
Proceedings of the 13th Linguistic Annotation Workshop, pages 155–165
Florence, Italy, August 1, 2019. c©2019 Association for Computational Linguistics

155

One format to rule them all –
The emtsv pipeline for Hungarian

Balázs Indig1,2, Bálint Sass1, Eszter Simon1,
Iván Mittelholcz1, Noémi Vadász1, and Márton Makrai1

1Research Institute for Linguistics, Hungarian Academy of Sciences
1lastname.firstname@nytud.mta.hu

2Centre for Digital Humanities, Eötvös Loránd University
2lastname.firstname@btk.elte.hu

Abstract

We present a more efficient version of
the e-magyar NLP pipeline for Hungar-
ian called emtsv. It integrates Hungarian
NLP tools in a framework whose individual
modules can be developed or replaced inde-
pendently and allows new ones to be added.
The design also allows convenient investiga-
tion and manual correction of the data flow
from one module to another. The improve-
ments we publish include effective communi-
cation between the modules and support of the
use of individual modules both in the chain
and standing alone. Our goals are accom-
plished using extended tsv (tab separated val-
ues) files, a simple, uniform, generic and self-
documenting input/output format. Our vision
is maintaining the system for a long time and
making it easier for external developers to fit
their own modules into the system, thus shar-
ing existing competencies in the field of pro-
cessing Hungarian, a mid-resourced language.
The source code is available under LGPL 3.0
license1.

1 Introduction

The e-magyar processing system (Váradi et al.,
2018) integrates the state-of-the-art Hungarian
NLP tools into a single, easy-to-use, maintained,
and updated system. It has been designed to fa-
cilitate both research and application-oriented pro-
cessing with the important goal of the system be-
ing fully open for research purposes, thus encour-
aging future expansion, but also being easy for
the non-NLP audience to use, and to become a
good experimental tool, delivering the best perfor-
mance available, regarding both processing speed
and correctness.

Since its publication, the system has become
popular and widely used in the Hungarian NLP

1https://github.com/dlt-rilmta/emtsv

community. Attempts have also been made to an-
alyze large corpora with it, such as the Hungar-
ian Webcorpus (Halácsy et al., 2004) and the Hun-
garian Gigaword Corpus (Oravecz et al., 2014).
This work led to the discovery of previously un-
known errors and weaknesses, which were taken
into account in our developments. In this article,
we present our work with two aspects emphasized:
the unified communication format and the archi-
tecture design.

In the first version of e-magyar, the inter-
modular communication format was the inter-
nal xml format of GATE (Cunningham et al.,
2011), into which the Hungarian system was in-
tegrated. However, user experience showed that
most users do not know or want to use the GATE
system for their work: users with linguistic inter-
est found it inconvenient, while for those with a
technical background, it was unnecessarily cum-
bersome. In many cases, GATE introduces unnec-
essary complexity regarding installation, debug-
ging, the format, and resource demand, due to the
xml-based standoff annotation (see Section 3),
which in many cases undermines stability. There-
fore, we voted for the development of a new, stan-
dard and GATE-independent inter-modular com-
munication format opening the way to use exist-
ing devices as separate modules or with transpar-
ent inter-modular messages. The format also sim-
plifies the manual modification of inter-modular
content. Available tools, even those independent
of their programming language, become easier to
integrate into the system.

Another focus of the development was on
rethinking the architecture design. Modules
which were available before the creation of
e-magyar were written in various programming
languages, following different linguistic annota-
tions, and lacking a modularized and transparent
structure. In contrast, our principles are unifor-

https://github.com/dlt-rilmta/emtsv


156

mity, interoperability, comparability, and the inter-
changeability of individual modules (e.g. when a
new candidate performs better).

In this article, we show how we converted the
tools of the previous e-magyar version follow-
ing the UNIX toolbox philosophy: “each does one
thing and each does it very well”. Restructured
modules are supposed to be able to both oper-
ate independently of each other or interacting, as
needed. Also sections of the pipeline can be run,
i.e. users can enter or exit at any point and can
modify the data manually, as long as they adhere
to format requirements, which are natural and pro-
gramming language agnostic by design from the
beginning.

Design properties of other processing chains
were kept in mind during the development of
emtsv for the sake of comparability. Other sys-
tems mostly take strictly a single natural language
as their starting point, but then they are extended
to be multilingual or even intended to be universal
afterwards. Some of them go with changed needs,
which now favor scalable cloud-based technolo-
gies – dubbed microservices – that do not require
end user installation: the chain is provided as a
service, sometimes without source code.

In parallel with the development, the poten-
tial use of emtsv was also contemplated. For
instance, emtsv could be profitable for pre-
annotating tasks in corpus building. Thanks
to the high performance of the modules, pre-
analyzing the text could shorten and ease the oth-
erwise expensive and protracted human annota-
tion. Furthermore, the modular architecture of
the toolchain allows us to exit at a certain point
of the analysis, carry out some manual correc-
tion in the data, and then enter the chain again
putting the data back to emtsv. Let us take an
imaginable workflow as an illustrative example.
Firstly, the output of tokenization and tagging is
corrected manually for a revised, finer input for the
dependency parser, the second step of the work-
flow. Therefore, the effect of occurrent errors from
the tokenizer or the part of speech (POS) tagger
could be eliminated. It is worth to mention, that
since the dependency parser allocates ID numbers
to each token, modifications in tokenization (in-
serting, deleting, splitting, or joining tokens) do
not cause complications in token numbering. At
the end of the workflow, the output of the depen-
dency parser is converted into the CoNLL-U for-

mat2, which is edible for widely-used annotation
and visualization tools, e.g. allowing to carry out
further corrections in the dependency graph in a
drag-and-drop manner.

In Section 2, we present the currently available
language processing systems similar to emtsv for
the sake of comparison. Section 3 describes our
extended tsv format, Section 4 gives an overview
of the architecture, while Section 5 presents the in-
dividual modules. Section 6 summarizes the paper
and Section 7 presents future work.

2 Related Work

As an NLP pipeline primarily for Hungarian,
emtsv can be compared to Magyarlánc (Zsib-
rita et al., 2013), currently in version 3.0, and the
hun* toolchain3. Though there are overlaps be-
tween the modules of the compared chains, here
we focus on the structure of the chain as a whole,
which is, to some extent, independent of the indi-
vidual modules.
Magyarlánc provides a Java-based, tightly

coupled chain, using the latest international state-
of-the-art modules. It is suitable for annotating a
large amount of Hungarian text with detailed and
proper linguistic analysis, but the modification of
the system (e.g. adding possible new modules or
replacing existing ones) is cumbersome.

The most relevant modules of the hun*
toolchain are the HunToken4 sentence and
word tokenizer (written in Flex and Shell), the
HunMorph morphological analyzer (Trón et al.,
2005) (w. in OCaml), the HunPOS POS tagger
(Halácsy et al., 2006) (w. in OCaml), the HunNER
named entity recognizer (Varga and Simon, 2007)
(w. in Python), and the HunTag sequential tag-
ger (Recski and Varga, 2009) (w. in Python). The
hun* chain and emtsv share several properties:
the loosely coupled architecture, the tsv format,
the heterogenity of programming languages ap-
plied for the development of the modules, and the
open source availability. However, hun* only
works with Latin-2 character encoding and its di-
rect development has discontinued.

There are several examples of systems simi-
lar to Magyarlánc on the international scene,
which usually suffer from similar shortcomings

2http://universaldependencies.org/
format

3https://hlt.bme.hu/en/resources/
hun-toolchain

4https://github.com/zseder/huntoken

http://universaldependencies.org/format
http://universaldependencies.org/format
https://hlt.bme.hu/en/resources/hun-toolchain
https://hlt.bme.hu/en/resources/hun-toolchain
https://github.com/zseder/huntoken


157

mentioned above. At the same time, they have
merits like being language independent (or at least
supporting many natural languages), fast or able
to process large amounts of data. Currently we
do not intend to compete with all of these aspects,
but focus on producing the best results for Hungar-
ian the most efficiently, and creating a format that
is close to standards and easy to convert to other
ones. We want to give full control to the user by
creating a loosely coupled system. The point here
is to involve the community in the development:
for transparent operation, systems not only need
to be open-source but also need to be accepted and
maintained by the NLP community, which is more
difficult to achieve.

In the remainder of this section, we highlight
a few existing language-independent analyzers to
present some of their disadvantageous properties
which tend to be common with the tools not in-
cluded.
UDPipe (Straka and Straková, 2017) was

written in C++ roughly at the same time as
e-magyar with the goal of analyzing general
texts. Training data follows the Universal De-
pendencies and Morphology (UD)5 annotation
scheme and format. Although it has bindings for
many programming languages, and is truly effi-
cient, it does not allow for easy extension and
development of the applied pipeline, despite that
its source code is free6. This is a shortcoming if
developers want to introduce their own modules,
such as a custom morphological analyzer.

The Python-based spaCy7 started similarly,
originally consisting of closed-end modules, but
since version 2.0, it has become more and more
open in architecture in order to support more nat-
ural languages. Although spaCy and emtsv are
similar in their direction of development, their cur-
rent status is too far to allow comparison: emtsv
is more loosely coupled.

Another strategy is followed by WebSty8 and
Weblicht9. These pipelines try to integrate
existing tools including even language-dependent
ones to better support individual languages. Their
only criterion is that the tools have to support the
UD format. The principle of this approach is
scalability in great computer clusters: running in

5http://universaldependencies.org
6https://github.com/ufal/udpipe
7https://spacy.io
8http://ws.clarin-pl.eu/websty.shtml
9https://weblicht.sfs.uni-tuebingen.de

the cloud asynchronously orchestrated by a task
scheduler on demand. The entire system is ac-
cessible via a web-based API, where tasks can be
specified with data files. The source code of the
software is not available for running a local in-
stance, and modules cannot be developed by ex-
ternal developers.

In emtsv, we try to eliminate the architectural
drawbacks of previous systems described above
and, at the same time, reserve their advantageous
features.

3 Uniform Data Format

The classic structure of e-magyar (Sass et al.,
2017) heavily relies on the features inherited from
the original tools, depending on their input and
output formats. In that system, GATE is the layer
of architecture that creates a common, unified data
format, thus providing interoperability between
the individual modules, that are agnostic of each
other. This idea is suitable as long as the user
wants to work within the GATE ecosystem.

The common format is GATE xml, which is
not a standard and easy-to-implement solution, as
no DTD or Schema file is available that describes
the format. These are dispensable as long as files
are produced and processed solely by GATE: the
format can be regarded as internal. In a GATE
xml file, annotation follows the complete text sep-
arately. In a typical scenario of processing this for-
mat, one must constantly jump between the two
parts of the xml file, so the entire text and an-
notation should be kept in memory e.g. by build-
ing a tree with DOM strategy. This requirement at
best slows down the processing of large xml files,
whereas it makes impossible to process the data as
stream. In addition, the cumbersome deployment
of the GATE system in itself greatly increased
the complexity of the pipeline for users, devel-
opers, and service providers, whether or not they
really needed the added functionality provided by
GATE.

This motivated us to design an inline (i.e. in
the sense that annotation should be locally avail-
able at the element which is annotated), stream-
able, simple, customisable, self-documenting and
easy-to-use format that can be easily converted
into other formats. We support conversion with-
out data loss to standard formats such as CoNLL-
X (Buchholz and Marsi, 2006), CoNLL-U, or even
GATE xml. The newly chosen format specifica-

http://universaldependencies.org
https://github.com/ufal/udpipe
https://spacy.io
http://ws.clarin-pl.eu/websty.shtml
https://weblicht.sfs.uni-tuebingen.de


158

form lemma xpostag
#This is a comment.
A a [/Det|Art.Def]
kutyák kutya [/N][Pl][Nom]
ugatnak ugat [/V][Prs.NDef.3Pl]
. . [Punct]

A a [/Det|Art.Def]
...

Table 1: An illustration of the format, a three-column
tsv file with a header (resembling CoNLL-U column
names): word forms, lemmas, and explicit morpholog-
ical analysis. ‘The dog-s bark-[3Pl]. The. . . ’. Com-
ments may occur only at the beginning of sentences.

tion allows adaptation to needs as they emerge (we
will see that this is achieved by the flexible defini-
tion of tsv columns), mainly consisting of recom-
mendations (e.g. free text and JSON are preferred
as data), and as few constraints as possible.

We use tsv files with a header (Table 1), which
can even be loaded into spreadsheet editors. Ad-
hering to the classical vertical format, each row
specifies a token, and columns (fields, cells) con-
tain annotations for the token. We introduced two
additions to the simple tsv following the CoNLL-
U format: (i) sentence boundaries are marked with
empty lines, and (ii) it is possible to insert com-
ments in the forms of lines starting with a hash-
mark (#) before each sentence, which will be
copied to the output. Although the sentence block
comment was possible – switchable, not allowed
by default – for optional comparability with the
CoNLL-U format, its use is not recommended be-
cause of the combination of the free column order
and hashmark as control character10. We recog-
nize the legitimacy of the line starting hashmark
in CoNLL-U due to (i) the fixed order of columns
and (ii) the constraint for for the first column to
be a positive integer number (more precisely mark
the number of token in the sentence). However,
we prefer the locality property in our format which
allows to process individual tokens, without need-
ing to know their context – where it is useful –
compared to sentence leading comments or fixed
column order.

The role of the header is particularly important:

10Hashmark as every character, however rare, will have its
occurrences in a large corpus: using it as special will lead
to error on the long run. Collision of occurrences as literals
and as special characters in the original corpus often results
in unexpected errors that take a long time to debug, limits
and slows down the operation and later the extensibility of
the system.

it determines the operation of the whole system.
Modules identify the location of their input data
required for processing by strictly defined column
names in the header (regardless of the order of the
columns), and similarly, they place their output in
new columns (with strictly defined names), leav-
ing all other columns unchanged. A consequence
is that modules are not allowed to change the num-
ber and content of input rows. (If users are about
to create a module that will change the number of
rows in the future, e.g. by splitting a token to more,
they have to be very careful about the contents of
the fields in the new rows and the integrity of the
complete data, especially in the case of sequential
tags.)

Newly created columns are simply placed after
the existing columns in the current implementa-
tion. This can be taken as our recommendation,
but not a mandatory restriction, as columns are
identified by name. This way the text remains
readable for the human eye, and logically related
pieces of annotation are stored close to each other.
It is an important property that developers can add
any number of extra columns: there is space for
expansion with additional information on demand.
Column naming and content conventions have to
be established by agreement between the produc-
ing and processing modules. The recommended
field content is free text or the standard JSON
format11, which enables passing bound structures
without ad-hoc formats or special characters (like
they are used to represent lists of key-value pairs in
CoNLL-U). In addition, the JSON format is suit-
able to represent alternative analyses or ambigu-
ous annotation, e.g. as a (weighted) list of possible
tags.

4 Architecture

The described tsv format is simple, easy to man-
age, supported by several existing tools, and en-
ables users to write additional modules. It was
our primary goal to facilitate the easy develop-
ment and integration of additional modules into
the system. Furthermore, besides the traditional
command-line interface (CLI) and the format-
agnostic Python library interface, we have also
created a REST API whose use is independent of
programming languages.

11Although the spacing between the structuring elements
in JSON can be selected to be tab, it is prohibited in emtsv
because of its tab separated layout.



159

With the help of traditional UNIX pipelines,
CLI provides a useful tool for advanced users. The
CLI can be used even on large texts without know-
ing the internal operation of the modules. The
Python library can be integrated into larger soft-
ware systems by IT/NLP users. Finally, the REST
API opens up the possibility of using the system
according to modern cloud-based trends, even for
completely non-NLP users and business circles:
with its help, emtsv can be made available as a
scalable service in the cloud for a wide range of
end-users, without a need for installation on the
end-user side.

According to the modern requirements, the
emtsv system is also available as a Docker im-
age12. This image can be used like a ‘standalone
executable’ with ‘batteries included’ as it features
the CLI interface and the REST API as well. Its
advantage over the traditional installation is that
the whole system is packed together with all its
dependencies pre-configured and can be deployed
with a single command. Therefore it is easy to use
on any machine running Docker in a form compa-
rable to highly integrated pipelines. The deployed
image can instantly be used with HTTP requests
from local or remote computers, from the com-
mand line or from any software.

Individual modules are combined together by
our newly developed xtsv framework, which
handles tsv as a communication format in a gen-
eral way. This allows both the communication via
the format described in Section 3 (i.e. the choice of
the input columns, attaching the output columns,
and reserving the rest), the creation of REST APIs,
and the dynamic format-check (Section 5) regard-
less of the specific content of the modules. Extra
modules can be added to the system with the fol-
lowing parameters specified in a declarative fash-
ion: the unique name of the module, – that dis-
tincts it from alternative instances of the same tool
with a different model or parameter setting –, the
actual tool that performs the function of the mod-
ule, the names of the input and output columns,
and the specification of models and other parame-
ters when needed as the parameters of the tool. If
one wants to use a module with other pre-trained
models (e.g. the Named Entity tagger trained on
financial reports or on encyclopedic text), alter-
native instances of the same module can also be
created within the xtsv framework. xtsv dy-

12https://hub.docker.com/r/mtaril/emtsv

namically creates and runs the desired chain as
described above. Although the described inter-
faces (CLI, REST API, Python library) have been
implemented in Python to meet the user require-
ments, the modules can be implemented in other
programming languages based on the specifica-
tion, even in a heterogeneous fashion like in the
case of UNIX pipelines.

The description of emtsv so far can be sum-
marized as follows: a loosely coupled architec-
ture, the possibility of adding new modules writ-
ten in any programming language, the standard
tsv format, the three API types (CLI, Python
package, REST API, the latter optionally running
in the user’s cloud), scalability, the openly avail-
able source code, and a pipeline adhering to the
UNIX philosophy. These enable users being on
different levels of programming skills and com-
ing from different backgrounds to combine rule-
based and statistical systems, to manually correct
the output of any modules then to feed it to any
of the next modules, to compare the output of al-
ternative modules as a part of the same pipeline
for the same input, to interpret errors, and to re-
train the models if needed. This wide spectrum
of features exceeds the capabilities of the previ-
ously presented tool chains applicable for Hungar-
ian (see Section 2).

The following section describes the role of each
of the available modules in the chain, as well as the
minimum requirements for new modules, which
enable the chain to be expanded with new mod-
ules or the modification of existing ones within the
framework.

5 Modules

Module management means that the fields re-
quired by the given module need to be available
by the time of running the module. This can be
controlled by the header available already at the
time of assembling the pipeline, indicating an er-
ror early, even in the case of a dynamically de-
fined pipeline. Recall that each module specifies
the needed and produced columns. For example,
it is known at the time of chain assembly, on the
basis of the specified fields, that the POS tagger
needs the form and anas (i.e. analyses) columns,
or that dependency parsing must be preceded by
POS tagging but not by NP chunking, as shown in
Figure 1.

The organization of modules is based on the

https://hub.docker.com/r/mtaril/emtsv


160

emToken

txt

−

tsv

form

emMorph + emLem

tsv ...

form anas

emTag
form
anas

lemma
xpostag

emMorph2UD
form
lemma
xpostag

upostag
feats

form
lemma
upostag
feats

form
lemma
xpostag

emChunk

emNer

emDep

emCons

NER−BIO

NP−BIO

cons

id
deprel
head

emCoNLL

Figure 1: The current processing chain of emtsv, with input and output fields.

previous version of e-magyar, however we split
logically independent functions into separate mod-
ules, even if they were built into one module pre-
viously. Thus, the tasks of each module can be
more clearly specified, which makes their test-
ing and development simpler. For a unified han-
dling of modules in xtsv (see Section 4), mod-
ules originally written in Java were wrapped into
Python modules. The names of these wrappers
have been given the uniform ending py. In Python
wrappers, Java is uniformly called by the Pyjnius
package13. The Python wrapper communicates
with the original Java module through Java-native
types, which cuts down the original input and out-
put handling code, so eliminating the differences
between the original input and output formats in
favor of emtsv. The additional changes made to
the individual modules are described in the sub-
sections below. Module names are prefixed with
em: e for electronic and m for magyar ‘Hungar-
ian’.

5.1 emToken

Although tokenization rules themselves remain
unchanged, we revised the tokenizer for the new
pipeline significantly. emToken (Mittelholcz,
2017), the tokenizer in e-magyar, consists of
several submodules with different functionalities
such as checking illegal characters, sentence seg-
mentation, abbreviation processing, and word to-
kenization itself. So far, these submodules were
compiled into a single monolithic binary file. In
the new version, each submodule is compiled into
a binary file that can be run separately, reading
from standard input and writing to standard out-
put. These submodules are linked together by a
Python script. For the new structure, the test sys-
tem for the emToken was also redesigned. These

13https://github.com/kivy/pyjnius

refactoring steps enabled us an organic integration
within the emtsv framework.

Detokenization is currently not supported, but
emToken returns the spaces besides the tokens
properly, so future work can modify the module to
insert original (possibly spacial) spaces in a sepa-
rate column to make detokenization possible. An
alternative would be to record the word offset (the
index of the starting character) in a column, from
which it can be seen whether consecutive tokens
were originally separated by a space or not.

5.2 emMorph and emLem

We fixed some bugs that affect the morphological
analyzer emMorph (Novák et al., 2016) and its in-
teraction with the lemmatizer emLem. The output
of the morphological analysis, i.e. the string rep-
resenting individual steps of the underlying trans-
ducer, is regarded as an internal format, as it is
not used directly but is transformed into a more
readable form of the morphemic sequence. The
post-processing is executed by the emLem mod-
ule. The original Java implementation of emLem
has been replaced by a new Python code14 to im-
prove simplicity and code transparency. Bugs un-
covered during rewriting have been fixed.

The module containing emMorph+emLem has
been supplemented with a special REST API,
which allows the user to easily access the analyses
of individual word forms through the browser, by
pasting each word form into a special URL. This
demo interface15 runs in the cloud, where quick
access to emMorph is provided.

The output of the extended emMorph module
is a specially formatted JSON file with fields for
both human and machine use (see Figure 2). Each

14https://github.com/ppke-nlpg/
emmorphpy

15https://emmorph.herokuapp.com/

https://github.com/kivy/pyjnius
https://github.com/ppke-nlpg/emmorphpy
https://github.com/ppke-nlpg/emmorphpy
https://emmorph.herokuapp.com/


161

{
"bokrot": [
{

lemma "bokor"
morphana "bokor[/N]=bokr+ot[Acc]=ot"
readable "bokor[/N]=bokr + ot[Acc]"
tag "[/N][Acc]"
twolevel "b:b o:o k:k :o r:r :[/N] o:o t:t :[Acc]"

},
...

]
}

Figure 2: An example of the JSON output of the mor-
phological analyzer and the lemmatizer. The example
bokrot is the accusative form of the epenthetic stem
bok(o)r ‘bush’.

analysis contains four fields: the lemma; the mor-
phemic sequence in two formats: one intended
for machine use (morphana) and one for human
reading (readable); the bare tag of the strict
morphosyntactic category without phonological-
orthographic content (tag); and the two-level out-
put of the morphological analyzer (twolevel)
for debugging purposes. The readable field
omits redundant surface forms, i.e. those that coin-
cide with the deep form. The REST API is capable
to return multiple words at once, when called us-
ing the HTTP POST method. The advantage of the
standard JSON format is that it protects against er-
rors caused by unexpected characters in large cor-
pora. For the sake of fitting into tsv, the use of a
tab outside the string is prohibited in the generated
JSON.

5.3 emTag

The emTag POS tagger is based on PurePOS
(Orosz and Novák, 2013). It requires an inconve-
nient, non-standard input format16, that is exposed
to errors caused by unexpected characters. The
new format described in Section 3 makes possible
to eliminate errors caused by unexpected charac-
ters in large corpora.

Now alternative morphological analyzes can be
separately provided for the Java-based PurePOS
as native Java data structures with the input text
(even from within a Java program). The PurePOS–
Python interface contains the add-ons required for
emtsv. PurePOS can be used in three ways with
the Python interface: alone with pre-analyzed in-
put, with its built-in statistical morphological an-
alyzer, or using the emMorph+emLem rule-based
morphological analyzer.

16https://github.com/ppke-nlpg/purepos

5.4 emChunk and emNER

The configuration of the HunTag3 (Endrédy and
Indig, 2015) sequential tagger, which served as the
basis of the xtsv framework, has been slightly
modified to meet the requirements of the new
emtsv format: features are now reached by col-
umn names not by column numbers. In addi-
tion, HunTag3 has undergone a number of inter-
nal transformations, resulting in the standardized
management of the input and output formats, com-
pletely separate from the rest of the computation.

5.5 emMorph2UD

The original converter (DepTool), that converted
the output of emTag to linearized attribute–value
pairs for the emDep dependency parser (see Sec-
tion 5.6) is replaced by emMorph2UD, a new
converter. There are two main reasons for this
improvement. Firstly, looking more closely at
DepTool, it turned out that it did not handle cer-
tain morphological features: the content of the in-
put morphological tags were often lost. Secondly,
the tags generated by DepTool had a specific for-
mat that could be used only within the toolchain
between the two modules.

As UD is a cross-linguistically consistent gram-
matical annotation scheme, it is reasonable to pro-
vide the output in that formalism beside the tags
of emMorph. Therefore, emMorph2UD con-
verts the morphological tags emitted by emTag to
UD17. Formerly in e-magyar, the model behind
emDep was trained on POS tags and morphosyn-
tactic features converted by DepTool. Conse-
quently, the model had to be replaced with one
trained on Szeged Treebank with UD tags (Vincze
et al., 2017).

The emMorph2UDmodule can be used both for
inter-modular communication in emtsv between
emTag and emDep using the formalism of UD,
and as an output format with UD morphological
tags. For a detailed description and precise eval-
uation of emMorph2UD18, see Vadász and Simon
(2019).

5.6 emDep and emCons

We also detached the Bohnet dependency parser
(Bohnet and Nivre, 2012) and the Berkeley con-

17Only UD version 1 has been elaborated for Hungarian,
therefore here we mean UDv1 under UD.

18For an exhaustive description of annotation schemes
for Hungarian morphology with converters, see https:
//github.com/dlt-rilmta/panmorph.

https://github.com/ppke-nlpg/purepos
https://github.com/dlt-rilmta/panmorph
https://github.com/dlt-rilmta/panmorph


162

stituent parser (Durrett and Klein, 2015) from
Magyarlánc 3.0, so the parsers now work with
a smaller resource footprint. The model of emDep
has been replaced (see Section 5.5): its input
is now the set of POS tags and morphological
attribute–value pairs, converted from the output of
emMorph to conform the UD annotation scheme.
The output of emDep, i.e. the syntactical annota-
tion, did not change.

5.7 emCoNLL

To satify the need of a standard well-proven for-
mat, the output can be converted to the CoNLL-U
format with the help of the module emCoNLL. By
this, the output of emtsv is suitable for tools deal-
ing with CoNLL-U format, such as processing, an-
notation or visualizaton tools19.

Since the fields UPOS, HEAD and DEPREL are
not allowed to be left unspecified in the CoNLL-U
format, emCoNLL depends on the dependency
parser, thus only the output of emDep can be used
as an input of emCoNLL. In addition, CoNLL-U
supports only one extra field (MISC) for a further
annotation layer, however, there might be several
competing modules for that one field (emMorph,
emLem, emChunk and emNer). This problem is
solved by leaving this extra column empty, thus
only mandatory fields are filled during the conver-
sion. This module serves as a good example for
splicing a simple and useful additional module to
the end of the toolchain.

6 Summary

In this article, we introduced emtsv, the new
version of the e-magyar language processing
pipeline that has undergone a major transforma-
tion. emtsv is not only competing, but at sev-
eral points exceeds its competitors. Its main char-
acteristics are the uniform communication format,
the easy interoperability of the modules thanks to
this format, the free source code, the loosely cou-
pled modules (open for new modules, be they rule-
based or statistic), and the scalability. It can run as
service through a REST API, as a pipeline in CLI,
or can be integrated into larger systems as a Python
library API and available as Docker image as
well. Developers can plug in their own modules.
Modules can be individually upgraded, compared,
rewritten, retrained, or customized. Consequently,

19https://universaldependencies.org/
tools.html

emtsv is now the Hungarian NLP pipeline with
the broadest functionality.

7 Future Work

Bootstrapping a human-annotated corpus
Starting with a large free corpus, we plan to
pre-process raw text with emtsv, and improve
the output module-by-module by semi-manually
correcting the output of the nth module and then
passing the improved version to module n + 1
(this could not be done in the former version
of e-magyar). Free availability of the corpus
used for this process is important in order to that
the research community can experiment with
new methods by changing tools and data. The
process will provide a good opportunity to test
the system in detail, to detect errors, and to turn
to computational linguistic research proper, i.e. to
justify linguistic theories.

Over-tokenizers In the time of pre-trained deep
language models (aka contextualized word repre-
sentations, such as Peters et al. (2018)), a sys-
tem with symbolic inter-modular communication
may seem anachronous, but we believe emtsv
as a pre-processing tool can help state-of-the-art
systems, especially in handling less frequent or
out-of-vocabulary words. Our approach belongs
to subword-level modelling (Botha and Blunsom,
2014), specifically the simple but effective en-
gineering solution of splitting rare or unknown
words to their components (going against our own
xtsv recommendation of no token splitting in-
troduced in Section 3). Though unsupervised
statistical segmentation (e.g. Morfessor (Creutz
and Lagus, 2005) or byte-pair encoding (Sen-
nrich et al., 2016)) is widely used, segmenta-
tion to meaningful parts (Lazaridou et al., 2013;
Avraham and Goldberg, 2017) offers the exploita-
tion of additional linguistic knowledge. Splitting
off inflectional suffixes have already hugely re-
duced word perplexity (Nemeskey, 2017). We
plan to extend this line of work to composi-
tional compounds, especially noun+noun com-
pounds like szín-tan ‘color-theory’, compositional
derivational suffixes e.g. szeker-estül, lit. chariot-
along.with.one’s ‘along with one’s chariot’, and
compositional preverbal prefixes e.g. agyon-tápol,
‘over-nurture’. The planned modules can work by
assigning probability scores to composition can-
didates based on gold constructions with similar
constituents, where similarity is measured in the

https://universaldependencies.org/tools.html
https://universaldependencies.org/tools.html


163

word embedding space.

Universal guesser We store all possible mor-
phological analyzes to be able to fine-tune them
before disambiguating, but these analyzes apply
only for the tokens recognized by the fixed lex-
icon of the rule-based morphological analyzer
(emMorph). These analyzes also lack weights,
which is desired by the latter procesing steps. In
order to treat each module equally, we plan to
create a Universal guesser module (harmonised
with emMorph) that is able to analyze OOV to-
kens – with rules or statistical machine-learning –
as well and set the appropriate weights for each
analyzis (e.g. by using the same training mate-
rial used by the POS-tagger module (emTag) cur-
rently). Stripping out this task from the POS-
tagger – where it currently resides – creates the
possibility to fine-tune analyzes for all tokens prior
to POS-tagging if needed. Also it enables us to
substitute the guesser module – or the POS-tagger
– with others (e.g. Morfessor and Lemmy20) and
find the one with the best performance by testing
it in real-life conditions.

Phrases and verb constructions Our plans in-
clude creating new modules for emNer trained on
texts in different domains, as well as new models
for chunking (i.e. annotating all types of phrases in
the sentence), and even enhancing emDep based
on lessons learned from Mazsola (Sass, 2008).

Load-balancing Currently, every module runs
in one instance. A rather technical follow-up de-
velopment would be to run bottleneck modules
in multiple copies: paralleling increases perfor-
mance. For example, if the disambiguator pro-
cesses 10 sentences while the syntactic parser fin-
ishes with 2 sentences, then it is worth starting
the syntactic parser in 5 instances and process sen-
tences in parallel. This technology is called load-
balancing and it is popular both within the Python
and the Docker world.

A multilingual chain The new xtsv frame-
work is actually completely language and module
independent. We may create a multilingual an-
alyzer whose pipeline can start with a language
identifier. In order to do so, we need modules for
other natural languages. It is important for these
toolsets not to be monolithic like Magyarlánc,
but separated into modules – by their logical role

20https://github.com/sorenlind/lemmy

in the pipeline – that can be given to a tsv-wrapper
and combined freely in xtsv.

Acknowledgements

Work supported by the MARCELL project of EU
CEF. Márton Makrai was partially supported by
project fund 2018-1.2.1-NKP-00008: Exploring
the Mathematical Foundations of Artificial Intel-
ligence and National Research, Development and
Innovation Office (NKFIH) grant #120145 Recog-
nizing Word Structure with Deep Learning.

References
Oded Avraham and Yoav Goldberg. 2017. The inter-

play of semantics and morphology in word embed-
dings. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
422–426, Valencia, Spain. Association for Compu-
tational Linguistics.

Bernd Bohnet and Joakim Nivre. 2012. A Transition-
based System for Joint Part-of-speech Tagging and
Labeled Non-projective Dependency Parsing. In
Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing
and Computational Natural Language Learning,
EMNLP-CoNLL ’12, pages 1455–1465, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Jan A Botha and Phil Blunsom. 2014. Composi-
tional morphology for word representations and lan-
guage modelling. In Proceedings of the31st Inter-
national Conference on Machine Learning, pages
1899–1907, Beijing, China.

Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X
Shared Task on Multilingual Dependency Parsing.
In Proceedings of the Tenth Conference on Com-
putational Natural Language Learning (CoNLL-X),
pages 149–164, New York City. Association for
Computational Linguistics.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Technical
Report A81, Helsinki University of Technology.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus
Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. 2011. Text
Processing with GATE (Version 6). GATE (April
15, 2011).

Greg Durrett and Dan Klein. 2015. Neural CRF Pars-
ing. In Proceedings of the 53rd Annual Meeting

https://github.com/sorenlind/lemmy
https://www.aclweb.org/anthology/E17-2067
https://www.aclweb.org/anthology/E17-2067
https://www.aclweb.org/anthology/E17-2067
http://dl.acm.org/citation.cfm?id=2390948.2391114
http://dl.acm.org/citation.cfm?id=2390948.2391114
http://dl.acm.org/citation.cfm?id=2390948.2391114
http://www.aclweb.org/anthology/W/W06/W06-2920
http://www.aclweb.org/anthology/W/W06/W06-2920
http://tinyurl.com/gatebook
http://tinyurl.com/gatebook
https://doi.org/10.3115/v1/P15-1030
https://doi.org/10.3115/v1/P15-1030


164

of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 302–312. Association for Computational Lin-
guistics.

István Endrédy and Balázs Indig. 2015. HunTag3:
a General-purpose, Modular Sequential Tagger –
Chunking Phrases in English and Maximal NPs and
NER for Hungarian. In 7th Language & Technol-
ogy Conference, Human Language Technologies as
a Challenge for Computer Science and Linguistics
(LTC ’15), pages 213–218, Poznań, Poland. Poznań:
Uniwersytet im. Adama Mickiewicza w Poznaniu.

Péter Halácsy, András Kornai, László Németh, An-
drás Rung, István Szakadát, and Viktor Trón. 2004.
Creating open language resources for Hungarian.
In Proceedings of the Fourth International Confer-
ence on Language Resources and Evaluation (LREC
2004), pages 203–210. ELRA.

Péter Halácsy, András Kornai, Csaba Oravecz, Viktor
Trón, and Dániel Varga. 2006. Using a morpho-
logical analyzer in high precision POS tagging of
Hungarian. In Proceedings of the Fifth International
Conference on Language Resources and Evaluation
(LREC’06), Genoa, Italy. European Language Re-
sources Association (ELRA).

Angeliki Lazaridou, Marco Marelli, Roberto Zampar-
elli, and Marco Baroni. 2013. Compositionally de-
rived representations of morphologically complex
words in distributional semantics. In Proceedings of
the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1517–1526, Sofia, Bulgaria. Association for
Computational Linguistics.

Iván Mittelholcz. 2017. emToken: Unicode-képes
tokenizáló magyar nyelvre [Unicode-able tokenizer
for Hungarian]. In XIII. Magyar Számítógépes
Nyelvészeti Konferencia [13th Conference on Hun-
garian Computational Linguistics], pages 61–69,
Szeged.

Dávid Márk Nemeskey. 2017. emLam – a Hungar-
ian Language Modeling baseline. In XIII. Magyar
Számítógépes Nyelvészeti Konferencia [13th Con-
ference on Hungarian Computational Linguistics],
pages 91–102, Szeged.

Attila Novák, Borbála Siklósi, and Csaba Oravecz.
2016. A New Integrated Open-source Morpholog-
ical Analyzer for Hungarian. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC 2016), Paris,
France. European Language Resources Association
(ELRA).

Csaba Oravecz, Tamás Váradi, and Bálint Sass. 2014.
The Hungarian Gigaword Corpus. In Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC-2014). European
Language Resources Association (ELRA).

György Orosz and Attila Novák. 2013. PurePos 2.0: a
Hybrid Tool for Morphological Disambiguation. In
Proceedings of the International Conference Recent
Advances in Natural Language Processing RANLP
2013, pages 539–545, Hissar, Bulgaria. INCOMA
Ltd. Shoumen, BULGARIA.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages 2227–
2237. Association for Computational Linguistics.

Gábor Recski and Dániel Varga. 2009. A Hungarian
NP Chunker. The Odd Yearbook. ELTE SEAS Un-
dergraduate Papers in Linguistics, pages 87–93.

Bálint Sass. 2008. The verb argument browser. In Text,
Speech and Dialogue, pages 187–192, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Bálint Sass, Márton Miháltz, and Péter Kundráth. 2017.
Az e-magyar rendszer GATE környezetbe inte-
grált magyar szövegfeldolgozó eszközlánca [The e-
magyar Hungarian text processing system embed-
ded into the GATE framework]. In XIII. Magyar
Számítógépes Nyelvészeti Konferencia [13th Con-
ference on Hungarian Computational Linguistics],
pages 79–90.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Milan Straka and Jana Straková. 2017. Tokenizing,
POS Tagging, Lemmatizing and Parsing UD 2.0
with UDPipe. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 88–99, Vancouver,
Canada. Association for Computational Linguistics.

Viktor Trón, György Gyepesi, Péter Halácsky, András
Kornai, László Németh, and Dániel Varga. 2005.
Hunmorph: Open source word analysis. In Proceed-
ings of the ACL Workshop on Software, pages 77–85.
Association for Computational Linguistics, Ann Ar-
bor, Michigan.

Noémi Vadász and Eszter Simon. 2019. Konverterek
magyar morfológiai címkekészletek között. [Con-
verters between Hungarian Morphological Tagsets].
In XV. Magyar Számítógépes Nyelvészeti Konferen-
cia [15th Conference on Hungarian Computational
Linguistics], pages 99–111, Szeged.

Dániel Varga and Eszter Simon. 2007. Hungarian
named entity recognition with a maximum entropy
approach. Acta Cybernetica, 18:293–301.

http://www.lrec-conf.org/proceedings/lrec2006/pdf/488_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/488_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/488_pdf.pdf
https://www.aclweb.org/anthology/P13-1149
https://www.aclweb.org/anthology/P13-1149
https://www.aclweb.org/anthology/P13-1149
http://www.aclweb.org/anthology/L14-1536
http://www.aclweb.org/anthology/R13-1071
http://www.aclweb.org/anthology/R13-1071
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf
http://www.aclweb.org/anthology/K/K17/K17-3009.pdf


165

Veronika Vincze, Katalin Simkó, Zsolt Szántó, and
Richárd Farkas. 2017. Universal dependencies and
morphology for Hungarian - and on the price of uni-
versality. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
356–365, Valencia, Spain. Association for Compu-
tational Linguistics.

Tamás Váradi, Eszter Simon, Bálint Sass, Iván Mittel-
holcz, Attila Novák, Balázs Indig, Richárd Farkas,
and Veronika Vincze. 2018. E-magyar – A Digi-
tal Language Processing System. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

János Zsibrita, Richárd Farkas, and Veronika Vincze.
2013. A Toolkit for Morphological and Dependency
Parsing of Hungarian. In International Conference
on Recent Advances in Natural Language Process-
ing, pages 763–771, Shoumen, Bulgária. INCOMA
Ltd.

https://www.aclweb.org/anthology/E17-1034
https://www.aclweb.org/anthology/E17-1034
https://www.aclweb.org/anthology/E17-1034

