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Abstract

Most existing relation extraction models as-
sume a fixed set of relations and are unable
to adapt to exploit newly available supervision
data to extract new relations. In order to al-
leviate such problems, there is the need to de-
velop approaches that make relation extraction
models capable of continuous adaptation and
learning. We investigate and present results for
such an approach, based on a combination of
ideas from lifelong learning and optimization-
based meta-learning. We evaluate the pro-
posed approach on two recent lifelong relation
extraction benchmarks, and demonstrate that it
markedly outperforms current state-of-the-art
approaches.

1 Introduction

The majority of existing supervised relation ex-
traction models can only extract a fixed set of re-
lations which has been specified at training time.
They are unable to detect an evolving set of novel
relations observed after training without substan-
tial retraining, which can be computationally ex-
pensive and may lead to catastrophic forgetting
of previously learned relations. Zero-shot relation
extraction approaches (Rocktäschel et al., 2015;
Demeester et al., 2016; Levy et al., 2017; Oba-
muyide and Vlachos, 2018) can extract unseen re-
lations, but at lower performance levels, and are
unable to continually exploit newly available su-
pervision to improve performance without consid-
erable retraining. These limitations also extend
to approaches to extracting relations in other lim-
ited supervision settings, for instance in the one-
shot setting (Obamuyide and Vlachos, 2017). It is
therefore desirable for relation extraction models
to have the capability to learn continuously with-
out catastrophic forgetting of previously learned
relations. This would enable them exploit newly

available supervision to both identify novel rela-
tions and improve performance without substan-
tial retraining.

Recently, Wang et al. (2019) introduced an em-
bedding alignment approach to enable continual
learning for relation extraction models. They con-
sider a setting with streaming tasks, where each
task consists of a number of distinct relations, and
proposed to align the representation of relation in-
stances in the embedding space to enable contin-
ual learning of new relations without forgetting
knowledge from past relations. While they ob-
tained promising results, a key weakness of the
approach is that the use of an alignment model
introduces additional parameters to already over-
parameterized relation extraction models, which
may in turn lead to an increase in the quantity of
supervision required for training. In addition, the
approach can only align embeddings between ob-
served relations, and does not have any explicit ob-
jective that encourages the model to transfer and
exploit knowledge gathered from previously ob-
served relations to facilitate the efficient learning
of yet to be observed relations.

In this work, we extend the work of Wang
et al. (2019) by exploiting ideas from both life-
long learning and meta-learning. We propose to
consider lifelong relation extraction as a meta-
learning challenge, to which the machinery of cur-
rent optimization-based meta-learning algorithms
can be applied. Unlike the use of a separate align-
ment model as proposed in Wang et al. (2019), the
proposed approach does not introduce additional
parameters. In addition, the proposed approach
is more data efficient since it explicitly optimizes
for the transfer of knowledge from past relations,
while avoiding the catastrophic forgetting of pre-
viously learned relations. Empirically, we evaluate
on lifelong versions of the datasets by Bordes et al.
(2015) and Han et al. (2018) and demonstrate con-
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siderable performance improvements over prior
state-of-the-art approaches.

2 Background

Lifelong Learning In the lifelong learning set-
ting, also referred to as continual learning (Ring,
1994; Thrun, 1996; Zhao and Schmidhuber,
1996), a model fθ is presented with a sequence of
tasks {Tt}t=1,2,3..,T , one task per round, and the
goal is to learn model parameters {θt}t=1,2,3,..,T

with the best performance on the observed tasks.
Each task T can be a conventional supervised task
with its own distinct train (T train), development
(T dev) and test (T test) splits. At each round
t, the model is allowed to exploit knowledge
gained from the previous t − 1 tasks to enhance
performance on the current task. In addition,
the model is also allowed to have a small-sized
buffer memory B, which can be used to store a
limited amount of data from previously observed
tasks. A prominent line of work in lifelong
learning research is developing approaches that
enable models learn new tasks without forgetting
knowledge from previous tasks, i.e. avoiding
catastrophic forgetting of old tasks (McCloskey
and Cohen, 1989; Ratcliff, 1990; McClelland
et al., 1995; French, 1999). Approaches proposed
to address this problem include memory-based
approaches (Lopez-Paz and Ranzato, 2017;
Rebuffi et al., 2017; Chaudhry et al., 2019);
parameter consolidation approaches (Kirkpatrick
et al., 2017; Zenke et al., 2017); and dynamic
model architecture approaches (Xiao et al., 2014;
Rusu et al., 2016; Fernando et al., 2017).

Meta-Learning Meta-learning, or learning
to learn (Schmidhuber, 1987; Naik and Mam-
mone, 1992; Thrun and Pratt, 1998), aims to
develop algorithms that learn a generic knowledge
of how to solve tasks from a given distribution of
tasks, by generalizing from solving related tasks
from that distribution. Given tasks T sampled
from a distribution of tasks p(T ), and a learner
model f(x; θ) parameterized by θ, gradient-based
meta-learning methods, such as MAML (Finn
et al., 2017), learn a prior initialization of the
parameters of the model which, at meta-test time,
can be quickly adapted to achieve good perfor-
mance on a new task using a few steps of gradient
descent. During adaptation to the new task, the
model parameters θ are updated to task-specific

parameters θ′ with good performance on the task.
Formally, the meta-learning algorithms optimize
for the meta-objective:

min
θ

ET ∼p(T )
[
LT

(
θ′
)]

=

min
θ

ET ∼p(T ) [LT (U (DT ; θ))] (1)

where LT is the loss and DT is training data from
task T , and U is a fixed gradient descent learning
rule, such as vanilla SGD. While these algorithms
were proposed and evaluated in the context of few-
shot learning, here we demonstrate their effective-
ness when utilized in the lifelong learning setting
for relation extraction, following similar intuition
as recent work by Finn et al. (2019).

3 Meta-Learning for Lifelong Relation
Extraction

It can be inferred from the previous section that
a lot of lifelong learning research has focused on
approaches to avoid catastrophic forgetting (i.e.
negative backward transfer of knowledge) while
recent meta-learning studies have focused on ef-
fective approaches for positive forward transfer of
knowledge (for few-shot tasks). Given the com-
plementary strengths of the approaches from the
two learning settings, we propose to embed meta-
learning into the lifelong learning process for rela-
tion extraction.

While we can utilize the MAML algorithm to
directly optimize the meta-objective in Equation
1 for our purpose, doing so requires the compu-
tation of second-order derivatives, which can be
computationally expensive. Nichol et al. (2018)
proposed REPTILE, a first-order alternative to
MAML, which uses only first-order derivatives.
Similar to MAML, REPTILE works by repeatedly
sampling tasks, training on those tasks and mov-
ing the initialization towards the adapted weights
on those tasks. Here we adopt the REPTILE al-
gorithm for meta-learning. Our algorithm for life-
long relation extraction is illustrated in Algorithm
1.

We start by randomly initializing the parameters
of the relation extraction model (the learner) (line
1). Then, as new tasks arrive, we augment their
training set with randomly sampled task exemplars
from the buffer memory B (lines 2-9). We then
sample a batch of relations from the augmented
training set (line 10). Then for each sampled re-
lation Ri, we sample a batch of supervision in-
stances DtrainRi from its training set (line 11-12).
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We then obtain the adapted model parameters θit
on the relation by first computing the gradient of
the training loss on the sampled relation instances
(line 13) and backpropagating the gradients with
a gradient-based optimization algorithm (such as
SGD or Adagrad (Duchi et al., 2011)) (line 14).
At the end of the learning iteration, the adapted
parameters on all sampled relations in the batch
are averaged, and an update is made on the task
parameters θt (line 16). This is done until con-
vergence on the current task, after which exem-
plars of the current task are added to the buffer
memory (line 18). Task exemplars are obtained by
first clustering all training instances of the current
task into 50 clusters using K-Means, then select-
ing an instance from each cluster with a represen-
tation closest to the cluster prototype. Finally, the
model parameters are updated to the current task’s
adapted parameters (line 19).

Algorithm 1 Meta-Learning for Lifelong Relation
Extraction (MLLRE)
Require: Stream of incoming tasks T1, T2, T3, ...
Require: Relation extraction function fθ
Require: Optimization algorithm (e.g. SGD)
Require: Step size ε, learning rate α
Require: Buffer memory B
1: Randomly initialize θ
2: while there are still tasks do
3: Retrieve next task Tt from stream
4: Initialize θt ← θ
5: repeat
6: if B is not empty then
7: Retrieve exemplars E of random task from B
8: Update task training set Dtraint = Dtraint ∪ E
9: end if

10: Sample random relations {Ri}Ni=1 from Dtraint

11: for eachRi do
12: Sample train instances DtrainRi

ofRi
13: Evaluate∇θtLRi(fθt) using DtrainRi

14: Compute adapted parameters:
θit = SGD(θt,∇θtLRi(fθt), α)

15: end for
16: Update task parameters:

θt = θt − ε 1
N

N∑
i=1

(θit − θt)

17: until Convergence
18: Add exemplars of Tt to B
19: Update θ ← θt
20: end while

4 Relation Classification Model

In principle the learner model fθ could be any
gradient-optimized relation extraction model. In
order to use the same number of parameters and
ensure fair comparison to Wang et al. (2019), we
adopt as the relation extraction model fθ the Hier-

Method FewRel SimpleQuestions

ACCw. ACCa. ACCw. ACCa.

Origin 0.189 0.208 0.632 0.569
GEM 0.492 0.598 0.841 0.796
AGEM 0.361 0.425 0.776 0.722
EWC 0.271 0.302 0.672 0.590
EA-EMR (Full) 0.566 0.673 0.878 0.824
EA-EMR (w/o Sel.) 0.564 0.674 0.857 0.812
EA-EMR (w/o Align.) 0.526 0.632 0.869 0.820
EMR 0.510 0.620 0.852 0.808
MLLRE 0.602 0.741 0.880 0.842

Table 1: Accuracy on the test set of all tasksACCwhole

(denoted ACCw.) and average accuracy on the test
set of only observed tasks ACCavg (denoted ACCa.)
on the Lifelong FewRel and Lifelong SimpleQuestions
datasets. Best results are in bold. Except for MLLRE,
results for other models are obtained from Wang et al.
(2019).

arachical Residual BiLSTM (HR-BiLSTM) model
of Yu et al. (2017), which is the same model used
by Wang et al. (2019) for their experiments. The
HR-BILSTM is a relation classifier which accepts
as input a sentence and a candidate relation,
then utilizes two Bidirectional Long Short-Term
Memory (Hochreiter and Schmidhuber, 1997;
Graves and Schmidhuber, 2005) (BiLSTM) units
with shared parameters to process the Glove
(Pennington et al., 2014) embeddings of words in
the sentence and relation names, then selects the
relation with the maximum cosine similarity to
the sentence as its response.

Hyperparameters Apart from the hyperpa-
rameters specific to meta-learning (such as the
step size ε), all other hyperparameters we use
for the learner model are the same as used by
Wang et al. (2019). We also use the same buffer
memory size (50) for each task. Note that the
meta-learning algorithm uses SGD as the update
rule (U), and does not add any additional trainable
parameters to the learner model.

5 Experiments

5.1 Setup

We conduct experiments in two settings. In the full
supervision setting, we provide all models with all
supervision available in the training set of each
task. In the second, we limit the amount of su-
pervision for each task to measure how the mod-
els are able to cope with limited supervision. Each
experiment is run five (5) times and we report the
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(a)

(b)

Figure 1: Results obtained using 100 training instances
for each task on (a) Lifelong FewRel and (b) Lifelong
SimpleQuestions datasets.

average result.

5.2 Datasets

We conduct experiments on Lifelong FewRel and
Lifelong SimpleQuestions datasets, both intro-
duced in Wang et al. (2019). Lifelong FewRel is
derived from the FewRel (Han et al., 2018) dataset,
by partitioning its 80 relations into 10 distinct
clusters made up of 8 relations each, with each
cluster serving as a task where a sentence must
be labeled with the correct relation. The 8 rela-
tions in each cluster were obtained by clustering
the averaged Glove word embeddings of the rela-
tion names in the FewRel dataset. Each instance
of the dataset contains a sentence, the relation it
expresses and a set of randomly sampled negative
relations. Lifelong SimpleQuestions was similarly
obtained from the SimpleQuestions (Bordes et al.,
2015) dataset, and is made up of 20 clusters of re-
lations, with each cluster serving as a task.

(a)

(b)

Figure 2: Results obtained using 200 training instances
for each task on (a) Lifelong FewRel and (b) Lifelong
SimpleQuestions datasets.

5.3 Evaluation Metrics
We report two measures, ACCwhole andACCavg,
both introduced in Wang et al. (2019). ACCwhole
measures accuracy on the test set of all tasks and
gives a balanced measure of model performance
on both observed (seen) and unobserved (unseen)
tasks, and is the primary metric we report for all
experiments. We also reportACCavg, which mea-
sures the average accuracy on the test set of only
observed (seen) tasks.

5.4 Results and Discussion
Full Supervision Results Table 1 gives both
the ACCwhole and ACCavg results of our ap-
proach compared to other approaches including
Episodic Memory Replay (EMR) and its various
embedding-aligned variants EA-EMR as proposed
in Wang et al. (2019). Across all metrics, our
approach outperforms the previous approaches,
demonstrating its effectiveness in this setting. This
result is likely because our approach is able to ef-
ficiently learn new relations by exploiting knowl-
edge from previously observed relations.
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Limited Supervision Results The aim of our lim-
ited supervision experiments is to compare the use
of an alignment module as proposed by Wang et al.
(2019) to using our approach when only limited
supervision is available for all tasks. We com-
pare three approaches, Full EA-EMR (which uses
their alignment module), its variant without the
alignment module (EA-EMR NoAlign) and our ap-
proach (MLLRE). Figures 1(a) and 1(b) show re-
sults obtained using 100 supervision instances for
each task on Lifelong FewRel and Lifelong Sim-
pleQuestions. Figures 2(a) and 2(b) show the cor-
responding plots using 200 supervision instances
for each task. From the figures, we observe that
the use of a separate alignment model results in
only minor gains when supervision for the tasks is
limited, whereas the use of our approach leads to
wide gains on both datasets.

In summary, because our approach explicitly
encourages the model to learn to share and trans-
fer knowledge between relations (by means of the
meta-learning objective), the model is able to learn
to exploit common structures across relations in
different tasks to efficiently learn new relations
over time. This leads to the performance improve-
ments obtained by our approach.

6 Conclusion

We investigated the effectiveness of utilizing a
gradient-based meta-learning algorithm within a
lifelong learning setting to enable relation extrac-
tion models that are able to learn continually. We
show the effectiveness of this approach, both when
provided full supervision for new tasks and when
provided limited supervision for new tasks, and
demonstrated that the proposed approach outper-
formed current state-of-the-art approaches.
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