of an NMT
model is equivalent to a language model. They
explore strategies to train with monolingual data
without changing the NMT architecture. Yuan and
Felice (2013) explore ways of generating pairs



199

Figure 1: The pipeline of our grammatical error correction system

of incorrect and correct sentences automatically
from other existing learner corpora. Both Rei
et al. (2017) and Xie et al. (2018) add noise
to monolingual data using Back-translation
mechanism based on SMT and NMT. Wang et al.
(2018) randomly replace words in both the source
and target sentence with other random words from
their corresponding vocabularies.

3 System Features

In this section, we will describe the features of our
grammatical error correction system.

Figure 1 shows the general pipeline of the sys-
tem. The training steps are shown as follows:

1) Pre-processing the learner corpora provided
by the organizers.

2) Training Byte Pair Encoding (BPE) on the
corpora.

3) Corrupting the One Billion Word Benchmark
monolingual corpus.

4) Training model using corrupted data.

5) Fine-tuning model using the learner corpora.

The error correction steps for evaluation are:

1) Using monolingual corpus to train a language
model as the spell check model.

2) Using the spell check model to correct
spelling errors in the test set.

3) Decoding the output of the previous step with
the grammar error correction model.

The final output after the last step forms our
submission to the shared task. The following
sections describe each of these components in
detail.

3.1 Pre-processing and sub-words

In track one, we use four learner corpora provided
by the organizers and an additional monolingual
corpus.

NUCLE - This corpus is collected by the Nation-
al University of Singapore and release
in CoNLL shared task (Dahlmeier
et al., 2013).

Lang-8 - This corpus is collected from the
website called Lang-8. It is the largest
publicly available learner corpus
(Mizumoto et al., 2011).

FCE - The First Certificate in English corpus
is collected by the University of Cam-
bridge (Yannakoudakis et al., 2011).

W&I+L - It consists of two corpora, including
Write & Improve (Bryant et al., 2019)
and LOCNESS (Granger, 1998). The
Write & Improve is collected by the
University of Cambridge with W&I
system (Yannakoudakis et al., 2018)



200

Source Target
said that two Tele involved the case had
been disciplined .

It said that two officers involved in the
case had been disciplined .

That y to have been com their model til
stat now .

That seems to have been their model up
til now .

Why does sp everything have to become
such a issue

Why does everything have to become
such a big issue ?

Ch majority will be of the standard 6X6
configuration for carrying personnel k

The majority will be of the standard 6X6
configuration for carrying personnel .

Table 3: Example of sentence pairs made by corruption method.

and is one of the key contributions of
this shared task.

One Billion - One Billion Word Benchmark dataset
is a public monolingual corpus (Chel-
ba et al., 2013), consisting of close
to one billion words of English taken
from news articles on the web.

All learner corpora use M2 format. For
each sentence, the start and end token offsets
of the wrong text range are marked and the
corresponding corrections are provided.

Firstly, we extract the original sentences and
modified sentences from the M2 files and write
them into two files. Like in previous works
(Zhao et al., 2019), we remove the unchanged
sentence pairs from the original sentences and the
modified sentences. We use spaCy v1.9.02 and
the en core web sm-1.2.0 model as a serializer
based on the organizers’ recommendations.

By analyzing the data, we find that there are
many instances containing URLs in NUCLE,
character encoding errors and emojis in Lang-8.
So we removed the sentence pairs containing the
previously mentioned case from all training sets.

In track two, we use an additional Non-public
Lang-8 corpus besides all the corpora used in track
one. The pre-processing method is the same as
before.

In order to solve the large vocabulary and
out-of-vocabulary (OOV) problem, we adopt
the recommendation of Junczys-Dowmunt et al.
(2018) to use the Byte Pair Encoding (BPE)
algorithm (Sennrich et al., 2016b). All of the
corpora are used to train the BPE vocabulary
except the One Billion monolingual corpus. We
split the training set, development set and the

2https://spacy.io/

test set into sub-words using the learned BPE
code. The sub-words in the test set will be merged
before evaluating.

3.2 Corrupting Corpora

Many resent work regard grammatical error
correction as a low-resource neural machine
translation task (Junczys-Dowmunt et al., 2018;
Zhao et al., 2019; Lichtarge et al., 2019). Both
Grundkiewicz and Junczys-Dowmunt (2014) and
Lichtarge et al. (2019) use the Wikipedia revision
histories to generate additional corpora. Junczys-
Dowmunt and Grundkiewicz (2016); Junczys-
Dowmunt et al. (2018) utilize the Common Crawl
corpus to train the language model and pre-train
part of the NMT model. Inspired by these studies,
we also try to use a monolingual corpus for data
augmentation.

First, we define the error rate of the corpus as:

Er(C) =
1

n

n∑
i=0

levenshtein(src, trg)

length(trg)
(1)

where n is the number of sentence pairs in corpus,
src refers to the sentence to be modified, trg is the
modification of src. levenshtein(src, trg) means
the shortest edit distance for the src and trg in
terms of tokens. length(trg) refers to the number
of token in trg.

Secondly, we assume that errors in the corpus
can be divided into three types (Bryant et al.,
2017):

• Missing type (M)

src : w0 ... wi−1 wi+1 ... wn

trg : w0 ... wi−1 wi wi+1 ... wn

Token wi is a missing type.

https://spacy.io/


201

• Unnecessary type (U)

src : w0 ... wi−1 wi wi+1 ... wn

trg : w0 ... wi−1 wi+1 ... wn

Token wi is an unnecessary type.

• Replacement type (R)

src : w0 ... wi−1 wi′ wi+1 ... wn

trg : w0 ... wi−1 wi wi+1 ... wn

Token wi is a replacement type.

Counting all of the training sets, we find that the
error rate is 30% and the ratio of M : U : R is 1:1:1.
We apply this to corrupt the monolingual corpus.
It means that 30% tokens in the training set will
be corrupted. The steps of corruption are shown
as follows:

• Delete the token with a probability of 33%.

• Randomly add a token in the vocabulary with
a probability of 33%.

• Randomly replace a token in the vocabulary
with a probability of 34%.

This process produces a large number of wrong
sentences. Finally, the original One Billion Word
Benchmark corpus sentence is the target sentence
and the output of the corruption system is the
corresponding source sentence.

3.3 Transformer
As mentioned in the previous section, neural ma-
chine translation has become the state-of-the-art
approach for Grammatical Error Correction. We
adopt the attention-based NMT model proposed
by Vaswani (Vaswani et al., 2017).

The embedding layer is divided into two
embeddings, including token and position embed-
ding. The token embedding contains the vector
corresponding to each token, and the position
embedding contains the vector of each absolute
position. The embedding layer encodes each
token Ssrc

i of the input sentence Ssrc into a vector
hsrcSi

by looking up in a token embedding matrix
and adding a position vector, as shown in Eq (2).

hsrcSi
= Token emb(Ssrc

i ) + Position emb(i)
(2)

The Encoder has N identical attention blocks,
each block containing a Multi-Head attention and

a linear layer. The Multi-Head is the concate-
nation of the N attention heads. The Encoder
produces the input context-aware hidden state,
shown in the Eq (3,4).

MultiHead(hsrcS , hsrcS , hsrcS ) =

Concat(Attention(hsrcS , hsrcS , hsrcS )) (3)

HSsrc
S = Encoder(hsrcS ) (4)

The structure of the decoder is similar to that
of the encoder, with N identical attention blocks.
The only difference is that the decoder’s attention
block has an extra Multi-Head attention which
attends over the encoder’s context-aware hidden
state. The decoder updates the hidden state of the
current layer based on the attention output from
the encoder and the hidden states of previous
layer:

HStrg
Si+1

= Decoder(HSsrc
S , HStrg

Si
) (5)

The final decoder layer output vector HStrg
S is

dot-multiplied with the output embedding. Apply-
ing softmax on the inner product’s output can get
the predicted probability of each word, like Eq (6).
Words with the highest predicted probability are
chosen as the final output.

p(Si+1|S1, ..., Si, S) =

softmax(OutEmbedding(HStrg
S )) (6)

The model can be trained with maximum likeli-
hood estimation, as shown in Eq(7):

L(Strg) = −
T∑
i=1

log(p(Strg
i )) (7)

For the grammatical error correction task,
the model copy correct tokens in most cases.
But what the model really needs to learn is to
translate the wrong tokens into the right ones.
Therefore, we add the Edit-weighted MLE
objective (Junczys-Dowmunt et al., 2018) into
the loss function to give the wrong tokens greater
penalty. Details of the implementation are shown
as follows:



202

L(Strg) = −
T∑
i=1

A(Ssrc
j , Strg

i )log(p(Strg
i ))

A(Ssrc
j , Strg

i ) =

{
Λ if Ssrc

j 6= Strg
i

1 otherwise

(8)

where A(Ssrc
j , Strg

i ) is an alignment between
source token and target token. It means that if the
source token is inconsistent with the target, the
loss value will be multiplied by Λ.

3.4 Language Model based Spell Checker
As mentioned in Xie et al. (2016b) and Chol-
lampatt and Ng (2017), a token-based neural
machine translation model is not designed to
correct spelling mistakes. To address this issue,
we have adopted a language model based spell
checker.

We use Kenlm3 to build a 5-gram language
model from the Billion Word Benchmark dataset.
Based on this language model, we use CyHun-
spell4 which is a Python wrapper for Hunspell to
correct spelling errors in corpora.

Algorithm 1 describes the process of correcting
the corpus using the spell check model.

Algorithm 1 Language Model based Spell Check-
er
Input: Language Model LM , corpus with errors
E, error correction threshold η, CyHunspell
spell checker Spell

Output: corrected corpus C
Initialize C = {}
for all sentences si in E do

score = LM .score(si)
for all tokens tj in si do

candidate = Spell.suggest(tj)
temp = si.apply(candidate)
tempscore = LM .score(temp)
if tempscore/score > η then

si = si.apply(candidate)
end if

end for
Add si to C

end for
return C

For each sentence in E, record the language
model score. The modification will be applied

3https://github.com/kpu/kenlm
4https://pypi.org/project/CyHunspell/

only if the ratio of tempscore to score is greater
than η. Finally, the output of the program is the
corrected result.

4 Training procedure

Augmentation data for corruption is collected
from articles on news sites. The Lang-8 corpus
used in training is written by many second
language learners about their daily life. Corrupted
corpus and learner corpus belong to different
domains. Moreover, the errors contained in the
augmentation data are not common errors for
second language learners.

Based on this situation, we train on the augmen-
tation corpus and the learner corpus separately.
Firstly, we pre-train the corrupted corpus for 5
epochs. We use the arithmetic mean of the last
three epochs as the final weighed result of the
pre-training.

Next, we fine-tune the pre-trained model using
the learner corpus consisting of (Non-public)
Lang-8, NUCLE, FCE and W&I+L datasets and
evaluate on the development set at each end of
epoch. For each single model, we calculate the
arithmetic mean of the five epochs with the best
cross-entropy cost on the development set as the
final model.

Our model is composed of the ensemble of 8 s-
ingle models. The hyper-parameters and the train-
ing procedure used in each single model are the
same except the random seed.

5 Data sets and Experiments

In this section, we will detail the data sets, the
hyper-parameters and the open source tools we
use.

5.1 Data sets

The statistics for the data we use in this shared
task are shown in Table 6. We implement the
pre-processing method mentioned in Section 3.1
for both tracks. The first four rows list the fine-
tuning datasets we use in track one. The fifth line
summaries the above datasets. The Non-public
Lang-8 in the sixth line is the additional corpus we
collect from Lang-85. It is worth mentioning that
some instances of Non-public Lang-8 also exist in
Lang-8. We use the union of all learner corpora as
the training data for track two, including 6 million

5https://lang-8.com/

https://github.com/kpu/kenlm
https://pypi.org/project/CyHunspell/
https://lang-8.com/


203

Model without LM Spell Checker with LM Spell Checker
Precision Recall F0.5 Precision Recall F0.5

transformer single 43.11 24.98 37.65 43.61 26.87 38.78
transformer single + CC 46.14 27.66 40.71 46.23 29.50 41.52
transformer ensemble + CC 48.83 26.39 41.79 48.96 28.29 42.72

Table 4: The evaluation of our system on the track one development set. Transformer single refers to the single
model, while transformer ensemble denotes the ensemble of 8 single models. CC means use additional corrupted
corpus.

Restricted Track Unrestricted Track
Precision Recall F0.5 Precision Recall F0.5

A 64.26 49.89 60.76 68.29 54.18 64.91
B 61.83 48.71 58.67 61.89 53.87 60.10
C 60.75 55.84 59.70 56.31 64.04 57.71
N 49.02 58.86 50.71 44.25 62.58 47.00

ALL 60.81 51.22 58.62 60.32 56.42 59.50

Table 5: The evaluation of our system on the test set.

Corpus Before process After process
NUCLE 56,670 21,242

FCE 32,844 20,552
Lang-8 1,112,513 560,542
W&I+L 34,308 22,544

Track One 1,236,335 624,880
Non-public Lang-8 8,655,173 6,230,606

Track Two 9,891,508 6,456,889
One Billion* 30,301,028 20,032,188
W&I+L(dev) 4,384 -
W&I+L(test)* 4,477 -

Table 6: Number of the sentence pair for different
dataset. Track one summaries the statistic of all of the
data we use in track one, and so does Track Two. Non-
public Lang-8 is the additional corpus we use in track
two. W&I+L(dev,test) is provided by the organizers. *
indicates that this corpus has no target available.

sentence pairs. The last two rows in the table
show the size of the development and test set.

5.2 Experimental settings

In this shared task, we use the Transformer model
(Vaswani et al., 2017) implemented by FAIR6 as
the GEC model. The detailed parameters of the
model are as follows: model BPE embeddings are
trained for 50,000 steps (Junczys-Dowmunt et al.,
2018) on the error-annotated data by the subword
algorithm7. Both the source embedding and the
target embeddings have 512 dimensions and use

6https://github.com/pytorch/fairseq
7https://github.com/rsennrich/

subword-nmt

the same vocabulary. We share the weights of
decoder input and output embeddings. Both of
the encoder and decoder have 6 multi-head layers
and 8 attention heads. The size of the inner layer
at each layer is 2048.

We use the Adam optimizer (Kingma and Ba,
2014) to train transformer with inverse squared
root schedule which decays the learning rate
based on the inverse square root of the warm-up
steps. The initial learning rate is 5 × 10−4 and
the warm-up step is set to be 4000. We use a
batch size of approximately 32,000 tokens and
fine-tune the model on learner corpus for 50,000
steps. Dropout is applied at a ratio of 0.3. The
loss factor Λ is set to 1.2.

The ensemble model is composed of 8 identi-
cal Transformers trained and fine-tuned separate-
ly. The only difference between them is that they
use different random seeds.

During model inference, we run beam search
with the emsemble model and set the beam size
to 12. We use ERRANT8 (Bryant et al., 2017) to
evaluate the decoding results.

5.3 Experiment result and analysis

Table 4 shows the performance of our model
with different settings. For the without LM Spell
Checker columns, we do not use language model
based spell checker to correct spelling mistakes,

8https://github.com/chrisjbryant/
errant

https://github.com/pytorch/fairseq
https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/chrisjbryant/errant
https://github.com/chrisjbryant/errant


204

while with LM Spell Checker is the opposite.
The first two lines report the result with a single
Transformer model, and the last line with the
ensemble model. + CC means that we pretrain
the transformer model using the corrupted corpus
and then fine-tune with learner corpus. We submit
the best model, namely the ensemble model, for
the shared task.

In Table 4, we can see that the main contribu-
tion comes from the corruption method. About 20
million monolingual data have brought about an
increase of 3.06 in terms of F-measure on a single
model. The spell checker based on the language
model improves the performance of the model by
about one point. We use an ensemble of identical
models (except for the random seed), but we will
attempt to use different types of models in future
work.

Table 5 shows the result on the test set which is
evaluated by the organizers. Comparing the results
of the two tracks, we find that training with the
Non-public Lang-8 data can significantly improve
the recall about 5-10 points. However, in terms of
F0.5, the performance of the model has only been
significantly improved on the test data at A and B
levels, and has dropped by about two points in C
and N. One possible explanation is that the errors
contained in the Non-public Lang-8 belong to the
lower CEFR level. Overtraining in a large amount
of data containing beginner errors has reduced the
performance of our system at C and N levels.

6 Conclusions

In this paper, we have described the submission to
the BEA 2019 shared task on Grammatical Error
Correction. Our approach combines a method of
data augmentation with a pipeline system based
on the Transformer model. We first corrupt the
monolingual corpus and pre-train a single model
on it. Then we fine-tune on the learner corpora
and ensemble eight single Transformer models to
further improve the performance.

The results of our best system on the blind
test set are F0.5 = 58.62 for the Restricted Track
and F0.5 = 59.50 for the Unrestricted Track,
placing our system in the twelfth and fourth place
respectively.

Acknowledgments

This research project is supported by Science
Foundation of Beijing Language and Culture

University (supported by “the Fundamental
Research Funds for the Central Universities”)
(18YBB20), and the National Natural Science
Foundation of China (61872402).

References

Christopher Bryant, Mariano Felice, Øistein E. An-
dersen, and Ted Briscoe. 2019. The BEA-2019
Shared Task on Grammatical Error Correction. In
Proceedings of the 14th Workshop on Innovative
Use of NLP for Building Educational Applications.
Association for Computational Linguistics.

Christopher Bryant, Mariano Felice, and Ted Briscoe.
2017. In Proceedings of the 55th Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One billion word benchmark for measur-
ing progress in statistical language modeling. arXiv
preprint arXiv:1312.3005.

Shamil Chollampatt and Hwee Tou Ng. 2017. Con-
necting the dots: Towards human-level grammat-
ical error correction. In Proceedings of the 12th
Workshop on Innovative Use of NLP for Building
Educational Applications.

Shamil Chollampatt and Hwee Tou Ng. 2018. A multi-
layer convolutional encoder-decoder neural network
for grammatical error correction. In Thirty-Second
AAAI Conference on Artificial Intelligence.

Daniel Dahlmeier, Hwee Tou Ng, and Eric Jun Feng
Ng. 2012. Nus at the hoo 2012 shared task. In
Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP.

Daniel Dahlmeier, Hwee Tou Ng, and Thanh Phu Tran.
2011. Nus at the hoo 2011 pilot shared task. In
Proceedings of the Generation Challenges Session
at the 13th European Workshop on Natural Lan-
guage Generation. Association for Computational
Linguistics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
english: The nus corpus of learner english. In
Proceedings of the eighth workshop on innovative
use of NLP for building educational applications.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. Hoo 2012: A report on the preposition
and determiner error correction shared task. In
Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP. Association
for Computational Linguistics.



205

Robert Dale and Adam Kilgarriff. 2011. Helping our
own: The hoo 2011 pilot shared task. In Proceed-
ings of the 13th European Workshop on Natural Lan-
guage Generation. Association for Computational
Linguistics.

Mariano Felice, Zheng Yuan, Oistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the Eighteenth
Conference on Computational Natural Language
Learning: Shared Task. Association for Computa-
tional Linguistics.

Sylviane Granger. 1998. The computer learner corpus:
A versatile new source of data for SLA research.
In Sylviane Granger, editor, Learner English on
Computer, pages 3–18. Addison Wesley Longman,
London and New York.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2014. The wiked error corpus: A corpus of correc-
tive wikipedia edits and its application to grammati-
cal error correction. In International Conference on
Natural Language Processing. Springer.

Roman Grundkiewicz and Marcin Junczys-Dowmunt.
2018. Near human-level performance in grammati-
cal error correction with hybrid machine translation.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The amu system in the conll-2014 shared
task: Grammatical error correction by data-intensive
and feature-rich statistical machine translation. In
Proceedings of the Eighteenth Conference on Com-
putational Natural Language Learning: Shared
Task.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
arXiv preprint arXiv:1605.06353.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Shubha Guha, and Kenneth Heafield. 2018. Ap-
proaching neural grammatical error correction as a
low-resource machine translation task. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertol-
di, Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source

toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the as-
sociation for computational linguistics companion
volume proceedings of the demo and poster sessions.

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-
pora generation for grammatical error correction.
arXiv preprint arXiv:1904.05780.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revision
log of language learning sns for automated japanese
error correction of second language learners. In
Proceedings of 5th International Joint Conference
on Natural Language Processing.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The conll-2014 shared task on
grammatical error correction. In Proceedings of the
Eighteenth Conference on Computational Natural
Language Learning: Shared Task. Association for
Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The conll-
2013 shared task on grammatical error correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task. Association for Computational Linguistics.

Marek Rei, Mariano Felice, Zheng Yuan, and Ted
Briscoe. 2017. Artificial error generation with ma-
chine translation and syntactic patterns. In Proceed-
ings of the 12th Workshop on Innovative Use of NLP
for Building Educational Applications.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons,
and Dan Roth. 2013. The university of illinois sys-
tem in the conll-2013 shared task. In Proceedings of
the Seventeenth Conference on Computational Nat-
ural Language Learning: Shared Task. Association
for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems.



206

Xinyi Wang, Hieu Pham, Zihang Dai, and Graham
Neubig. 2018. Switchout: an efficient data augmen-
tation algorithm for neural machine translation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Ju-
rafsky, and Andrew Y Ng. 2016a. Neural language
correction with character-based attention. arXiv
preprint arXiv:1603.09727.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Ju-
rafsky, and Andrew Y Ng. 2016b. Neural language
correction with character-based attention. arXiv
preprint arXiv:1603.09727.

Ziang Xie, Guillaume Genthial, Stanley Xie, Andrew
Ng, and Dan Jurafsky. 2018. Noising and denois-
ing natural language: Diverse backtranslation for
grammar correction. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Helen Yannakoudakis, Øistein E Andersen, Ardeshir
Geranpayeh, Ted Briscoe, and Diane Nicholls. 2018.
Developing an automated writing placement system
for esl learners. Applied Measurement in Education,
31(3):251–267.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics.

Zheng Yuan and Ted Briscoe. 2016. Grammatical
error correction using neural machine translation. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical ma-
chine translation. In Proceedings of the Seventeenth
Conference on Computational Natural Language
Learning: Shared Task.

Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and
Jingming Liu. 2019. Improving grammatical error
correction via pre-training a copy-augmented archi-
tecture with unlabeled data. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistic-
s: Human Language Technologies. Association for
Computational Linguistics.


