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Abstract
We use sequence-to-sequence networks
trained on sequential phonetic encoding tasks
to construct compositional phonological
representations of words. We show that the
output of an encoder network can predict
the phonetic durations of American English
words better than a number of alternative
forms. We also show that the model’s learned
representations map onto existing measures
of words’ phonological structure (phonolog-
ical neighborhood density and phonotactic
probability).

1 Introduction

The representation of linguistic categories is a fun-
damental problem in (psycho)linguistics and nat-
ural language processing. The formation of com-
plex representations from more basic components
is relevant at all levels of linguistic representa-
tion, semantic, syntactic, and phonological. Find-
ing good representations for words’ phonological1

structure is critical in psycholinguistics, where we
wish to understand the phonological structure of
the lexicon, which has been shown to be relevant
for language comprehension and production.

The distributional hypothesis defines a word by
the context in which it occurs (Harris, 1954; Firth,
1957). This approach has been extended more re-
cently to other types of compositional structures,
for example in characterizing the meanings and
forms of sentences (Cer et al., 2018; Joulin et al.,
2017; Conneau et al., 2017; Devlin et al., 2018).
In this paper we explore whether distributional ap-
proaches can capture important phonological de-
pendencies.

1There are disagreements in the literature about the lo-
cation (Hale and Reiss, 2008) and even existence (Ohala,
1990b) of the boundary/interface between phonetics and
phonology, so we remain as theory-agnostic as pos-
sible, freely using “phonological”/“phonetic” and “seg-
ment”/“phone” interchangeably.

Specifically, we test the extent to which recur-
rent encoder-decoder models (Cho et al., 2014;
Sutskever et al., 2014) can learn representations
that characterize the phonological structure of the
lexicon while also having linguistic and psycho-
logical validity (Sibley et al., 2008). We pro-
pose that this approach can be used to learn viable
lexical-level phonological representations. The
output of the encoder component of our model
yields promising results in the prediction of pho-
netic duration, outperforming a number of alter-
nate phonological representations of words.

2 Quantifying a word’s phonology

Given a set of discrete phonetic symbols i.e.
graphemes with conventionalized pronunciations
such as the International Phonetic Alphabet, it is
trivial to represent any word’s pronunciation as a
sequence of such symbols. Conversely, relating
sequences of such symbols (viz. words) to each
other, as well as to the entire lexicon is less obvi-
ous. This challenge has led to a proliferation of
measurements that characterize a word’s phonetic
or phonological relationship with all other words
in the lexicon. We summarize some salient exam-
ples below, and briefly discuss some of their short-
comings.

2.1 Metrics insensitive to serial order
Phonological neighborhood density (PND).
This measure is defined as the number of words
having a Levenshtein edit distance of one from
a given word (in terms of phonetic or phonologi-
cal symbols) (Luce and Pisoni, 1998; Levenshtein,
1966). Under this definition, a word like “cat”
has many neighbors, while a word like “molt” has
fewer. This measure is simple to calculate and a
wide variety of resources exist for obtaining these
measures across many languages (Marian et al.,
2012; Baayen et al., 1993; Luce and Pisoni, 1998).
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While conceptually simple, PND is insensitive
to the position of a segment within a word (e.g.
word-initial versus word-final substitutions), and
so “sat” and “cab” are treated as equally similar to
“cat”. Additionally, identifying a word’s phono-
logical neighbors using the Levenshtein distance
metric requires specifying how many sounds can
be added, deleted, or substituted, and potentially
the allowable edit distance2, increasing the num-
ber of choice points in determining what a “neigh-
borhood” is.

Frequency-weighted phonological neighbor-
hood density. An augmented version of PND,
which weights phonological neighbors in pro-
portion to their lexical frequencies (standardly
estimated from large corpora; Marian et al.,
2012). So, a more common word like “hat”
would contribute more to the neighborhood den-
sity of “cat” than a less common word like “cap”,
even though they are at equal string edit dis-
tance. Whether and to what extent density mea-
sures should be frequency-weighted is an empiri-
cal question, though these measures seem to better
reflect psycholinguistic processes than frequency-
insensitive measures.

Feature-wise similarity. In the phonologi-
cal literature it is standard to represent segments
as collections of articulatory or acoustic features,
e.g. [+voice], [-obstruent] (Chomsky (1968) is the
canonical reference). Some linguists (e.g. Frisch
(1996), inter alia) have posited that words like
“cat” and “cap”, which differ only in the place of
articulation of their final segments (alveolar ver-
sus labial), should be considered more similar than
e.g. “cat” and “can”, which differ in both voicing
and manner of articulation. This measure of simi-
larity is potentially controversial, as there are the-
oretical and empirical questions as to which fea-
tures to include, or even whether phonetic fea-
tures exist at all (Stevens and Blumstein, 1981;
Marslen-Wilson and Warren, 1994).

2.2 Metrics incorporating serial order
All of the previously described measures effec-
tively characterize words as unordered collections
of segments. These characterizations are incom-
plete because they fail to capture the fact that
words unfold over time in usage. Representing the
positions of phones within a word is critical for ex-

2See e.g. Suárez et al., 2011 who allow edit distance
greater than one, and track the mean distance to a fixed num-
ber of neighbors

plaining a number of aspects of language process-
ing. For example, the beginnings of words con-
tribute more strongly than their ends to psycholin-
guistic effects that are attributed to their phono-
logical representations (Levelt et al., 1999; Sevald
and Dell, 1994, inter alia), and a word’s phono-
logical similarity to the rest of the words in the
lexicon has important consequences for speech
comprehension (Buz and Jaeger, 2016; Metsala,
1997). Some computational models encode seg-
ments as a function of their linear position within
a syllable, e.g. in a onset-vowel-coda format (e.g.
Dell, 1986; Sevald and Dell, 1994). Other ap-
proaches include segment n-grams to encode local
aspects of serial order (e.g. Seidenberg and Mc-
Clelland, 1989; Davis, 2010) and the oft-lamented
Wickelphone (Houghton and Hartley, 1996). Most
closely related to the present approach, some work
has demonstrated the viability of sequence en-
coder models for representing sequences of char-
acters or phonetic segments (Sibley et al., 2008).

2.3 Incorporating variability into
representations

Psycholinguistic measures that quantify words’
phonological properties in the lexicon generally
ignore their variability in pronunciation. In usage,
segmental context, or lexical factors such as word
frequency, can significantly influence the phonetic
realization of a given phone, ranging from assimi-
latory processes (Ohala, 1990a) to massive reduc-
tion and even complete omission (Pitt et al., 2005;
Johnson, 2004, inter alia). For example, there are
over 200 distinct transcriptions of the word “and”
in the Buckeye corpus (Pitt et al., 2005), and its
normative, dictionary pronunciation (i.e. [ænd])
only accounts for 3% of its realizations.

Measures such as PND rely on single, fixed
pronunciations (generally normative/dictionary-
based) and corpus-derived lexical frequencies to
estimate how many similar-sounding words a
given word has, but take no account of variabil-
ity in realization. As there is evidence that listen-
ers remember and can access/use individual exem-
plars of perceived speech (Pierrehumbert, 1980;
Goldinger, 1998), it seems natural to model dis-
tinct realizations within the lexical network. The
variability in a word’s realizations may especially
matter for identifying phonological competitors
(Luce and Pisoni, 1998; Marian et al., 2012; Vaden
et al., 2009). For example, words like “sand” and
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“and” may rarely compete during lexical access,
given that “and” is rarely pronounced similarly to
“sand.” By incorporating the variability available
in naturalistic speech corpora, we hope to provide
a better characterization of a word’s phonological
properties and its relation to the lexicon.

3 Latent phonological representations

Representing arbitrary-length sequences of
phones with a single distributed representation
has a number of potential practical and conceptual
advantages. On the practical side, these repre-
sentations have a fixed dimensionality, so finding
meaningful groupings or clusters is computa-
tionally more tractable than directly clustering
variable-length sequences. Moreover, projecting
these sequences into a latent space offers the
potential of discovering hidden relationships
or variables that affect phonological or lexical
structure.

Our aim in this paper is to test whether and to
what extent recent approaches to building sentence
representations can also be applied to the phono-
logical domain. Both simpler and more complex
latent representations can be constructed to char-
acterize the phonological forms of words. We first
discuss potential “naı̈ve” means of accomplishing
this, and then move into discussion of our pro-
posed model.

Principal components on bag-of-n-phones
A number of document classification schemes and
information retrieval tasks have treated documents
as a product of the vector representations of words
learned by principal components analysis (PCA;
Landauer and Dumais, 1997). We apply this to
the phonetic domain as well. By analogy to a
bag of words, we refer to bag-of-phones (unigram
features) and bag-of-n-phones (higher-order seg-
ment co-occurrence categories), which can then
be fed into a dimensionality reduction algorithm
like principal components analysis (PCA) as an
approximate composition function to produce la-
tent phonological representations of words.

doc2vec
Another dimensionality reduction method extends
the continuous bag-of-words algorithm used to
learn word vectors (Mikolov et al., 2013) to the
document domain. Specifically, the model learns
to compose (predict) a document (i.e. a word)
from its phonological contents. doc2vec (Le and

Mikolov, 2014) has been used in information re-
trieval and natural language processing applica-
tions (Lau and Baldwin, 2016) and so may be a
viable way to obtain lexical phonological repre-
sentations. As with bag-of-phones, this model is
insensitive to serial order.

Sequential representations
Encoder-decoder or sequence-to-sequence
(seq2seq henceforth) neural network architectures
have shown considerable success in encoding
sentences (viz. sequences of words) for tasks
such as machine translation (Sutskever et al.,
2014; Cho et al., 2014). These methods may be
appropriate as a means of composing segmental
representations, as they are intrinsically sensitive
to ordering, easily take usage frequencies into
account (directly from training corpora), and have
been shown to be effective learners of sequential
distributional properties of their training data.

4 Seq2seq model

We trained seq2seq models to either reproduce
their input, or to recover (predict) normative (dic-
tionary) pronunciations from the phonetic tran-
scriptions of words in the Buckeye corpus (Pitt
et al., 2005), a dataset of monologues provided in
response to interviewer questions about the talk-
ers’ hometown of Columbus, Ohio. The corpus
contains approximately 300,000 words.

Data inclusion criteria. There are some tran-
scription errors in the Buckeye corpus, and so we
excluded combinations of phones that did not oc-
cur at least ten times. This removes many errors,
but a few remain. For example, the segment “h”
occurs in some transcriptions but is not part of the
character set of the transcription dictionary, and is
thus likely an error of omission for actual digraphs
from the dictionary; “th”, “hh”, etc. Despite the
presence of these remaining errors, we do not cor-
rect the transcriptions of any words. In total, 57
phone/segment categories are represented. Full
documentation of the coding scheme used in the
corpus can be read in Pitt et al. (2005). For bag-
of-n-phones features, we add the additional char-
acters “w s” and “w e” as word boundary charac-
ters, signaling the starts and ends of words, respec-
tively.

There are no standard train/dev/test splits for the
Buckeye corpus, and so we restricted ourselves to
randomly selected 80/20 train/test split (Pitt et al.,
2005) for training all models.



209

Figure 1: Encoder-decoder LSTM architecture (Nor-
mative decoder; for the Observed decoder, the output
is the observed phonetic sequence).

Model architecture. Methodologically, we ap-
proach the problem with an eye to restricting the
computational power of our model, and to re-
stricting the space of hyperparameters to explore.
To this end, our models use a basic recurrent
encoder-decoder architecture, with an input-side
embedding layer, and single-layer, unidirectional3

LSTMs (Hochreiter and Schmidhuber, 1997) on
the encoder and decoder sides. The encoder takes
as input a sequence of phone indices (e.g. “cat”
→ [’k’, ’ae’, ’tq’] → [11, 1, 20]), em-
beds them, and encodes the sequence in the space
defined by the LSTM. The encoder LSTM’s final
hidden state is provided as input to the decoder,
whose task is to “unroll” this latent representa-
tion. The outputs of the decoder LSTM are suc-
cessively fed through a softmax, sequentially out-
putting class probabilities for each character class
in the phone vocabulary, which are then decoded
via simple argmax (see Figure 1).

4.1 Training

Hyperparameters. The number of training
epochs was empirically determined on the basis of
asymptoting training loss, which we determined to
be 25 epochs. We used a cross-entropy loss func-
tion, using the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001. Other Adam
parameters were at default values in the dynet
python implementation as of this writing (version
2.0.3; Neubig et al., 2017). All hyperparameters
were selected on the basis of asymptoting loss on
a small subset of the training set. The embedding

3While we do not perform these experiments here, we be-
lieve that a Bi-LSTM encoder (Schuster and Paliwal, 1997)
will enable further advances in constructing psycholinguisti-
cally predictive word representations.

layer had 32 dimensions, and the encoder and de-
coder LSTMs were 64-dimensional.

Tasks. We trained two models to perform
slightly different decoding tasks; the Norma-
tive Decoder model, and the Observed Decoder
model. In both tasks, the inputs are transcriptions
of observed realizations of words in the Buck-
eye corpus, which include e.g. phonetic changes
and omissions. The Normative Decoder’s task
is to output the word’s normative pronunciation
(e.g. [k, ae, tq] → [k, ae, t]), while
the Observed Decoder model is trained as a se-
quential autoencoder (e.g. Chung et al., 2016);
the task is to reproduce the input sequence exactly.
Both are potentially viable approaches to the cre-
ation of lexical phonological representations and
show similar performance in the downstream tasks
reported on below, which may be useful for re-
searchers who only have access to normative pro-
nunciations.

We evaluated the performance of the model on
the 20% held-out portion of the corpus.

4.2 Lexical representations

Once the model is trained, any sequence of phones
can be input to the encoder, yielding a latent
phonological representation of that sequence. As
with character-based NLP models, the compara-
tively low dimensionality of the input space (57
segments) mitigates sparsity issues, consequently
we can obtain latent phonological representations
not just of vocabulary words that have been trained
but also for rare, out-of-vocabulary (OOV) words
and non-words. We plot some aspects of the
learned representations in Figures 2 and 3. One
pattern that is particularly apparent is that the left-
to-right serial nature of the encoder leads to repre-
sentations that strongly encode the final segment
in their representations, for both consonants and
vowels.

5 Evaluation

As a preliminary investigation of the informa-
tion encoded in the learned lexical representations,
we assess their ability to model phonetic dura-
tion, which is known to be sensitive to phono-
tactic probability and phonological overlap (Gahl
et al., 2012; Watson et al., 2015; Buz and Jaeger,
2016; Yiu and Watson, 2015; Goldrick and Lar-
son, 2008; Vitevitch and Luce, 2005), in addition
to other factors like contextual predictability (e.g.
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Figure 2: Topology of word vectors from phonological encoder models learned by t-SNE (Maaten and Hinton,
2008). Degree to which word vectors encode vowel information. Clusters largely prioritize word-final information,
especially the last segment. Left graph represents the identities of the first segment. Right graph represents the
identities of the final segment. The strong encoding of the final segment may be due to the model architecture
using uni-directional recurrent layers.

Figure 3: Topology of word vectors, t-SNE projection (Maaten and Hinton, 2008). Degree to which word vectors
encode consonant information. Clusters largely prioritize word-final information, especially the last segment. Left
graph represents the identities of the first segment. Right graph represents the identities of the final segment.

Cohen Priva and Jaeger, 2018; Seyfarth, 2014).
We show that the encoder creates sequence repre-
sentations that are useful for predicting word du-
ration, and compare the success of the encoder to
several other models, described below.

5.1 Predicting word duration

Ultimately we are interested in whether latent
phonological representations have predictive va-
lidity for phonetic cues, potentially in conjunc-
tion with other phonological and lexical repre-
sentations. Word duration has been shown to be
strongly related to phonological structure (Gahl
et al., 2012), because duration may reflect the me-
chanics of the phonological sequencing process in
language production (Yiu and Watson, 2015; Wat-
son et al., 2015; Fox et al., 2015) or because speak-
ers lengthen words in dense neighborhoods to pro-
mote the listener’s understanding (Tily and Kuper-

man, 2012).
We built a series of nested statistical models de-

signed to predict whole-word phonetic duration.
The durations were obtained by summing up the
durations of each of the annotated phonetic seg-
ments for an individual word, which are them-
selves derived from time stamps extracted from
the Buckeye metadata. Whole-word durations
were log transformed due to their positive skew;
failing to account for this can make statistical in-
ference more difficult (Campbell, 1992). All mod-
els were constructed using ridge (L1 norm) re-
gression using the scikit-learn package in
Python (version 0.2.0; Pedregosa et al., 2011). We
report goodness of fit measures in all cases by
R2 values (the coefficient of determination; pro-
vided automatically by the score function within
the ridge regression model object).

All duration models were trained on the same
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80-20% split that was used to train the encoder-
decoder. Consequently, there were 282,742 obser-
vations (words) during training, and 70,686 words
at test. The vocabulary for the bag-of-words rep-
resentations was estimated from the training data.
All models are summarized in Table 1.

5.2 Baseline models

Word embeddings. A word’s distributional prop-
erties, such as its part of speech and meaning; la-
tent part-of-speech; or word-frequency informa-
tion may reliably predict a word’s duration (Sey-
farth, 2014; Turnbull et al., 2018; Priva, 2015).
Consequently, we incorporate 100-dimensional
word embeddings into the regression models. We
obtained these word embeddings from gensim’s
(Řehůřek and Sojka, 2010) skip-gram implemen-
tation trained on the Fisher corpus (Cieri et al.,
2004), which we selected due to its size, which
is critical for generating good word embeddings
(Antoniak and Mimno, 2018), and because it be-
longs to the same domain as the Buckeye corpus
(conversational speech).

The skip-gram model used a context window of
5 words and a negative sampling size of 5. We
used a zero vector to represent OOV (e.g. Colum-
bus, Ohio-specific place names that would not oc-
cur in the Fisher corpus). Word embeddings were,
on their own, not a strong predictor of word dura-
tion (R2 = 0.082) on the test set, but nevertheless
account for some of the variance in word duration.

Bag-of-phones models. Bag-of-words repre-
sentations are a useful and informative baseline
in other NLP tasks, especially text classification
(Wang and Manning, 2012). We obtained bag-of-
phone representations by learning a vocabulary on
the training data and creating sparse count vectors
in which the features represent individual phones.
A simple bag-of-uniphones model, which ignores
order information, has greater predictive power
than word embeddings on the test set (R2=0.140).
This shows that it is possible to at least partly pre-
dict the duration of a given word’s realization from
relatively unstructured phonological information.

Bag-of-n-phones. Unlike bag-of-words repre-
sentations, bag-of-ngrams encode localized order
information. We constructed n-gram features of
phone combinations (bag-of-n-phones) of lengths
2 to 5, using a cutoff frequency of 10 observations.
These more complex representations performed
similarly to the simpler bag-of-phones model on

the test set (R2 = 0.140).
We also tested whether incorporating word

boundary information into these models (“w s”
and “w e” phones) would induce boundary-
sensitive phonotactics, but this also did not pro-
vide additional gains over simpler models (R2 =
0.138 and R2 = 0.140).

Principal components analysis over bag-of-
n-phones. Following from the previous section,
we take our bag-of-n-phones representations and
feed them into a truncated singular value de-
composition model to obtain latent representa-
tions of words (“documents”). This representation
explained a slightly greater amount of variance
in word duration than word embeddings (R2 =
0.106). However, this method performed far worse
than the bag-of-phones and bag-of-n-phones mod-
els described in the previous section, indicating
that some information is lost in this dimensionality
reduction method.

doc2vec. Our doc2vec model vectors were
trained to predict a word from a phonological rep-
resentation. The resulting vectors had the same
dimensionality as the PCA vectors and the en-
coder output of the seq2seq models. Surprisingly,
doc2vec performed the worst of models that we
considered (R2 = -0.05).

seq2seq. The outputs of the encoders for the
Observed and Normative decoder models were
among the best we considered, both on their own
and in conjunction with other measures. Inter-
estingly, the Observed Decoder provides a much
closer fit to phonetic duration than word embed-
dings, bag-of-phones, PCA, doc2vec, and the Nor-
mative Decoder representations. When combined
with bag-of-phones and word embedding infor-
mation, the Observed Decoder representations ex-
plain the greatest amount of variance in word du-
ration (R2 = 0.181), suggesting that these latent
phonological representations encode useful infor-
mation for characterizing word form.

The disparity between the Observed and Nor-
mative decoder models may be a consequence
of the Normative model’s more difficult learning
problem. One potential explanation is that de-
spite training the two models for equal lengths
of time (25 epochs), the Normative decoder was
not trained to the same criterion as the Observed
decoder. Future work should explore whether
the worse performance of the Normative decoder
model is due to the precision of its representations
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Simple Test R2 No. features Combined Test R2 No. features
Word embeddings (WE) 0.082 100 BoP + wb + WE 0.161 159

Bag-of-phones (BoP) 0.140 57 + Observed decoder 0.181 223
+ w s + w e (wb) 0.140 59 + Normative decoder 0.177 223

Bag-of-n-phones (BoNP) 0.140 1700 BoNP + wb + WE 0.159 5018
+ w s + w e (wb) 0.138 4918 + Observed decoder 0.175 5082

PCA bag-of-n-phones 0.106 64 + Normative decoder 0.173 5082
doc2vec -0.05 64 Observed + WE 0.149 164

Observed decoder 0.149 64 Normative + WE 0.141 164
Normative decoder 0.140 64

Table 1: Ablation study. Effectiveness of features and combinations of features for predicting (log) phonetic
duration.

or due to what is embedded in the representations
themselves.

6 Probing phonological structure

While it is clear that seq2seq representations of
the phonological forms of words are partially
predictive of a phonetic phenomenon (duration),
whether the representations encode anything use-
ful about the lexicon requires further investiga-
tion. In this section, we explore whether charac-
terizing the similarity space of these phonological
word vectors can approximate standard measures
of a word’s phonological properties. The results
show that the vectors produce coherent clusters of
words with different phonological properties. We
also show that there are correlations between our
measures and phonotactic probability.

6.1 Latent phonological neighborhood
density

While it is not commonly the case that similarity
scores follow a normal distribution, in our case,
the similarity scores for words are by visual spot
inspection roughly symmetric and normally dis-
tributed, so we chose to characterize individual
words wi by the mean and standard deviation of
their similarity scores to every other word in the
lexicon. Although not a priori obvious, one possi-
bility is that these metrics correlate with other lexi-
cal metrics, for example, a wide standard deviation
could mean that a word has a number of different
ways it can be similar to other words, whereas a
narrow standard deviation suggests that the word
is fairly unique.

6.2 The similarity structure of the lexicon

The distributions of similarity scores show some
interesting properties. Unlike the measurements
of phonological neighborhood density provided in
Vaden et al. (2009), which follow a quasi-Zipfian
distribution, a histogram of the mean word-lexicon
similarities across the whole vocabulary shows a
very different pattern. In particular, there appear
to be three distinct clusters of similarity scores, as
shown in Figure 4.

Figure 4: Three clusters of similarity scores from Ob-
served Decoder model.

Words in the first cluster, which show negative
average similarity scores, were highly frequent
words, typically encompassing function words
(e.g. but, about, the). The second cluster ap-
peared to include less high-frequency terms (e.g.
day, brain, wants). Finally, the rightmost cluster
typically had higher similarity scores, represent-
ing low frequency and longer words (e.g. devices,
widely, element).4 Going forward, a meta-model

4We thank our reviewers for pointing out that all of these
properties are correlated with word length in segments (e.g.
highly frequent words are on average shorter), which is a use-
ful baseline that we will explore in future work.
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will be necessary to determine what factors deter-
mine a word’s mean lexicon-similarity value.

6.3 Correlation with existing phonological
properties

Ideally, a new measure of phonological form
should relate to measures already known to af-
fect speech production. For example, a significant
correlation with a particular word’s mean or stan-
dard deviation similarity to all the other words in
the lexicon would suggest that our measures char-
acterize the lexicon in a similar way to existing
measures. Similarly, because our latent represen-
tations encode sequences, we expect them to cor-
relate with phonotactic probability (Vitevitch and
Luce, 2004). So, as a final set of analyses, we
sought to test whether and to what extent the Ob-
served decoder learns representations that can tell
us about a word’s relationship to the rest of the
lexicon.

There are two measures of interest that have re-
ceived some attention in the speech production lit-
erature. For the present analyses, we reference
the phonological neighborhood density metrics
as well as the phonotactic probability scores for
words in Buckeye that are also in the Irvine Phono-
tactic Online Dictionary (IPhOD; Vaden et al.,
2009). We show that our measures (both mean and
standard deviation) strongly correlate with phono-
tactic probability and IPhoD’s additional PND
measure. This suggests that the vectors’ useful-
ness extends to researchers who wish to explore
the phonological similarity structure of the lexicon
for psycholinguistic research.

Phonological neighborhood density. Given
the importance of phonological neighborhood
density (PND) in speech production (Luce and
Pisoni, 1998; Vitevitch and Luce, 2005; Metsala,
1997; Mirman, 2011), we correlated the (log)
number of phonological neighbors with our latent
density scores and phonetic duration. A phono-
logical neighbor is a word that differs by a single
sound (either an addition, a substitution, or a dele-
tion; Levenshtein, 1966). PND ((log) # of neigh-
bors, Figure 5) has a strong negative correlation
with mean word-lexicon similarity (greater mean
similarity translates to fewer neighbors; ρ = -.59)
while the standard deviation of word-lexicon sim-
ilarity shows a non-linear relationship with neigh-
borhood density.

Phonotactic probability. Phonotactic proba-

bility is a measure of the phonological typicality
of a word, computed from product of uni-phone
and bi-phone probabilities of that word pronunci-
ation, in the same fashion that sentence probabil-
ities are computed in a standard bigram language
model (Vitevitch and Luce, 2004, 2005). In our
final analysis, we compare the mean and standard
deviation of a word’s similarity to all other word
types, including alternate pronunciations of the
same word, to existing measures of phonotactic
probability. As with phonological neighborhood
density, we see significant positive correlations be-
tween our phonological similarity measures (both
means and standard deviations; ρ = 0.41 and ρ =
0.13, respectively) between phonotactic probabili-
ties, which we visualize in Figure 5.

7 Conclusion

The results presented here suggest that encoder-
decoder models are a promising framework
for composing segment-based representations of
words. The models also characterize words’
phonological forms relative to the rest of the lex-
icon. We believe that encoder-decoder models’
usefulness extends beyond that of many exist-
ing approaches, as they can seamlessly gener-
ate gestalt representations for out-of-vocabulary
words and even nonce words. Our approach has
a number of potential advantages for the cog-
nitive modeling of language processing in both
comprehension and production tasks, or indeed in
any task that can be modeled with phonological
word representations. Importantly, the encoder-
decoder modeling framework is flexible, learn-
ing both from observed, quasi-phonetic realiza-
tions of words as well as from idealized, normative
(dictionary-based) pronunciations, and allows for
many variations in expressivity and computational
power.

The reported correlations between phonologi-
cal neighborhood density, phonotactic probability,
latent phonological similarity, and phonetic dura-
tion motivate a need to better understand the em-
bedding representations themselves. We have pre-
sented considerable evidence that the models cap-
ture some non-trivial dependencies between pho-
netic segments that can characterize word forms.
Going forward, we believe that our latent phono-
logical representations may be useful for design-
ing stimuli, or provide an alternative to standard
covariates in psycholinguistic experiments such
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Figure 5: Correlation between a word’s phonetic duration in Buckeye, phonological neighborhood density, global
word-lexicon similarity (mean and standard deviation), and phonotactic probability.

as phonological neighborhood density and phono-
tactic probability. Finally, our results on the
Normative-Decoder suggest that low-resource lan-
guages with only a pronunciation dictionary are
also a viable means of learning these represen-
tations, assuming that there is a corresponding
corpus of conversational data. In sum, we have
demonstrated that our approach is useful for mod-
eling of phonological structure.
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