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Abstract

Recent work has looked at evaluation of phone
embeddings using sound analogies and corre-
lations between distinctive feature space and
embedding space. It has not been clear what
aspects of natural language phonology are
learnt by neural network inspired distributed
representational models such as word2vec.
To study the kinds of phonological relation-
ships learnt by phone embeddings, we present
artificial phonology experiments that show
that phone embeddings learn paradigmatic re-
lationships such as phonemic and allophonic
distribution quite well. They are also able
to capture co-occurrence restrictions among
vowels such as those observed in languages
with vowel harmony. However, they are un-
able to learn co-occurrence restrictions among
the class of consonants.

1 Introduction

Over the last few years, distributed represen-
tation models based on neural networks such
as word2vec (Mikolov et al.,, 2013a) and
GloVe (Pennington et al., 2014) have been of
much importance in speech and natural language
processing (NLP). The word2vec technique is
a shallow neural network that takes a text corpus
as input and outputs a vector space containing all
unique words in the text. The dense vector rep-
resentations of words induced using word2vec
have been shown to capture multiple degrees
of similarities between words. Mikolov et al.
(2013a,b) show that word embeddings can solve
word analogy questions and sentence completion
tasks. Mikolov et al. (2013b) show that word
embeddings represent words in continuous space,
making it possible to perform algebraic opera-
tions, such as vector(King) — vector(Man) + vec-
tor(Woman) = vector(Queen). Considerable atten-
tion has been paid to evaluating these vector rep-
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resentations using human judgement datasets (Ba-
roni et al., 2014; Levy et al., 2015). Asr and Jones
(2017) use artificial language experiments to study
the difference between similarity and relatedness
in evaluating distributed semantic models. Phone
embeddings induced from phonetic corpora have
been used in tasks such as word inflection (Sil-
fverberg et al., 2018) and sound sequence align-
ment (Sofroniev and Coltekin, 2018). Silfverberg
et al. (2018) show that dense vector representa-
tions of phones learnt using various techniques are
able to solve analogies such as p is to b as t is to
X, where X = d. They also show that there is a
significant correlation between distinctive feature
space and the phone embedding space.

Our goal in this paper is to understand better the
evaluation of phone embeddings. We argue that
significant correlation between distinctive feature
space and phone embedding space cannot be auto-
matically interpreted as the model’s ability to cap-
ture facts about the phonology of natural language.
Since many distinctive features tend to be pho-
netically based, natural classes denoted by these
features capture phonetic facts as well as phono-
logical facts. For example, the feature [+long]
denotes the distinction between long and short
vowels, which is a language-independent phonetic
fact. But, whether this distinction is a phonolog-
ical fact varies from language to language. It is
important to make this distinction between pho-
netic facts and phonological facts when evaluating
phone embeddings for their learning of phonology.
In this paper, we propose an alternative method-
ology to evaluate word2vec’s ability to learn
phonological facts. We define artificial languages
with different kinds of phoneme-allophone dis-
tinctions and co-occurrence restrictions and study
how well phone embeddings capture these rela-
tionships. Several interesting insights regarding
the relationship between phonetics and phonol-
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ogy, the role of distinctive features and the task of
distinctive feature/phoneme induction accrue from
our experiments.

2 Background and Related work

One major difference between words and phones
is that while words are meaningful units in lan-
guage, phones have no meaning in themselves.
However, as with words, there are clear patterns of
organization of individual phones in a language.
One well-known pattern in phonology is the dis-
tinction between contrastive and complementary
distribution. Two phones are said to be in con-
trastive distribution if they occur in the same con-
text and create a meaning contrast. For example,
b and k occur in word-initial position and create
a contrast in meaning, such as in baet versus kaet.
This is why they are considered distinct phonemes
in the language. On the other hand, p" and p never
occur in the same context, which is referred to as
being in complementary distribution. Since they
are phonetically related, they are considered allo-
phones, variants of the same underlying phoneme.
The notions of contrastive and complementary dis-
tribution are purely based on context. They can
be considered instances of paradigmatic similar-
ity discussed in the distributed semantic literature.
Allophony also involves the notion of phonetic
similarity. Another pattern in natural language
phonology is that of co-occurrence restrictions.
A well-known example is homorganic consonant
clusters. For example, in nasal plus stop clusters,
the nasal must have identical place of articulation
to the following stop. Yet another example of
co-occurrence restriction in phonology is the phe-
nomenon of vowel harmony. In some languages,
a word can only have vowels which agree with re-
spect to certain features, such as backness, round-
ing or height. Co-occurrence restrictions can be
considered to be instances of syntagmatic similar-
ity whereby words that frequently occur together
form a syntagm (phrase). Again, most types of co-
occurrence restrictions involve phonetic similarity.

The traditional method to describe phones
in phonology is in terms of distinctive fea-
tures (Jakobson et al., 1951). Distinctive features
allow phones to be grouped into natural classes,
which are established on the basis of participa-
tion in common phonological processes. They
allow for generalizations about phonotactic con-
texts to be captured in an economical way. In ad-
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dition to distinctive features in phonology, there
are also phonetic features that describe the artic-
ulatory and acoustic properties of phones (Lade-
foged and Johnson, 2010). However, in practice,
there is considerable overlap between phonologi-
cal distinctive features and phonetic features. This
already poses an interesting question about the
nature of the relationship between phonetics and
phonology, which as we will see, is relevant to the
evaluation of phone embeddings.

Next, let us examine the notion of correlation
between distinctive feature space and phone em-
bedding space to evaluate phone embeddings as
proposed by Silfverberg et al. (2018). Pair-wise
featural similarity is estimated using a metric such
as Hamming distance or Jaccard index applied to
feature representations of phones. Pair-wise con-
textual similarity is estimated as cosine similar-
ity between phone embeddings induced using a
technique like word2vec. The correlation be-
tween pairwise featural similarity and pairwise
contextual similarity is estimated using Pearson’s
r or Spearman’s p. The value of this correla-
tion is shown for a number of languages in ta-
ble 1. Data for Shona and Wargamay are taken
from Hayes and Wilson (2008)'. Similar datasets
were constructed for Telugu and the Vedic va-
riety of Sanskrit>. For English, the CMU pho-
netic dictionary was used with a feature represen-
tation based on Parrish (2017) with some minor
extensions. The word2vec implementation in
the Gensim toolkit (Rehiifek and Sojka, 2010) was
used to induce phone embeddings using the fol-
lowing parameters- CBOW, dimensionality of 30,
window size of 4, negative sampling of 3, mini-
mum count of 5, learning rate of 0.05. We use
CBOW which predicts the most likely phone given
a context of 4 phones in either direction as this is
intuitively similar to the task of a phonologist. It
would be interesting to compare CBOW and Skip-
gram architectures and also, study the effect of dif-
ferent parameters on this correlation between dis-
tinctive feature space and phone embedding space.
However, this is not the goal of our study. In this
paper, we restrict our attention to the linguistic sig-
nificance of this correlation.

All languages in Table 1 show a significant pos-
itive correlation between distinctive feature space

"https://linguistics.ucla.edu/people/
hayes/Phonotactics/index.htm#simulations

"Datasets and code available at https://github.
com/skolachi/sigmorphoncode
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Language  Size Pearson  Spearman
English 135091  0.589 0.612
Shona 4395 0.431 0.575
Telugu 19627  0.349 0.350
Wargamay 5910 0.411 0.428
Vedic 45334  0.351 0.285
English 4000 0.129 0.161
Shona 4000 0.507 0.533
Telugu 4000 0.202 0.206
Wargamay 4000 0.219 0.387
Vedic 4000 0.146 0.159

Table 1: Correlation between distinctive feature space
and embedding space, all values significant (p < 0.01)

and embedding space. What is the physical inter-
pretation of this correlation? Firstly, it is impor-
tant to note the use of this correlation to evaluate
phone embeddings presupposes that these hand-
crafted distinctive features are the gold standard
descriptions of the phonology of these languages.
Even if this were the case, the kind of distinc-
tive features used to describe phones plays an im-
portant role in the interpretation of this correla-
tion. If feature specifications of phones are based
mostly on their phonetic properties, a positive cor-
relation between featural space and embedding
space indicates that phonetically similar phones
tend to occur in similar contexts. In other words,
the natural classes of phonology are tightly con-
strained by phonetics. To illustrate this point, we
take the example of Wargamay natural classes de-
rived from the distinctive features of Hayes and
Wilson (2008) shown in Table 2. Examining
the pairwise cosine similarities of phones based
on embeddings induced by word2vec in the
agglomerative clustering (WPGMA) dendrogram
heatmap shown in Figure 1, word2vec CBOW
embeddings identify the following natural classes-
iil, wul, aal ([+long, +main,+stress|), il,
ul, al ([—long,+main,+stress]), i2, u2,
a2 ([~long, —main,+stress]), i0, u0, a0
([~long, —stress]) and [—syllabic] which de-
notes the set of all consonants. Among the set of
consonants, the velar consonants N, g ([+dorsal])
show up in the same cluster, as do the bilabials b
and m. Sonorant consonants like R, 1, n, w form
one cluster and [+approzimant] r, y form another
cluster. Notice that all these classes are based on
place and manner of articulation. Therefore, it is
not clear if the observed clustering is to interpreted
as the model’s learning of phonology or the fact
phonetic features strictly constrain the contexts in
which phones occur. Furthermore, as with word
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meaning, when embeddings of two phones show
high similarity, it is not clear if it is an instance of
paradigmatic similarity (phonemic relationship) or
syntagmatic similarity (co-occurrence restriction).

Feature Class

-high a0,al,a2,aal

+high 10,i1,i2,iil,u0,ul,u2,uul,w,y

+long aal,iil,uul

-long a0,al,a2,i0,i1,i2,u0,ul,u2

+back a0,al,a2,aal,u0,ul,u2,uul,w

-back i0,11,i2,1il,y

-approximant N,b,d,g.j,m,n,nj

+approximant R,a0,al,a2,aal,i0,i1,i2,iil,L,r,u0,ul,u2,uul,w,y
-sonorant b.d,g.j

+sonorant
+syllabic
-syllabic
+main

-main
+stress
-stress
-consonantal
+consonantal
+anterior
-anterior
+lateral
-lateral
+coronal
+dorsal
+labial

N,R,a0,al,a2,aal,i0,i1,i2,iil,],m,n,nj,r,u0,ul,u2,uul,w,y
a0,al,a2,aal,i0,i1,i2,iil,u0,ul,u2,uul
N,R,b,d,g.j,I,m,n,nj,r,w,y
al,aal,il,iil,ul,uul

a0,a2,i0,i2,u0,u2
al,a2,aal,il,i2,iil,ul,u2,uul

a0,i0,u0
a0,al,a2,aal,i0,il,i2,iil,u0,ul,u2,uul,w,y
N,R,b,d,g.j,l,m,n,nj,r

d,In,r

Ry

1

R,
R.d,j,l,n,nj,ry
Ng
b,m

Table 2: Natural classes derived from distinctive fea-
tures
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Figure 1: Phone clusters of Wargamay

Asr and Jones (2017) use an artificial language
experiment to study the difference in performance
of word embeddings between paradigmatic and
syntagmatic tasks. In section 3, we propose a simi-
lar approach to study word2vec’s ability to learn



different kinds of phonological patterns. While
natural language phonology can be complex with
many interleaved phenomena, artificial language
phonology makes it possible to test learning of
each pattern independently. In addition, previous
work on phonological learning such as Hayes and
Wilson (2008) assumes that distinctive features
exist a priori. In our experiments with artificial
languages, we explore the possibility of deriving
distinctive features from phone embeddings which
capture contextual distributions of phones.

3 Learning artificial phonology with
word2vec

In this section, we present experiments with
word2vec on learning artificial languages with
different kinds of phonological relationships. The
languages studied in this experiment are described
below. The minimal word is bimoraic CVC. The
maximum word length is set at three syllables.
Word boundary is indicated using #.

1. Language 1 contains only open (CV) syl-
lables in polysyllabic words. Monosyllabic
words are all CVC. The set of possible con-
sonants is p t k and the set of possible vowels
isaeiou.

Language 2 is the same as Language 1 with
the difference that intervocalic consonants
are voiced- b d g instead of p t k. In other
words, there is allophonic variation within
the class of consonants.

. Language 3 is the same as Language 2 with
the following differences: Final syllables in
polysyllabic words are optionally closed, that
is, codas are allowed. Word-initial conso-
nants are aspirated, P T K. Word-final con-
sonants are voiceless p t k. Thus, an addi-
tional degree of allophony for consonants is
introduced.

Language 4 is the same as Language 3 with
the addition of nasal codas: m n N (3) in all
syllables. In the final syllable, the nasal and
the voiceless stop form a coda cluster.

. Language 5 is the same as Language 4 with
the difference that nasal codas are optional.
This language is the union of Languages 3
and 4.
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6. Language 6 is the same as Language 5 with
a restriction on nasal coda based on the place
of articulation of the following voiced conso-
nant. In other words, only mb nd Ng combi-
nations are allowed.

. Language 7 is the same as Language 6 with
the addition that r is optionally allowed fol-
lowing a voiced consonant. In other words,
onset clusters br dr gr are permitted in me-
dial syllables.

Language 8 is the same as Language 7
with the addition that a sibilant s is option-
ally allowed in the coda position of the fi-
nal syllable. This language allows a vari-
ety of contexts in the final syllable- voiceless
stops, nasals and nasal+4stop clusters, sibi-
lant s, sibilant+-stop clusters sp st sk and also
nasal+-sibilant+-stop clusters.

. Language 9 is the same as Language 8 with
the restriction that the nasal + sibilant +
voiceless stop cluster in coda position must
be homorganic- only nst is allowed.

10. Language 10 is the same as Language 9 with
the restriction that only high vowels i u can

occur in initial syllables.

11. Language 11 is the same as Language 10
with the difference that it has vowel harmony
with respect to backness. Thus, words can
only have either [—back] (front) vowels i e or

[+back] vowels u o.

12. Language 12 is the same as Language 11
with the difference that the transparent vowel
a is permitted in non-initial syllables of poly-

syllabic words.

Phone embeddings were induced using the
same parameters as in the previous section-
CBOW, dimensionality 30, context window 4,
negative sampling 3, minimum count 5 and learn-
ing rate 0.05. The number of words in each lan-
guage is shown in table 3, alongside the correla-
tions between distinctive feature space and embed-
ding space. A set of distinctive features similar to
those of Hayes and Wilson (2008) are used to es-
timate these correlations. Since the value of co-
sine similarity is bounded on [—1, 1], we also use
Euclidean distance to estimate correlation between
contextual similarity based on phone embeddings



and featural similarity. We will return to the issue
of the significance of these correlations shortly.

Language size Pearson’s r
Cosine | Euclidean
Language 1 3645 0.873 0.882
Language 2 3645 0.632 0.408
Language 3 14445 0.573 0.396
Language 4 372780 | 0.477 | 0.362
Language 5 878625 | 0.470 0.354
Language 6 139635 | 0.503 0.343
Language 7 549135 | 0.500 0.305
Language 8 988455 | 0.394 0.263
Language 9 878625 | 0.421 0.254
Language 10 | 351450 | 0.481 0.286
Language 11 | 57690 0.476 0.277
Language 12 | 127962 | 0.430 0.209

Table 3: Correlation between embedding and distinc-
tive feature space, all values significant at p < 0.01

As can be noticed from the descriptions, each
language defines different sets of equivalence re-
lations among phones based on the contexts in
which they occur. For example, in Language 3,
aspirated stops occur word-initially, voiced stops
occur inter-vocalically and voiceless stops occur
word-finally. The task of phonology is to capture
generalizations about these natural classes. No-
tice that although these natural classes are based
on phonetic features such as aspiration and voic-
ing, word2vec has no access to these features.
The goal of our experiments is to investigate the
extent to which these natural classes can be in-
ferred solely based on phone embeddings. The
embedding space for each language is visualized
using T-distributed Stochastic Neighbor Embed-
ding (t-SNE) plots. Multiple plots were gener-
ated for different values of perplexity and learn-
ing rate using the implementation in scikit-learn
toolkit (Buitinck et al., 2013). The plots shown in
Figure 2 correspond to perplexity 3 and learning
rate 100. In addition, phone clusters derived us-
ing agglomerative clustering of cosine similarities
between phone embeddings are also shown. Eu-
clidean distance was used to plot the dendrogram
heatmaps?.

From the plots, we observe that phone embed-
dings capture the different context classes with
varying degrees of success. Languages 1-3 were
designed with unique contexts for each class of
phones and the embeddings show clear separa-
tion between these classes. In Language 4-5,

3The interpretation of these distance-based heatmaps dif-
fers from the cosine similarity-based heatmap of Wargamay
presented in the previous section.
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where nasal codas are allowed, the t-SNE plot
shows less separation between nasal codas and
word-initial aspirated voiceless stops. This is due
to the fact that in monosyllabic words, aspirated
stops and nasals co-occur within the same con-
text (bimoraic) window. This is an unintended
co-occurrence restriction learnt by word2vec.
However, this pattern in monosyllabic words has
no effect on the phone clusters in the dendro-
gram. Nasals and aspirated stops form separate
clusters in the dendrogram. In Language 6, a co-
occurrence constraint that nasal obstruent clusters
be homorganic was introduced. Interestingly, the
t-SNE plot for this language has nasals showing
up with vowels. The syntagmatic relationship (co-
occurrence restriction) between nasals and homo-
organic voiced obstruents introduced in this lan-
guage is not seen in the t-SNE plot of the em-
bedding space. But, the dendrogram heatmap
for this language shows nasals and voiced obstru-
ents forming a high-level cluster. It is plausible
that with hyperparameter tuning, co-occurrence
restrictions such as nasal-voiced obstruent clusters
are captured even in the t-SNE plots of embedding
space. Co-occurrence restrictions in phonology
are much more rigid than word relatedness since
the size of the phone inventory in a language is
many degrees smaller than the size of the vocabu-
lary.

A similar pattern is observed with languages 7,
8 and 9, where other kinds of co-occurrence re-
lations between consonants are introduced. The
t-SNE plot for Language 7 fails to capture the on-
set clusters br dr gr introduced in this language.
The lateral r shows up with the word boundary.
The dendrogram for this language fails to recover
word-initial aspirated stops as a separate class. In
Language 8, the introduction of the optional sibi-
lant in the coda position of the final syllable has a
same effect on the embedding space as visualized
by the t-SNE plot. Nasals, aspirated stops, lat-
eral, sibilant and word boundary are less separated
in the t-SNE plot. In the dendrogram plot, the
sibilant forms a cluster with the nasals and word
boundary. Both the t-SNE and dendrogram plots
for Language 9 are almost identical to those Lan-
guage 8 indicating that the homorganic restriction
on nasal sibilant voiceless stop clusters in the fi-
nal syllable has no effect on the embedding space.
In other words, phone embeddings are unable to
learn these co-occurrence restrictions. Languages
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10-12 introduce contextual restrictions on vowels.
In Language 10, only high vowels occur in the
word-initial position and phone embeddings cap-
ture this distinct class of vowels as shown by the
dendrogram heatmap. Languages 11 and 12 show
a similar pattern with respect to a different fea-
ture, backness. Both of them are harmony lan-
guages, which still obey the constraint that vow-
els in initial syllables must be [+high|. Inter-
estingly, vowels cluster with respect to [tback]
rather than [+high] as can be seen from the plots.
Evidence for agreement between vowels with re-
spect to backness is three times more frequent than
the evidence with respect to agreement between
vowels in initial syllable with respect to height.
Although vowel harmony is also an instance of co-
occurrence restriction (syntagmatic relationship),
word2vec infers these classes accurately. The
number of vowels in a language tends to be much
lower than the number of consonants. And there-
fore, it seems that a co-occurrence restriction be-
tween vowels is a relatively larger sample of the
set of all possible vowel sequences (555 = 125
in this language) compared to a co-occurrence re-
striction between two or more consonants. The
transparent vowel a has no effect on the distances
between the other vowels in Language 12.

The ability of phone embeddings to learn
phonology in our artificial language experiments
can be summarized as follows-

1. Phone embeddings are able to capture
paradigmatic relationships among phones
very well. For example, word-initial aspi-
rated stops, intervocalic voiced stops, word-
final voiceless stops and vowels are recovered
as separate classes in most languages.

Phone embeddings are also able to cap-
ture positional restrictions as well as co-
occurrence restrictions on vowels as shown
by Languages 10-12.

. Phone embeddings are not able to cap-
ture co-occurrence restrictions among conso-
nants such as homorganic nasal-voiced ob-
struent clusters, voiced obstruent-lateral clus-
ter and homorganic nasal-sibilant-voiceless
stop clusters. This observation is similar to
one reported in the distributed semantic liter-
ature that word embeddings capture similar-
ity better than relatedness (Asr et al., 2018).
Based on insights from the word embedding
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literature, context embeddings denoted by the
hidden to output layer weight matrix, are
supposed to be able to capture better syn-
tagmatic relationships like co-occurrence re-
strictions. In addition, it is plausible that
these co-occurrence restrictions among con-
sonants can be learnt using autosegmental
tier-based representations. We leave this in-
vestigation to future work.

4 Distinctive Features and Phoneme
Induction

The main argument of this paper is that phone
embeddings should be evaluated in terms of their
ability to capture phonological relationships. Ap-
plying this bottom-up approach to natural lan-
guage phonology is not straightforward since the
full set of phonological relationships is not known
beforehand. Even the method of evaluating phone
embeddings using the correlation between distinc-
tive feature space and phone embedding space, as
mentioned earlier, presupposes that the gold stan-
dard specification of distinctive features for that
particular language is known. However, this is sel-
dom the case. Natural languages are highly com-
plex with processes such as borrowing, loanword
adaptation and language changes such as drift.
This is why experimenting with artificial phonol-
ogy can be informative.

The artificial languages in our experiment had
increasing levels of complexity, since the goal was
to tease apart learnability of different phenomena.
Recall that a fixed set of distinctive features along
the lines of Hayes and Wilson (2008) was used
to estimate the correlation between distinctive fea-
ture space and phone embedding space. Notice in
table 3 that the value of this correlation goes down
as we move from Language 1 to Language 12 re-
gardless of the distance metric used to estimate
distance between embeddings. Unlike the cross-
linguistic comparison in section 2, the distinctive
features are the same across languages. We ob-
serve that as the size of the phone inventory and
the number of distinct context classes increase,
the degree of correlation between feature space
and embedding space decreases. How can this
trend be accounted for? Examining the distances
in the clustermaps, we observe that as the num-
ber of context classes goes up, intra-phone dis-
tances, especially among the class of consonants
tend to increase. This can be noticed by comparing



the clusters corresponding to voiceless consonants
and vowels between Language 1 and Language 12.
Given the continuous space nature of phone em-
beddings and the dimensionality reduction prop-
erty of word2vec, this is expected. When the
weights of the neural network corresponding to a
particular phone or phone-sequence are adjusted,
the changes affect similar items (Mikolov et al.,
2013b). This inverse “dispersion” effect is also
relevant to the correlation between distinctive fea-
ture space and embedding space- the value of fea-
tural distance between phones is constant across
languages when estimated using a fixed distinctive
feature representation. But, as the number of con-
text classes increases, distances between phone
embeddings increase and the cumulative effect on
the correlation between phonetic space and em-
bedding space is downward. Thus, this correla-
tion value clearly cannot be used as an evalua-
tion metric for cross-linguistic comparison. Even
within a language, a higher correlation value does
not necessarily indicate better learning of phonol-
ogy/phonetics. Rather it indicates a low inverse
dispersion effect. One way to interpret the results
of Silfverberg et al. (2018, pp.140) is that phone
classes based on context are much less spread out
in embedding space when learnt using supervised
RNN compared to word2vec. At best, this can
be interpreted as a difference in the dimensionality
reduction properties of the two techniques.

This also raises an interesting question about
the degree of specification of phones. Phonolo-
gists assume a language independent feature spec-
ification of phones. The results of our experiments
suggest the following possibility- could the granu-
larity of feature specification be dependent on how
separable the different classes of phones are in em-
bedding space? In other words, do learners infer
distinctive features of phones based on the con-
texts in which they occur? If certain phone classes
can be inferred purely based on context, phonetic
features that distinguish these classes can be un-
derspecified. For example, in Language 10, the
difference between high and non-high vowels in a
language could be inferred based on context. For
such a language, is it necessary to include height
([fhigh]) as a distinctive feature? Intuitively, the
task of distinctive feature induction is related to
phoneme induction.

A quantitative approach to phoneme induction
based on phone embeddings and phonetic features
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Figure 3: Contextual distance versus Phonetic distance

can be outlined as follows. If embeddings of two
phones show low similarity (or high distance),
their contexts are very different. If the phones
show a high degree of phonetic similarity, then this
is very likely to be a case of allophony. If embed-
dings of two phones show high degree of similar-
ity (or low distance), then their contexts are very
similar. If the phones show low degree of phonetic
similarity, these are clearly two distinct phonemes
in the language. If the phones also show a high
degree of phonetic similarity, then this could be
either an instance of a phonemic relationship or a
co-occurrence restriction. The feature specifica-
tions of such phones can be compared to discover
distinctive features of phonology. If no such fea-
ture is found, it means the default phonetic fea-
ture specification is too coarse-grained. If more
than one distinctive feature is found, the feature
specification is too fine-grained. The exact feature
corresponding to the contrast between two phones
can be discovered by iterating over the full set of
features of the two phones and checking if leaving
out a particular feature leads to a drop in the over-
all correlation between distinctive feature space
and embedding space. These ideas are illustrated
by the plots in Figures 3 and 4. Figure 3 shows
a scatter plot of phone pairs along the phonetic
distance-contextual distance axes for Language 3
in the artificial language experiment. Allophonic
phone pairs such as P-p, p-b, T-t, t-d, K-k, k-g,
etc. show up at the top left corner of the scatter
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plot. The phonetic feature specifications of these
pairs can be compared to discover that voicing and
aspiration are not phonemic in this language. Sim-
ilarly, phone pairs that show up at the bottom left
corner of this plot such as the 10 pairs of vow-
els and P-T, P-K, K-T, p-t, t-k, p-k, b-d, d-g
and g-b are all phonemic contrasts. The phonetic
specifications of these phone pairs can be com-
pared to discover that both height and backness are
contrastive for vowels and place of articulation is
contrastive for consonants. The remaining phone
pairs in the top right corner of the scatter plot are
all phonemic contrasts. However, they might not
yield any new distinctive features. The bar plot
in Figure 4 is another way of visualizing the use-
fulness of distances between phone embeddings to
identify phonemic versus allophonic relationships.
We define allophonic index as the ratio of contex-
tual distance estimated using phone embeddings
to phonetic distance. The higher the value of this
index for a phone pair, the more likely the pair
is to be allophonic. The sorted bar plot in Fig-
ure 4 corresponding to artificial Language 3 shows
allophonic pairs at the right edge and phonemic
pairs at the left edge. A precise formulation of
a phoneme/distinctive feature induction algorithm
based on these metrics is reserved for future work.

5 Conclusions and Future work

This paper presents a discussion of evaluation of
phone embeddings. Artificial language experi-
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ments are used to study word2vec’s ability to
learn different kinds of phonological relationships.
The results show that phone embeddings are able
to capture phonemic and allophonic relationships
quite well. Phone embeddings are also able to
capture co-occurrence restrictions among vowels
found in harmony languages. Phone embeddings
do not perform well on capturing co-occurrence
restrictions among consonants. The experimen-
tal results also show an interesting correlation be-
tween size and complexity of phone inventory
and magnitude of inter-phone distances based on
phone embeddings. An analysis of the limitation
of correlation between embedding space and dis-
tinctive feature space to evaluate phone embed-
dings for their learning of phonology is also pro-
vided. The analytical framework presented here
and the proposal for distinctive feature induction
will be developed in future work and can be ap-
plied to diverse problems ranging from bootstrap-
ping pronunciations of OOV words in ASR to
modeling historical phonology. A similar analysis
of sound analogies is required to better understand
their significance to phonology.
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