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Abstract

Polysynthetic languages pose a challenge
for morphological analysis due to the root-
morpheme complexity and to the word class
“squish”. In addition, many of these polysyn-
thetic languages are low-resource. We pro-
pose unsupervised approaches for morpholog-
ical segmentation of low-resource polysyn-
thetic languages based on Adaptor Grammars
(AG) (Eskander et al., 2016). We experiment
with four languages from the Uto-Aztecan
family. Our AG-based approaches outper-
form other unsupervised approaches and show
promise when compared to supervised meth-
ods, outperforming them on two of the four
languages.

1 Introduction

Computational morphology of polysynthetic lan-
guages is an emerging field of research. Polysyn-
thetic languages pose unique challenges for com-
putational approaches, including machine transla-
tion and morphological analysis, due to the root-
morpheme complexity and to word class gra-
dations (Homola, 2011; Mager et al., 2018d;
Klavans, 2018a). Previous approaches include
rule-based methods based on finite state trans-
ducers (Farley, 2009; Littell, 2018; Kazeminejad
et al., 2017), hybrid models (Mager et al., 2018b;
Moeller et al., 2018), and supervised machine
learning, particularly deep learning approaches
(Micher, 2017; Kann et al., 2018). While each
rule-based method is developed for a specific lan-
guage (Inuktitut (Farley, 2009), or Arapaho (Lit-
tell, 2018; Moeller et al., 2018)), machine learn-
ing, including deep learning approaches, might
be more rapidly scalable to many additional lan-
guages.

We propose an unsupervised approach for mor-
phological segmentation of polysynthetic lan-
guages based on Adaptor Grammars (Johnson
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et al., 2007). We experiment with four Uto-
Aztecan languages: Mexicanero (MX), Nahuatl
(NH), Wixarika (WX) and Yorem Nokki (YN)
(Kann et al., 2018). Adaptor Grammars (AGs)
are nonparametric Bayesian models that general-
ize probabilistic context free grammars (PCFG),
and have proven to be successful for unsupervised
morphological segmentation, where a PCFG is a
morphological grammar that specifies word struc-
ture (Johnson, 2008; Sirts and Goldwater, 2013;
Eskander et al., 2016, 2018). Our main goal is to
examine the success of Adaptor Grammars for un-
supervised morphological segmentation when ap-
plied to polysynthetic languages, where the mor-
phology is synthetically complex (not simply ag-
glutinative), and where resources are minimal. We
use the datasets introduced by Kann et al. (2018)
in an unsupervised fashion (unsegmented words).
We design several AG learning setups: 1) use the
best-on-average AG setup from Eskander et al.
(2016); 2) optimize for language using just the
small training vocabulary (unsegmented) and dev
vocabulary (segmented) from Kann et al. (2018);
3) approximate the effect of having some linguis-
tic knowledge; 4) learn from all languages at once
and 5) add additional unsupervised data for NH
and WX (Section 3). We show that the AG-based
approaches outperform other unsupervised meth-
ods — Mor fessor (Creutz and Lagus, 2007) and
MorphoChain (Narasimhan et al., 2015)) —,
and that for two of the languages (NH and YN),
the best AG-based approaches outperform the best
supervised methods (Section 4).

2 Languages and Datasets

Typically, polysynthetic languages demonstrate
holophrasis, i.e. the ability of an entire sentence
to be expressed as what is considered by native
speakers to be just one word. To illustrate, con-
sider the following example from Inuktitut (Kla-
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vans, 2018b), where the morpheme -tusaa- is the
root and all the other morphemes are synthetically
combined with it in one unit:

tusaa-tsia-runna-nngit-tu-alu-u-jung
hear-well-be.able-NEG-DOE-very-BE-PT.1S
I can’t hear very well.

Another example from WX, one of the lan-
guages in the dataset for this paper (from (Mager
et al., 2018c)) shows this complexity:

yu-huta-me ne-p+-we-iwa
an-two-ns 1sg:s-asi-2pl:o-brother
I have two brothers.

In linguistic typology, the broader gradient is:
isolating/analytic to synthetic to polysynthetic.
Agglutinating refers to the clarity of boundaries
between morphemes. This more specific gradation
is: agglutinating to mildly fusional to fusional.
Thus a language might be characterized overall as
polysynthetic and agglutinating, i.e. generally a
high number of morphemes per word, with clear
boundaries between morphemes and thus easily
segmentable. Another language might be char-
acterized as polysynthetic and fusional, so again,
many morphemes per word, but many phonologi-
cal and other processes so it is difficult to segment
morphemes.

Thus, morphological analysis of polysyn-
thetic languages is challenging due to the root-
morpheme complexity and to word class grada-
tions. Linguists recognize a gradience in word
classes, known as “squishiness”, a term first dis-
cussed in Ross (1972) who argued that, instead of
a fixed, distinct inventory of syntactic categories,
a quasi-continuum from verb, adjective and noun
best reflects most lexical distinctions. The root-
morpheme complexity and the word class “squish”
makes developing segmented training data with
reliability across annotators difficult to achieve.
Kann et al. (2018) have made a first step by re-
leasing a small set of morphologically segmented
datasets although even in these carefully curated
datasets, the distinction between affix and clitic
is not always indicated. We use these datasets in
an unsupervised fashion (i.e., we use the unseg-
mented words). These datasets were taken from
detailed descriptions in the Archive of Indigenous
Languages collection for MX (Canger, 2001), NH
(de Sudrez, 1980), WX (Gémez and Lépez, 1999),
and YN (Freeze, 1989). They were constructed
so they include both segmentable as well as non-
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Mexicanero | Nahuatl | Wixarika | Yorem N.
train 427 540 665 511
traingpre - 14.7K 16.6K -
dev 106 134 176 127
test 355 449 553 425

Table 1: Number of words in train, dev, test splits from
Kann et al. (2018) + additional Bible data

segmentable words to ensure that methods can
correctly decide against splitting up single mor-
phemes. However, as noted above, there is a
gradation of polysynthesis, so the delineation of
language types is not clear-cut. For these four
languages, the more agglutinative is WX; Leza
(2004) has observed 20 morphemes per word for
this language.

Each training, development and test example
consists of one word. Table 1 contains the count
of words in the training, development and test.
Unlike Kann et al. (2018), for training we do
not use the segmented version of the data (our
approach is unsupervised). In addition to the
datasets, for NH and WX we also have avail-
able the Bible (Christodouloupoulos and Steed-
man, 2015; Mager et al., 2018a), which we con-
sider for one of our experimental setups as ad-
ditional training data. In the dataset from (Kann
et al., 2018), the maximum number of morphemes
per word for MX is seven with an average of 2.13;
for NH, six with an average of 2.2; for WX, max-
imum of ten with an average of 3.3; and for YN,
the maximum is ten, with an average of 2.13.

3 Using Adaptor Grammars for
Polysynthetic Languages

An Adaptor Grammar is typically composed of
a PCFG and an adaptor that adapts the probabil-
ities of individual subtrees. For morphological
segmentation, a PCFG is a morphological gram-
mar that specifies word structure, where AGs learn
latent tree structures given a list of words. In
this paper, we experiment with the grammars and
the learning setups proposed by Eskander et al.
(2016), which we outline briefly below.
Grammars. We use the nine grammars from
Eskander et al. (2016, 2018) that were designed
based on three dimensions: 1) how the grammar
models word structure (e.g., prefix-stem-suffix vs.
morphemes), 2) the level of abstraction in non-
terminals (e.g., compounds, morphemes and sub-
morphemes) and 3) how the output boundaries are
specified (see Table 2 for a sample grammars).
For example, the PrStSu+SM grammar models the



Grammar Main Representation | Compound | Morph | SubMorph | Segmentation Level
Morph+SM Morph+ No Yes Yes Morph
PrStSu+SM Prefix+Stem-+Suffix No Yes Yes Prefix-Stem-Suffix

PrStSu+Co+SM Prefix+Stem+Suffix Yes Yes Yes Prefix-Stem-Suffix

Table 2: Sample grammar setups used by Eskander et al. (2018, 2016). Compound = Upper level representation
of the word as a sequence of compounds; Morph = affix/morpheme representation as a sequence of morphemes.
SubMorph (SM) = Lower level representation of characters as a sequence of sub-morphemes. “+” denotes one or

more.

word as a complex prefix, a stem and a com-
plex suffix, where the complex prefix and suffix
are composed of zero or more morphemes, and a
morpheme is a sequence of sub-morphemes. The
boundaries in the output are based on the prefix,
stem and suffix levels.

Learning Settings. The input to the learner
is a grammar and a vocabulary of unsegmented
words. We consider the three learning settings
in (Eskander et al., 2016): Standard, Scholar-
seeded Knowledge and Cascaded. The Standard
setting is language-independent and fully unsu-
pervised, while in the Scholar-seeded-Knowledge
setting, some linguistic knowledge (in the form
of affixes taken from grammar books) is seeded
into the grammar trees before learning takes place.
The Cascaded setting simulates the effect of seed-
ing scholar knowledge in a language-independent
manner by first running an AG of high precision
to derive a set of affixes, and then seeding those
affixes into the grammars.

3.1 AG Setups for Polysynthetic Languages

We experimented with several setups using AGs
for unsupervised segmentation.

Language-Independent Morphological Seg-
menter. LIMS is the best-on-average AG setup
obtained by Eskander et al. (2016) when trained
on six languages (English, German, Finnish, Es-
tonian, Turkish and Zulu), which is the Cascaded
PrStSu+SM configuration. We use this AG setup
for each of the four languages. We refer to this
system as AGrars-

Best AG Configuration per Language. In this
experimental setup, we consider all nine grammars
from Eskander et al. (2016) using both the Stan-
dard and the Cascaded approaches and choosing
the one that is best for each polysynthetic language
by training on the training set and evaluating on
the development set. We denote this system as
AGBestL-

Using Seeded Knowledge. To approximate
the effect of Scholar-seeded-Knowledge in Eskan-
der et al. (2016), we used the training set to de-
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rive affixes and use them as scholar-seeded knowl-
edge added to the grammars (before the learning
happens). However, since affixes and stems are
not distinguished in the training annotations from
Kann et al. (2018), we only consider the first and
last morphemes that appear at least five times. We
call this setup AGZcholar,

Multilingual Training. Since the vocabulary in
Kann et al. (2018) for each language is small, and
the languages are from the same language family,
one data augmentation approach is to train on all
languages and test then on each language individ-
ually. We call this setup AG prqi-

Data Augmentation. In this setup, we examine
the performance of the best AG configuration per
language (AG pestr,) when more data is available.
We merge the training corpus with unique words
in the New Testament of the Bible (trainpg;;.). We
run this only on NH and WX since the Bible text is
only available for these two languages. We denote
this setup as AG Ayg-

4 Evaluation and Discussion

We evaluate the different AG setups on the blind
test set from Kann et al. (2018) and compare our
AG approaches to state-of-the-art unsupervised
systems as well as supervised models including
the best supervised deep learning models from
Kann et al. (2018). As the metric, we use the
segmentation-boundary F1-score, which is stan-
dard for this task (Virpioja et al., 2011).
Evaluating different AG setups. Table 3
shows the performance of our AG setups on
the four languages. The best AG setup learned
for each of the four polysynthetic languages
(AG Bestr) is the PrStSu+SM grammar using the
Cascaded learning setup. This is an interesting
finding as the Cascaded PrSTSu+SM setup is in
fact AGrrprs — the best-on-average AG setup
obtained by Eskander et al. (2016) when trained
on six languages (English, German, Finnish, Esto-
nian, Turkish and Zulu). This achieves F1-scores
of 0.775, 0.744, 0.768 and 0.820 on MX, NH,



Language AGrins | AGpestr | AGaruie: | AGE [ AG auy | Morfessor | Morphochain
Mexicanero 0.775 0.775 0.770 0.798 - 0.528 0.283
Nahuatl 0.744 0.744 0.723 0.742 0.759 0.505 0.259
Wixarika 0.768 0.768 0.746 0.787 0.783 0.709 0.283
Yorem Nokki 0.820 0.820 0.775 0.804 - 0.549 0.351

Table 3: AG systems compared to unsupervised baselines. Bold indicates best scores

Language BestAG | S2S | CRF | BestMTT | BestDA
Mexicanero 0.798 0.862 | 0.864 0.879 0.868
Nahuatl 0.759 0.727 | 0.749 0.739 0.732
Wixarika 0.787 0.796 | 0.793 0.802 0.816
Yorem Nokki 0.820 0.773 | 0.774 0.808 0.792

Table 4: Best AG results compared to supervised approaches from Kann et al. (2018). Bold indicates best scores.

WX and YN, respectively. Seeding affixes into the
grammar trees (AG%‘Z;‘;%T) improves the perfor-
mance of the Cascaded PrStSu-+ SM setup only
for MX and WX (additional absolute F1-scores of
0.023 and 0.019, respectively). However, it does
not help for NH, while it even decreases the per-
formance on YN. This occurs because AGs are
able to recognize the main affixes in the Cascaded
setup, while the seeded affixes were either abun-
dant or conflicting with the automatically discov-
ered ones. The multilingual setup (AG pyq4;) does
not improve the performance on any of the lan-
guages. This could be because the datasets are too
small to generalize common patterns across lan-
guages. Finally, augmenting with Bible text in the
cases of NH and WX leads to an absolute F1-score
increase of 0.015 for both languages when com-
pared to AGpestr,. There are two possible expla-
nations for why we only see a slight increase when
adding more data: 1) AGs are able to generalize
from small data and 2) the added Bible data repre-
sents a domain that is different from those of the
datasets we are experimenting with as only 4.8%
and 9% of the words in the training sets from Kann
et al. (2018) appear in the augmented data of NH
and WX, respectively. Overall, AGp.s is the
best setup for YN, AGZ"9la is the best setup for
MX and WX, while AG 4,4 is the best for NH.

Comparison with unsupervised baselines.
We consider Mor fessor (Creutz and Lagus,
2007), a commonly-used toolkit for unsupervised
morphological segmentation, and M orphoChain
(Narasimhan et al., 2015), another unsuper-
vised morphological system based on construct-
ing morphological chains. Our AG approaches
significantly outperform both Mor fessor and
MorphoChain on all four languages, as shown
in Table 3.

Comparison with supervised baselines. To
obtain an upper bound, we compare the best
AG setup to the best supervised neural meth-
ods presented in Kann et al. (2018) for each lan-
guage. We consider their best multi-task approach
(BestMTT) and the best data-augmentation ap-
proach (BestDA), using F1 scores from their Ta-
ble 4 for each language. In addition, we report
the results on their other supervised baselines: a
supervised seq-to-seq model (525) and a super-
vised CRF' approach. As can be seen in Table
4, our unsupervised AG-based approaches outper-
form the best supervised approaches for NH and
YN with absolute F1-scores of 0.010 and 0.012,
respectively. An interesting observation is that for
YN we only used the words in the training set
of Kann et al. (2018) (unsegmented), without any
data augmentation. For MX and WX, the neural
models from Kann et al. (2018) (BestMTT and
BestDA), outperform our unsupervised AG-based
approaches.

Error Analysis. For the purpose of error anal-
ysis, we train our unsupervised segmentation on
the training sets and perform the analysis of re-
sults on the output of the development sets based
on our best unsupervised models AGpest1,. Since
there is no distinction between stems and affixes in
the labeled data, we only consider the morphemes
that appear at least three times in order to elimi-
nate open-class morphemes in our statistics.

We first define the degree of ambiguity of a
morpheme to be the percentage of times its se-
quence of characters does not form a segmentable
morpheme when they appear in the training set.
We also define the degree of ambiguity of a lan-
guage as the average degree of ambiguity of the
morphemes in that language. Table 5 shows the
number of morphemes, average length of a mor-
pheme (in characters) and the degree of morpheme
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Mexicanero | Nahuatl | Wixarika | Yorem Nokki
Number of Morphemes 343 479 434 424
Average Length of a Morpheme 3.17 3.16 3.19 3.40
Degree of Ambiguity 69.81% 73.97% | 74.49% 58.67%

Table 5: Morpheme-based Statistics

Language word Gold Segmentation AGBest 1 segmentation
Mexicanero tawanitika tawani+ti+ka tawani+tika
unipodero u-+ni+podero u-+ni+pode+ro
tikipiyal ti+ki+piya+l ti+ki+piya+l
Nahuatl nannechtlatlaniliake nan+nech+tla+tlanilia+’ke nan+nech+tlatla+nilia+’ke
omokokowaya o+mo+kokowa+ya o+mo-+kokowa+ya
Wixarika nep@tiwarutiwawiriwa | ne+p@+ti+watr+u+ti+wawi+tri+wa | ne+p@+ti+waru+ti+wawiriwa
pep @netsiuta pe+p @-+ne+tsi+u+ta pe+p @-+ne+tsi+u+ta
Yorem Nokki | BohoBareka Boho + Ba+ re+ ka Boho + Bare+ ka
haikimsu’e haiki+m+su+’e haiki+m+su+’e

Table 6: Examples of correct and incorrect segmentation

ambiguity in each language. Looking at the two
languages where our models perform worse than
the supervised models, we notice that MX has the
least number of morphemes, and our unsupervised
methods tend to oversegment; WX has the high-
est degree of ambiguity with a large number of
one-letter morphemes, which makes the task more
challenging for unsupervised segmentation as op-
posed to the case of a supervised setup. Analyz-
ing all the errors that our AG-based models made
across all languages, we noticed one, or a com-
bination, of the following factors: a high degree
of morpheme ambiguity, short morpheme length
and/or low frequency of a morpheme.

Examples. Table 6 shows some examples of
correctly and incorrectly segmented words by our
models (blue indicates correct morphemes while
red are wrong ones). For MX, our models fail
to recognize ka as a correct affix 100% of the
time due to its high degree of ambiguity (71.79%),
while we often wrongly detect ro as an affix, most
likely since ro tends to appear at the end of a word;
our approaches tend to oversegment in such cases.
On the other hand, our method correctly identify
ki as a correct affix 100% of the time since it ap-
pears frequently in the training data. For NH, the
morpheme fla has a high degree of ambiguity at
79.12%, which lead the model to fail in recog-
nizing it as an affix (see an example in Table 6).
On the other hand, NH has a higher percentage of
correctly recognized morphemes, due to their less
ambiguous nature and higher frequency (such as
ke, tl or mo). For WX, a large portion of errors
stem from one-letter morphemes that are highly
ambiguous (e.g., u, a, e, m, n, p and r), in addition
to having morphemes in the training set which are
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not frequent enough to learn from, such as ki,nua
and wawi (see Table 6). Examples of correct seg-
mentation involve morphemes that are more fre-
quent and less ambiguous (pe, p@ and ne). For
YN, ambiguity is the main source of segmentation
errors (e.g., wa, wi and f3a).slight

5 Conclusions

Unsupervised approaches based on Adaptor
Grammars show promise for morphological seg-
mentation of low-resource polysynthetic lan-
guages. We worked with the AG grammars de-
veloped by Eskander et al. (2016, 2018) for lan-
guages that are not polysynthetic. We showed that
even when using these approaches and very little
data, we can obtain encouraging results, and that
using additional unsupervised data is a promising
path.
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