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Abstract

In this paper, we propose Multilingual Meta-
Embeddings (MME), an effective method to
learn multilingual representations by lever-
aging monolingual pre-trained embeddings.
MME learns to utilize information from these
embeddings via a self-attention mechanism
without explicit language identification. We
evaluate the proposed embedding method on
the code-switching English-Spanish Named
Entity Recognition dataset in a multilingual
and cross-lingual setting. The experimental re-
sults show that our proposed method achieves
state-of-the-art performance on the multilin-
gual setting, and it has the ability to generalize
to an unseen language task.

1 Introduction

Learning a representation through embedding is a
fundamental technique to capture latent word se-
mantics (Clark, 2015). Practically, word-level rep-
resentation has been extensively explored to im-
prove many downstream natural language process-
ing (NLP) tasks (Mikolov et al., 2013; Pennington
et al., 2014; Grave et al., 2018). A new wave of
"meta-embeddings" research aims to learn how to
effectively combine pre-trained word embeddings
in supervised training into a single dense represen-
tation (Yin and Schütze, 2016; Muromägi et al.,
2017; Bollegala et al., 2018; Coates and Bollegala,
2018; Kiela et al., 2018). This method is known
to be effective to overcome domain and modality
limitations. However, the generalization ability of
previous works has been limited to monolingual
tasks, so we aim to extend the method to multi-
lingual contexts which benefits the processing of
code-switching text.

In multilingual societies, speakers tend to move
back and forth from one language to another dur-
ing the same conversation, which is commonly
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Figure 1: Multilingual Meta-Embeddings. The inputs
are word embeddings and the output is a single word
representation.

called “code-switching". Code-Switching is pro-
duced in both written text and speech in a dis-
course. Recent studies in code-switching has been
mainly focused on natural language tasks, such
as language modeling (Winata et al., 2018a; Prat-
apa et al., 2018; Garg et al., 2018), named entity
recognition (Aguilar et al., 2018), and language
identification (Solorio et al., 2014; Molina et al.,
2016; Barman et al., 2014). Code-Switching is
considered as a challenging task because words
from different languages may co-exist within a se-
quence, and models are required to recognize the
context of mixed-language sentences. Meanwhile,
some words with the same spelling may have en-
tirely different meanings (e.g., cola in English and
Spanish) (Winata et al., 2018b). Language identi-
fiers were commonly used to solve the word am-
biguity issue in mixed-language sentences. How-
ever, it may not reliably cover all code-switching
cases, and it creates a bottleneck that would re-
quire large-scale crowdsourcing to annotate lan-
guage identifiers in code-switching data correctly.

To overcome the code-switching problem, we
introduce a multilingual meta-embedding model
learned from different languages. Our approach
can be seen as a method to create a universal mul-
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tilingual meta-embedding learned in a supervised
way with code-switching contexts by gathering
information from monolingual sources. Concur-
rently, this is a language-agnostic approach where
it does not require any language information of
each word. We show the possibility of transfer-
ring information from multiple languages to un-
seen languages, and this approach can also be use-
ful for a low-resource setting. To effectively lever-
age the embeddings, we use FastText subwords
information to solve out-of-vocabulary (OOV) is-
sues. By applying this method, our model can
align the words with the corresponding languages.
Our contributions are two-fold:

• We propose to generate multilingual meta-
representations from pre-trained monolin-
gual word embeddings. The model can learn
how to construct the best word representation
by mixing multiple sources without explicit
language identification.

• We evaluate our multilingual meta-
embedding on English-Spanish code-
switching Named Entity Recognition
(NER). The result shows the effectiveness
of the method on multilingual setting and
demonstrates that our meta-embedding
can generalize to unseen languages in a
cross-lingual setting.

2 Meta-Embeddings

Word embedding pre-training is a well-known
method to transfer the knowledge from previous
tasks to a target task that has fewer high-quality
training data. Word embeddings are commonly
used as features in supervised learning problems.
We propose to generate a single word representa-
tion by extracting information from different pre-
trained embeddings. We extend the idea of meta-
embeddings from Kiela et al. (2018) to solve a
multilingual task. We define a sentence that con-
sists of m words {xj}mj=1, and {wi,j}nj=1 word
vectors from n pre-trained word embeddings.

2.1 Baselines

We compare our method to two baselines: (1) con-
catenation and (2) linear ensembles.

Concatenation We concatenate word embed-
dings by merging the dimensions of word repre-
sentations. This is the simplest way to utilize all

sources of information; however, it is very ineffi-
cient due to the high-dimensional input:

wCONCAT
i = [wi,1, ...,wi,n]. (1)

Linear Ensembles We sum all word embed-
dings into a single word vector with an equal
weight. This method is efficient since it does not
increase the dimensionality of the input. We ap-
ply a projection layer through wi,j to have equal
dimension before we sum:

wLINEAR
i =

n∑
j=0

w′i,j , (2)

w′i,j = aj ·wi,j + bj , (3)

where aj ∈ Rl×d and bj ∈ Rd are trainable param-
eters, and l and d are the original dimensions of the
pre-trained embeddings and projected dimensions
respectively.

2.2 Multilingual Meta-Embedding
We generate a multilingual vector representation
for each word by taking a weighted sum of mono-
lingual embeddings. Each embedding wi,j is pro-
jected with a fully connected layer with a non-
linear scoring function φ (e.g., tanh) into a d-
dimensional vector, and an attention mechanism
to calculate attention weight αi,j ∈ Rd:

wMME
i =

n∑
j=1

αi,jw
′
i,j , (4)

αi,j =
eφ(w

′
i,j)∑n

j=1 e
φ(w′i,j))

. (5)

3 Named Entity Recognition

Our proposed model is based on a self-attention
mechanism from a transformer encoder (Vaswani
et al., 2017) followed by a Conditional Random
Field (CRF) layer (Lafferty et al., 2001).

Encoder Architecture We apply a multi-layer
transformer encoder as our sentence encoder:

h0 = Concat(w0,w1, . . . ,wm)Wt +Wp, (6)

hl = Transformer_blocks(h0), (7)

o = hlWo + bo, (8)

where Wt is the projection matrix, Wp is the po-
sitional encoding matrix, Wo is the output layer,
h0 is the first layer hidden states, and hl is the out-
put representation from the final transformer layer.
The output of the final layer is logits o.
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Conditional Random Field This model calcu-
lates the dependencies across tag labels. NER
requires a stronger constraint where I-PERSON
should follow only after B-PERSON. We use CRF
to learn the correlations between the current la-
bel and its neighbors (Lafferty et al., 2001). We
consider A ∈ R(k+2)×(k+2) as a trainable matrix,
transition scores of the tags, where k is the num-
ber of tags. Ai,j denotes the transition score from
tag i to tag j. We include a start tag and an end
tag in the matrix, and calculate the score of a tag
sequence y given o as follows:

s(o,y) =

n∑
i=0

Ayi,yi+1 +

n∑
i=0

Pi,yi , (9)

where Pi,yi ∈ Rn×k represents the output proba-
bility of the tags. We use the Viterbi algorithm to
select the best sequence.

4 Experiments

4.1 Dataset

For our experiment, we use English-Spanish
tweets data provided by Aguilar et al. (2018).
There are nine entity labels. The labels use
IOB format, where every token is labeled as a
B-label in the beginning and then an I-label
if it is a named entity, or O otherwise.

4.2 Experimental Setup

We use pre-trained FastText 1 English (EN) and
Spanish (ES) word embeddings (Grave et al.,
2018) as our primary language embeddings, and
pre-trained FastText Catalan (CA) and Portuguese
(PT) word embeddings as our auxiliary language
embeddings. We opt for CA and PT because they
come from the same Romance language family
as Spanish. We also include GloVe Twitter En-
glish embedding (GLOVE_EN) (Pennington et al.,
2014).2 Experiments are conducted in two differ-
ent settings. In the multilingual setting, we learn
our meta-embedding from primary languages and
auxiliary languages, while in the cross-lingual set-
ting only auxiliary languages are used. We run
all experiments five times and calculate the aver-
age and standard deviation. To improve our final
predictions, we ensemble all five experiments and
take the results from a majority consensus.

1https://fasttext.cc/docs/en/crawl-vectors.html
2https://nlp.stanford.edu/projects/glove/

Approaches F1
Trivedi et al. (2018) (Single) 61.89
Wang et al. (2018) (Single) 62.39
Wang et al. (2018) (Ensemble) 62.67
Winata et al. (2018b) (Single) 62.76
Trivedi et al. (2018) (Ensemble) 63.76
MONOLINGUAL
EN 62.75 ± 0.66

ES 62.91 ± 1.07

CONCAT
EN + ES 65.30 ± 0.38

EN + ES + CA 65.36 ± 0.85

EN + ES + PT 65.53 ± 0.79

EN + ES + CA + PT 64.99 ± 1.06

LINEAR
EN + ES + CA + PT (Single) 65.33 ± 0.87

EN + ES + CA + PT (Ensemble) 67.03
MME
EN + ES 65.43 ± 0.67

EN + ES + CA 65.69 ± 0.83

EN + ES + PT 65.65 ± 0.48

EN + ES + CA + PT (Single) 66.63 ± 0.94
EN + ES + CA + PT (Ensemble) 68.34

Table 1: Multilingual results (mean and standard devia-
tion from five experiments). EN: both English FastText
and GloVe word embeddings.

Implementation Details Our model is trained
using a Noam optimizer with a dropout of 0.1
for multilingual setting and 0.3 for the cross-
lingual setting. Our model contains four lay-
ers of transformer blocks with a hidden size of
200 and four heads. We start the training with
a learning rate of 0.1. We replace user hashtags
(#user) and mentions (@user) with <USR>, and
URL (https://domain.com) with <URL>, similarly
to Winata et al. (2018b).

5 Results

Multilingual experimental results are shown in Ta-
ble 1. Interestingly, both concatenation and lin-
ear ensemble are strong baselines since they can
achieve higher performance compared to any ex-
isting works that use more complicated features,
such as character-based features using a bidirec-
tional long short-term memory (LSTM) (Winata
et al., 2018b; Wang et al., 2018) or a convolutional
neural network (CNN) with additional gazetteers
(Trivedi et al., 2018). Overall, our transformer en-
coder using a single word embedding achieves bet-
ter performance compared to the LSTM encoder
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Figure 2: An example of attention weights on a development sample evaluated from a multilingual model (top)
and a cross-lingual model (bottom). Darker color shows higher attention scores.

Approaches F1
MONOLINGUAL
CA 53.96 ± 1.42

PT 54.86 ± 4.10

CONCAT
CA + PT 58.28 ± 2.66

LINEAR
CA + PT (Single) 60.72 ± 0.84

CA + PT (Ensemble) 62.9
MME
CA + PT (Single) 61.75 ± 0.56
CA + PT (Ensemble) 63.66

Table 2: Cross-lingual results (mean and standard de-
viation from five experiments).

structure used by Winata et al. (2018b); Trivedi
et al. (2018); Wang et al. (2018). More impor-
tantly, MME outperforms the two baselines on dif-
ferent language combinations, which shows its ef-
fectiveness. The results also show that the two
baselines cannot effectively exploit the informa-
tion from auxiliary languages. Here we note that
the main advantage of MME is that it dynamically
weights the different language pre-trained embed-
dings for each input token, while the concatena-
tion and linear ensemble approaches always score
the weights equally.

In the cross-lingual setting, our model does not
perform well when we only use one auxiliary lan-
guage, as seen in Table 2. A significant improve-
ment is shown after we combine both languages,
and MME shows a similar performance to the pre-
vious state-of-the-art result (Trivedi et al., 2018).
This implies that our approach can effectively gen-
eralize word representations on an unseen lan-
guage task by transferring information from lan-

guages that come from the same root as the pri-
mary languages.

We inspect the assigned weights on word em-
beddings to see which embedding our model at-
tends. Figure 2 visualizes the weights for the mul-
tilingual and cross-lingual cases. It appears that
our model can align words to their languages (e.g.,
Spanish words, such as “ti", “te", and “ponen"
attend to ES) with strong confidences. In most
cases, our model strongly attends to a single lan-
guage and takes a small proportion of information
from other languages. It shows the potential to au-
tomatically learn how to construct a multilingual
embedding from semantically similar embeddings
without requiring any language labels.

6 Related Work

Early studies on named entity recognition heavily
relied on language-specific knowledge resources,
such as hand-crafted features or gazetteers (Laf-
ferty et al., 2001; Ratinov and Roth, 2009; Tsai
et al., 2016). However, this approach was costly
for new languages and domains. Thus, end-to-
end approaches that do not rely on any external
knowledge were proposed. Sobhana et al. (2010)
proposed to use a CRF without any external re-
sources, to leverage the label dependencies. Then,
neural-based approaches, such as LSTM with a
CRF (Lample et al., 2016; Lin et al., 2017; Green-
berg et al., 2018) and LSTM with a CNN (Chiu
and Nichols, 2016) showed a significant improve-
ment in performance. Liu et al. (2018); Trivedi
et al. (2018) proposed a character-level LSTM to
capture the underlying style and structure, such
as word boundaries and spellings. Finally, word-
embedding ensemble techniques and preprocess-
ing techniques, such as tokenization and normal-
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ization have been introduced to reduce OOV is-
sues (Winata et al., 2018b; Wang et al., 2018).

7 Conclusion

In this paper, we propose a novel approach to learn
multilingual representations by leveraging mono-
lingual pre-trained embeddings. MME solves
the dependencies on the language identification
in code-switching Named Entity Recognition task
since it utilizes more information from semanti-
cally similar embeddings. The experiment results
show that our method surpasses previous works
and baselines, achieving the state-of-the-art per-
formance. Moreover, cross-lingual setting exper-
iments demonstrate the generalization ability of
MME to an unseen language task.
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