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Abstract

How can we represent hierarchical informa-
tion present in large type inventories for en-
tity typing? We study the ability of hyperbolic
embeddings to capture hierarchical relations
between mentions in context and their target
types in a shared vector space. We evaluate
on two datasets and investigate two different
techniques for creating a large hierarchical en-
tity type inventory: from an expert-generated
ontology and by automatically mining type
co-occurrences. We find that the hyperbolic
model yields improvements over its Euclidean
counterpart in some, but not all cases. Our
analysis suggests that the adequacy of this ge-
ometry depends on the granularity of the type
inventory and the way hierarchical relations
are inferred.!

1 Introduction

Entity typing classifies textual mentions of enti-
ties according to their semantic class. The task
has progressed from finding company names (Rau,
1991), to recognizing coarse classes (person, lo-
cation, organization, and other, Tjong Kim Sang
and De Meulder, 2003), to fine-grained invento-
ries of about one hundred types, with finer-grained
types proving beneficial in applications such as
relation extraction (Yaghoobzadeh et al., 2017)
and question answering (Yavuz et al., 2016). The
trend towards larger inventories has culminated in
ultra-fine and open entity typing with thousands of
classes (Choi et al., 2018; Zhou et al., 2018).
However, large type inventories pose a chal-
lenge for the common approach of casting en-
tity typing as a multi-label classification task (Yo-
gatama et al., 2015; Shimaoka et al., 2016), since
exploiting inter-type correlations becomes more

!Code available at: https://github.com/
nlpAThits/figet-hyperbolic-space
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Figure 1: Examples of annotations and hierarchical
type inventory with co-occurrence frequencies.

difficult as the number of types increases. A nat-
ural solution for dealing with a large number of
types is to organize them in hierarchy ranging
from general, coarse types such as “person” near
the top, to more specific, fine types such as “politi-
cian” in the middle, to even more specific, ultra-
fine entity types such as “diplomat” at the bottom
(see Figure 1). By virtue of such a hierarchy, a
model learning about diplomats will be able to
transfer this knowledge to related entities such as
politicians.

Prior work integrated hierarchical entity type in-
formation by formulating a hierarchy-aware loss
(Ren et al., 2016; Murty et al., 2018; Xu and Bar-
bosa, 2018) or by representing words and types
in a joint Euclidean embedding space (Shimaoka
et al., 2017; Abhishek et al., 2017). Noting that
it is impossible to embed arbitrary hierarchies in
Euclidean space, Nickel and Kiela (2017) propose
hyperbolic space as an alternative and show that
hyperbolic embeddings accurately encode hierar-
chical information. Intuitively (and as explained
in more detail in Section 2), this is because dis-
tances in hyperbolic space grow exponentially as
one moves away from the origin, just like the num-
ber of elements in a hierarchy grows exponentially
with its depth.

While the intrinsic advantages of hyperbolic
embeddings are well-established, their usefulness
in downstream tasks is, so far, less clear. We be-
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Figure 2: Type inventory of the Ultra-Fine dataset
aligned to the WordNet noun hierarchy and projected
on two dimensions in different spaces.

lieve this is due to two difficulties: First, incorpo-
rating hyperbolic embeddings into a neural model
is non-trivial since training involves optimization
in hyperbolic space. Second, it is often not clear
what the best hierarchy for the task at hand is.

In this work, we address both of these issues.
Using ultra-fine grained entity typing (Choi et al.,
2018) as a test bed, we first show how to incor-
porate hyperbolic embeddings into a neural model
(Section 3). Then, we examine the impact of the
hierarchy, comparing hyperbolic embeddings of
an expert-generated ontology to those of a large,
automatically-generated one (Section 4). As our
experiments on two different datasets show (Sec-
tion 5), hyperbolic embeddings improve entity
typing in some but not all cases, suggesting that
their usefulness depends both on the type inven-
tory and its hierarchy. In summary, we make the
following contributions:

1. We develop a fine-grained entity typing
model that embeds both entity types and en-
tity mentions in hyperbolic space.

We compare two different entity type hierar-
chies, one created by experts (WordNet) and
one generated automatically, and find that
their adequacy depends on the dataset.

. We study the impact of replacing the Eu-
clidean geometry with its hyperbolic counter-
part in an entity typing model, finding that the
improvements of the hyperbolic model are
noticeable on ultra-fine types.

2 Background: Poincaré Embeddings

Hyperbolic geometry studies non-Euclidean
spaces with constant negative curvature. Two-
dimensional hyperbolic space can be modelled as
the open unit disk, the so-called Poincaré disk, in
which the unit circle represents infinity, i.e., as a
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point approaches infinity in hyperbolic space, its
norm approaches one in the Poincaré disk model.
In the general n-dimensional case, the disk model
becomes the Poincaré ball (Chamberlain et al.,
2017) B" = {z € R" | ||z|| < 1}, where || - ||
denotes the Euclidean norm. In the Poincaré
model the distance between two points u, v € B"
is given by:

[[u—v]*

dp(u,v) = arcosh(1 + 2(1 P —vI®)

)

)

If we consider the origin O and two points, z
and y, moving towards the outside of the disk,
ie. ||z],|ly]] — 1, the distance dg(z,y) tends
to dg(x,0) + d(O,y). That is, the path be-
tween = and y is converges to a path through the
origin. This behaviour can be seen as the contin-
uous analogue to a (discrete) tree-like hierarchical
structure, where the shortest path between two sib-
ling nodes goes through their common ancestor.

As an alternative intuition, note that the hyper-
bolic distance between points grows exponentially
as points move away from the center. This mirrors
the exponential growth of the number of nodes in
trees with increasing depths, thus making hyper-
bolic space a natural fit for representing trees and
hence hierarchies (Krioukov et al., 2010; Nickel
and Kiela, 2017).

By embedding hierarchies in the Poincaré ball
so that items near the top of the hierarchy are
placed near the origin and lower items near infinity
(intuitively, embedding the ‘“vertical” structure),
and so that items sharing a parent in the hierar-
chy are close to each other (embedding the “hori-
zontal” structure), we obtain Poincaré embeddings
(Nickel and Kiela, 2017). More formally, this
means that embedding norm represents depth in
the hierarchy, and distance between embeddings
the similarity of the respective items.

Figure 2 shows the results of embedding the
WordNet noun hierarchy in two-dimensional Eu-
clidean space (left) and the Poincaré disk (right).
In the hyperbolic model, the types tend to be lo-
cated near the boundary of the disk. In this region
the space grows exponentially, which allows re-
lated types to be placed near one another and far
from unrelated ones. The actual distance in this
model is not the one visualized in the figure but
the one given by Equation 1.
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Figure 3: Overview of the proposed model to predict types of a mention within its context.

3 Entity Typing in Hyperbolic Space

3.1 Task Definition

The task we consider is, given a context sentence
c containing an entity mention m, predict the cor-
rect type labels t,, that describe m from a type in-
ventory T, which includes more than 10,000 types
(Choi et al., 2018). The mention m can be a named
entity, a nominal, or a pronoun. The ground-truth
type set t,, may contain multiple types, making
the task a multi-label classification problem.

3.2 Objective

We aim to analyze the effects of hyperbolic and
Euclidean spaces when modeling hierarchical in-
formation present in the type inventory, for the
task of fine-grained entity typing. Since hyper-
bolic geometry is naturally equipped to model hi-
erarchical structures, we hypothesize that this en-
hanced representation will result in superior per-
formance. With the goal of examining the rela-
tion between the metric space and the hierarchy,
we propose a regression model. We learn a func-
tion that maps feature representations of a mention
and its context onto a vector space such that the in-
stances are embedded closer to their target types.
The ground-truth type set contains a varying
number of types per instance. In our regression
setup, however, we aim to predict a fixed amount
of labels for all the instances. This imposes strong
upper bounds to the performance of our proposed
model. Nonetheless, as the strict accuracy of state-
of-the-art methods for the Ultra-Fine dataset is be-
low 40% (Choi et al., 2018; Xiong et al., 2019), the
evaluation we perform is still informative in qual-
itative terms, and enables us to gain better intu-
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itions with regard to embedding hierarchical struc-
tures in different metric spaces.

3.3 Method

Given the encoded feature representations of a
mention m and its context ¢, noted as e(m,c) €
R™ our goal is to learn a mapping function f :
R™ — 8", where S" is the target vector space.
We intend to approximate embeddings of the type
labels t,,, previously projected into the space.
Subsequently, we perform a search of the nearest
type embeddings of the embedded representation
in order to assign the categorical label correspond-
ing to the mention within that context. Figure 3
presents an overview of the model.

The label distribution on the dataset is diverse
and fine-grained. Each instances is annotated with
three levels of granularity, namely coarse, fine and
ultra-fine, and on the development and test set
there are, on average, five labels per item. This
poses a challenging problem for learning and pre-
dicting with only one projection. As a solution,
we propose three different projection functions,
feoarses fines and fuirq. €ach one of them fine-
tuned to predict labels of a specific granularity.

We hypothesize that the complexity of the pro-
jection increases as the granularity becomes finer,
given that the target label space per granularity in-
creases. Inspired by Sanh et al. (2019), we arrange
the three projections in a hierarchical manner that
reflects these difficulties. The coarse projection
task is set at the bottom layer of the model and
more complex (finer) interactions at higher layers.
With the projected embedding of each layer, we
aim to introduce an inductive bias in the next pro-
jection that will help to guide it into the correct



region of the space. Nevertheless, we use shortcut
connections so that top layers can have access to
the encoder layer representation.

3.4 Mention and Context Representations

To encode the context c containing the mention m,
we apply the encoder schema of Choi et al. (2018)
based on Shimaoka et al. (2016). We replace the
location embedding of the original encoder with a
word position embedding p; to reflect relative dis-
tances between the ¢-th word and the entity men-
tion. This modification induces a bias on the atten-
tion layer to focus less on the mention and more on
the context. Finally we apply a standard Bi-LSTM
and a self-attentive encoder (McCann et al., 2017)
on top to get the context representation C' € R%.

For the mention representation we derive fea-
tures from a character-level CNN, concatenate
them with the Glove word embeddings (Penning-
ton et al., 2014) of the mention, and combine them
with a similar self-attentive encoder. The mention
representation is denoted as M € R%m. The final
representation is achieved by the concatenation of
mention and context [M; C] € R¥m+de,

3.5 Projecting into the Ball

To learn a projection function that embeds our
feature representation in the target space, we ap-
ply a variation of the re-parameterization tech-
nique introduced in Dhingra et al. (2018). The re-
parameterization involves computing a direction
vector 7 and a norm magnitude A from e(m, c) as
follows:

F = oy _
r= dezr(e(mv C))a r ||?|| ) )
A = Pporm(e(m, ), A =a(N),

where g, : RY — R, Onorm ° R — R
can be arbitrary functions, whose parameters will
be optimized during training, and o is the sig-
moid function that ensures the resulting norm A €
(0,1). The re-parameterized embedding is defined
as v = Ar, which lies in S™.

By making use of this simple technique, the
embeddings are guaranteed to lie in the Poincaré
ball. This avoids the need to correct the gradient
or the utilization of Riemannian-SGD (Bonnabel,
2011). Instead, it allows the use of any opti-
mization method in deep learning, such as Adam
(Kingma and Ba, 2014).

We parameterize the direction function @g;, :
Rém+de _ R™ as a multi-layer perceptron (MLP)
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with a single hidden layer, using rectified linear
units (ReLU) as nonlinearity, and dropout. We do
not apply the ReLU function after the output layer
in order to allow negative values as components
of the direction vector. For the norm magnitude
function Yperm : Ridmtde _y R we use a single
linear layer.

3.6 Optimization of the Model

We aim to find projection functions f; that embed
the instance representations closer to the respec-
tive target types, in a given vector space S™. As
target space S™ we use the Poincaré Ball 5™ and
compare it with the Euclidean unit ball R™. Both
B™ and R™ are metric spaces, therefore they are
equipped with a distance function, namely the hy-
perbolic distance dy; defined in Equation 1, and
the Euclidean distance dg respectively, which we
intend to minimize. Moreover, since the Poincaré
Model is a conformal model of the hyperbolic
space, i.e. the angles between Euclidean and hy-
perbolic vectors are equal, the cosine distance dcos
can be used, as well.

We propose to minimize a combination of the
distance defined by each metric space and the co-
sine distance to approximate the embeddings. Al-
though formally this is not a distance metric since
it does not satisfy the Cauchy-Schwarz inequality,
it provides a very strong signal to approximate the
target embeddings accounting for the main con-
cepts modeled in the representation: relatedness,
captured via the distance and orientation in the
space, and generality, via the norm of the embed-
dings.

To mitigate the instability in the derivative of
the hyperbolic distance’ we follow the approach
proposed in Sala et al. (2018) and minimize the
square of the distance, which does have a continu-
ous derivative in B™. Thus, in the Poincaré Model
we minimize the distance for two points u, v € B"
defined as:

dg(u,v) = a(dy(u, v))2 + Bdeos(u,v)  (3)

Whereas in the Euclidean space, for x,y € R"”
we minimize:

4

The hyperparameters « and /3 are added to com-
pensate the bounded image of the cosine distance
function in [0, 1].

dR(l‘,y) = OédE(l‘, y) + ﬁdcos(xa y)

2limy sz Oz |dE (x,y)] — oo Vo € B



Split Coarse Fine Ultra-fine
Train 2,416,593 4,146,143 3,997,318
Dev 1,918 1,289 7,594
Test 1,904 1,318 7,511

Table 1: Type instances in the dataset grouped by split
and granularity.

4 Hierarchical Type Inventories

In this section, we investigate two methods for de-
riving a hierarchical structure for a given type in-
ventory. First, we introduce the datasets on which
we perform our study since we exploit some of
their characteristics to construct a hierarchy.

4.1 Data

We focus our analysis on the the Ultra-Fine en-
tity typing dataset introduced in Choi et al. (2018).
Its design goals were to increase the diversity
and coverage entity type annotations. It con-
tains 10,331 target types defined as free-form noun
phrases and divided in three levels of granularity:
coarse, fine and ultra-fine. The data consist of
6,000 crowdsourced examples and approximately
6M training samples in the open-source version?,
automatically extracted with distant supervision,
by entity linking and nominal head word extrac-
tion. Our evaluation is done on the original crowd-
sourced dev/test splits.

To gain a better understanding of the proposed
model under different geometries, we also exper-
iment on the OntoNotes dataset (Gillick et al.,
2014) as it is a standard benchmark for entity typ-
ing.

4.2 Deriving the Hierarchies

The two methods we analyze to derive a hierarchi-
cal structure from the type inventory are the fol-
lowing.

Knowledge base alignment: Hierarchical infor-
mation can be provided explicitly, by aligning the
type labels to a knowledge base schema. In this
case the types follow the tree-like structure of the
ontology curated by experts. On the Ultra-Fine
dataset, the type vocabulary 7" (i.e. noun phrases)
is extracted from WordNet (Miller, 1992). Nouns
in WordNet are organized into a deep hierarchy,
defined by hypernym or “IS A” relationships. By
aligning the type labels to the hypernym structure
existing in WordNet, we obtain a type hierarchy.
In this case, all paths lead to the root type entity.

3Choi et al. (2018) uses the licensed Gigaword to build
part of the dataset resulting in about 25.2M training samples.
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In the OntoNotes dataset the annotations follow a
pre-established, much smaller, hierarchical taxon-
omy based on “IS A” relations, as well.

Type co-occurrences: Although in practical sce-
narios hierarchical information may not always be
available, the distribution of types has an implicit
hierarchy that can be inferred automatically. If we
model the ground-truth labels as nodes of a graph,
its adjacency matrix can be drawn and weighted by
considering the co-occurrences on each instance.
That is, if t; and ¢5 are annotated as true types for
a training instance, we add an edge between both
types. To weigh the edge we explore two vari-
ants: the frequency of observed instances where
this co-relation holds, and the pointwise mutual
information (pmz), as a measure of the associa-
tion between the two types*. By mining type co-
occurrences present in the dataset as an affinity
score, the hierarchy can be inferred. This method
alleviates the need for a type inventory explicitly
aligned to an ontology or pre-defined label corre-
lations.

To embed the target type representations into
the different metric spaces we make use of the li-
brary Hype> (Nickel and Kiela, 2018). This library
allows us to embed graphs into low-dimensional
continuous spaces with different metrics, such as
hyperbolic or Euclidean, ensuring that related ob-
jects are closer to each other in the space. The
learned embeddings capture notions of both sim-
ilarity, through the relative distance among each
other, and hierarchy, through the distance to the
origin, i.e. the norm. The projection of the hierar-
chy derived from WordNet is depicted in Figure 2.

5 Experiments

We perform experiments on the Ultra-Fine (Choi
et al., 2018) and OntoNotes (Gillick et al., 2014)
datasets to evaluate which kind of hierarchical in-
formation is better suited for entity typing, and un-
der which geometry the hierarchy can be better ex-
ploited.

5.1 Setup

For evaluation we run experiments on the Ultra-
Fine dataset with our model projecting onto the
hyperbolic space, and compare to the same set-
ting in Euclidean space. The type embeddings are

*We adapt pmi in order to satisfy the condition of non-
negativity.

Shttps://github.com/facebookresearch/
poincare—embeddings/
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Coarse

Coarse Fine Ultra-fine Variation

Model Space + Ultra
MaF1 MiF1 MaFl MiF1 MaFl1 MiFl1 | MaF1 MiF1l MaFl1 MiF1
MULTITASK - 60.6 58.0 37.8 347 13.6 11.7 - - - -
WORDNET Hype;r 459 443 22.5 21.5 7.0 6.7 41.8 37.2 -4.1 -7.1
Euclid 56.1 54.2 26.6 25.3 7.2 6.5 56.6 48.5 0.6 -5.7
WORDNET Hyper 54.6 52.8 18.4 18.0 11.3 10.8 46.5 40.6 8.0 -12.2
+ FREQ Euclid 56.7 54.9 27.3 26.0 12.1 11.5 55.8 49.1 -0.9 -5.8
FREQ Hyper 56.5 54.6 26.8 25.7 16.0 15.2 59.7 53.5 3.2 -1.1
Euclid 56.1 54.2 25.8 24.4 12.1 114 60.0 53.0 3.9 -1.3
PMI Hyper 54.7 53.0 26.9 258 16.0 154 57.5 51.8 2.8 -1.2
Euclid 56.5 54.6 26.9 25.6 12.2 11.5 59.7 53.0 3.2 -1.5

(a) Results on the same three granularities analyzed by Choi et al. (2018).

(b) Comparison to previous coarse
results.

Table 2: Results on the test set for different hierarchies and spaces. The best results of our models are marked in
bold. On (b) we report the comparison of adding the closest coarse label to the ultra-fine prediction, with respect

to the coarse results on (a).

created based on the following hierarchical struc-
tures derived from the dataset: the type vocabulary
aligned to the WordNet hierarchy (WORDNET),
type co-occurrence frequency (FREQ), pointwise
mutual information among types (PMI), and fi-
nally, the combination of WordNet’s transitive
closure of each type with the co-occurrence fre-
quency graph (WORDNET + FREQ).

We compare our model to the multi-task model
of Choi et al. (2018) trained on the open-source
version of their dataset (MULTITASK). The fi-
nal type predictions consist of the closest neigh-
bor from the coarse and fine projections, and the
three closest neighbors from the ultra-fine projec-
tion. We report Loose Macro-averaged and Loose
Micro-averaged F1 metrics computed from the
precision/recall scores over the same three gran-
ularities established by Choi et al. (2018). For all
models we optimize Macro-averaged F1 on coarse
types on the validation set, and evaluate on the test
set. All experiments project onto a target space of
10 dimensions. The complete set of hyperparame-
ters is detailed in the Appendix.

6 Results and Discussion

6.1 Comparison of the Hierarchies

Results on the test set are reported in Table 2.
From comparing the different strategies to derive
the hierarchies, we can see that FREQ and PMI sub-
stantially outperform MULTITASK on the ultra-
fine granularity (17.5% and 29.8% relative im-
provement in Macro F1 and Micro F1, respec-
tively, with the hyperbolic model). Both hierar-
chies show a substantially better performance over
the WORDNET hierarchy on this granularity as

well (MaF1 16.0 and MiF1 15.4 for PMI vs 7.0 and
6.7 for WORDNET on the Hyperbolic model), in-
dicating that these structures, created solely from
the dataset statistics, better reflect the type distri-
bution in the annotations. On FREQ and PMI, types
that frequently co-occur on the training set are lo-
cated closer to each other, improving the predic-
tion based on nearest neighbor.

All the hierarchies show very low performance
on fine when compared to the MULTITASK model.
This exhibits a weakness of our regression setup.
On the test set there are 1,998 instances but only
1,318 fine labels as ground truth (see Table 1). By
forcing a prediction on the fine level for all in-
stances, precision decreases notably. More details
in Section 6.3.

The combined hierarchy WORDNET + FREQ
achieves marginal improvements on coarse and
fine granularities, while it degrades the perfor-
mance on ultra-fine when compared to FREQ.

By imposing a hierarchical structure over the
type vocabulary we can infer types that are located
higher up in the hierarchy from the predictions of
the lower ones. To analyze this, we add the clos-
est coarse label to the ultra-fine prediction of each
instance. Results are reported in Table 2b. The
improvements are noticeable on the Macro score
(up to 3.9 F1 points difference on FREQ) whereas
Micro decreases. Since we are adding types to the
prediction, this technique improves recall and pe-
nalizes precision. Macro is computed on the en-
tity level, while Micro provides an overall score,
showing that per instance the prediction tends to
be better. The improvements can be observed on
FREQ and PMI given that their predictions over
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a) Example

Rin, Kohaku and Sesshomaru Rin befriends Kohaku, the demonslayer Sango’s younger
brother, while Kohaku acts as her guard when Naraku is using her for bait to lure Sesshomaru
into battle.

Annotation  event, conflict, war, fight, battle, struggle, dispute, group_action

Prediction FREQ: event, conflict, war, fight, battle;
WORDNET: event, conflict, difference, engagement, assault

b) Example The UN mission in Afghanistan dispatched its own investigation, expressing concern about
reports of civilian casualties and calling for them to be properly cared for.

Annotation  organization, team, mission

Prediction FREQ: organization, team, mission, activity, operation;
WORDNET: group, institution, branch, delegation, corporation

c) Example  Brazilian President Luiz Inacio Lula da Silva and Turkish Prime Minister Recep Tayyip Erdo-
gan talked about designing a strategy different from sanctions at a meeting Monday, Amorim
said.

Annotation  event, meeting, conference, gathering, summit

Prediction FREQ: event, meeting, conference, film, campaign;

WORDNET: entity, meeting, gathering, structure, court

Table 3: Qualitative analysis of instances taken from the development set. The predictions are generated with the
hyperbolic models of FREQ and WORDNET. Correct predictions are marked in blue color.

ultra-fine types are better.

6.2 Comparison of the Spaces

When comparing performances with respect to the
metric spaces, the hyperbolic models for PMI and
FREQ outperform all other models on ultra-fine
granularity. Compared to its Euclidean counter-
part, PMI brings considerable improvements (16.0
vs 12.2 and 15.4 vs 11.5 for Macro and Micro F1
respectively). This can be explained by the expo-
nential growth of this space towards the bound-
ary of the ball, combined with a representation
that reflects the type co-occurrences in the dataset.
Figure 4 shows a histogram of the distribution of
ground-truth types as closest neighbors to the pre-
diction.

On both Euclidean and hyperbolic models, the
type embeddings for coarse and fine labels are lo-
cated closer to the origin of the space. In this re-
gion, the spaces show a much more similar behav-
ior in terms of the distance calculation, and this
similarity is reflected on the results as well.

The low performance of the hyperbolic model
of WORDNET on coarse can be explained by the
fact that entiry is the root node of the hierarchy,
therefore it is located closer to the center of the
space. Elements placed in the vicinity of the origin
have a norm closer to zero, thus their distance to
other types tends to be shorter (does not grow ex-
ponentially). This often misleads the model into
assign entity as the coarse. See Table 3c for an
example.

This issue is alleviated on WORDNET + FREQ.
Nevertheless, it appears again when using the
ultra-fine prediction to infer the coarse label. The
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drop in performance can be seen in Table 2b:
Macro F1 decreases by 8.0 and Micro F1 by 12.2.

6.3 Error analysis

We perform an error analysis on samples from the
development set and predictions from two of our
proposed hyperbolic models. We show three ex-
amples in Table 3. Overall we can see that pre-
dictions are reasonable, suggesting synonyms or
related words.

In the proposed regression setup, we predict a
fixed amount of labels per instance. This schema
has drawbacks as shown in example a), where all
predicted types by the FREQ model are correct
though we can not predict more, and b), where we
predict more related types that are not part of the
annotations.

In examples b) and ¢) we see how the FREQ
model predicts the coarse type correctly whereas
the model that uses the WordNet hierarchy pre-
dicts group and entity since these labels are con-
sidered more general (organization IS A group)
thus located closer to the origin of the space.

To analyse precision and recall more accurately,
we compare our model to the one of Shimaoka
et al. (2016) (ATTNER) and the multi-task model
of Choi et al. (2018) (MULTI). We show the results
for macro-averaged metrics in Table 4. Our model
is able to achieve higher recall but lower precision.
Nonetheless we are able to outperform ATTNER
with a regression model even though they apply a
classifier to the task.



Dev Test
Model g F1 P R FI
ATTNER 53.7 150 235 54.2 152 237
FREQ 248 259 254 256 268 262
MULTI 48.1 232 313 47.1 242 320

Table 4: Combined performance over the three granu-
larities. Results are extracted from Choi et al. (2018).

Coarse Fine Ultra

Model Sp i Mi Ma Mi Ma M
Hy 830 819 240 239 20 20

ONTO i g0 822 288 287 24 24
Hy 817 818 27.1 271 42 42

FREQ gl 817 817 306 306 38 38

Table 5: Macro and micro F1 results on OntoNotes.

6.4 Analysis Case: OntoNotes

To better understand the effects of the hierarchy
and the metric spaces we also perform an evalua-
tion on OntoNotes (Gillick et al., 2014). We com-
pare the original hierarchy of the dataset (ONTO),
and one derived from the type co-occurrence fre-
quency extracted from the data augmented by
Choi et al. (2018) with this type inventory. The
results for the three granularities are presented in
Table 5.

The FREQ model on the hyperbolic geome-
try achieves the best performance for the ultra-
fine granularity, in accordance with the results on
the Ultra-Fine dataset. In this case the improve-
ments of the frequency-based hierarchy are not so
remarkable when compared to the ONTO model
given that the type inventory is much smaller, and
the annotations follow a hierarchy where there is
only one possible path for every label to its coarse
type.

The low results on the ultra-fine granularity are

500
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w &
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100 4
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Figure 4: Histogram of ground-truth type neighbor po-
sitions for ultra-fine predictions in Hyperbolic and Eu-

clidean spaces on the test set.
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due to the reduced multiplicity of the annotated
types (See Table 8). Most instances have only one
or two types, setting very restrictive upper bounds
for this setup.

7 Related Work

Type inventories for the task of fine-grained entity
typing (Ling and Weld, 2012; Gillick et al., 2014;
Yosef et al., 2012) have grown in size and com-
plexity (Del Corro et al., 2015; Murty et al., 2017;
Choi et al., 2018). Systems have tried to incorpo-
rate hierarchical information on the type distribu-
tion in different manners. Shimaoka et al. (2017)
encode the hierarchy through a sparse matrix. Xu
and Barbosa (2018) model the relations through
a hierarchy-aware loss function. Ma et al. (2016)
and Abhishek et al. (2017) learn embeddings for
labels and feature representations into a joint space
in order to facilitate information sharing among
them. Our work resembles Xiong et al. (2019)
since they derive hierarchical information in an
unrestricted fashion, through type co-occurrence
statistics from the dataset. These models operate
under Euclidean assumptions. Instead, we impose
a hyperbolic geometry to enrich the hierarchical
information.

Hyperbolic spaces have been applied mostly on
complex and social networks modeling (Krioukov
et al., 2010; Verbeek and Suri, 2016). In the field
of Natural Language Processing, they have been
employed to learn embeddings for Question An-
swering (Tay et al., 2018), in Neural Machine
Translation (Gulcehre et al., 2019), and to model
language (Leimeister and Wilson, 2018; Tifrea
et al., 2019). We build upon the work of Nickel
and Kiela (2017) on modeling hierarchical link
structure of symbolic data and adapt it with the pa-
rameterization method proposed by Dhingra et al.
(2018) to cope with feature representations of text.

8 Conclusions

Incorporation of hierarchical information from
large type inventories into neural models has be-
come critical to improve performance. In this
work we analyze expert-generated and data-driven
hierarchies, and the geometrical properties pro-
vided by the choice of the vector space, in order
to model this information. Experiments on two
different datasets show consistent improvements
of hyperbolic embedding over Euclidean baselines



on very fine-grained labels when the hierarchy re-
flects the annotated type distribution.
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A Appendix

A.1 Hyperparameters

Both hyperbolic and Euclidean models were
trained with the following hyperparameters.

Parameter Value
Word embedding dim 300
Max mention tokens 5
Max mention chars 25
Context length (per side) 10
Char embedding dim 50
Position embedding dim 25
Context LSTM dim 200
Attention dim 100
Mention dropout 0.5
Context dropout 0.2
Max gradient norm 10
Projection hidden dim 500
Optimizer Adam
Learning rate 0.001
Batch size 1024
Epochs 50

Table 6: Model hyperparameters.

A.2 Dataset statistics

Split Samples Coarse Fine Ultra-fine
Train 6,240,105 2,148,669 2,664,933 3,368,607
Dev 1,998 1,612 947 1,860
Test 1,998 1,598 964 1,864

Table 7: Amount of samples with at least one la-
bel of the granularity organized by split on Ultra-Fine

Dataset.
Split Samples Coarse Fine Ultra
Train 793,487 828,840 735,162 301,006
Dev 2,202 2,337 869 76
Test 8,963 9,455 3,521 417

Table 8: Samples and label distribution by split on
OntoNotes Dataset.
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