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Abstract

This paper presents a strong set of results
for resolving gendered ambiguous pronouns
on the Gendered Ambiguous Pronouns shared
task. The model presented here draws upon
the strengths of state-of-the-art language and
coreference resolution models, and introduces
a novel evidence-based deep learning architec-
ture. Injecting evidence from the coreference
models compliments the base architecture, and
analysis shows that the model is not hindered
by their weaknesses, specifically gender bias.
The modularity and simplicity of the architec-
ture make it very easy to extend for further im-
provement and applicable to other NLP prob-
lems. Evaluation on GAP test data results in a
state-of-the-art performance at 92.5% F1 (gen-
der bias of 0.97), edging closer to the human
performance of 96.6%. The end-to-end solu-
tion1 presented here placed 1st in the Kaggle
competition, winning by a significant lead.

1 Introduction

The Gendered Ambiguous Pronouns (GAP)
shared task aims to mitigate bias observed in
the performance of coreference resolution systems
when dealing with gendered pronouns. State-of-
the-art coreference models suffer from a system-
atic bias in resolving masculine entities more con-
fidently compared to feminine entities. To this
end, Webster et al. (2018) published a new GAP
dataset2 to encourage research into building mod-
els and systems that are robust to gender bias.

The arrival of modern language models like
ELMo (Peters et al., 2018), BERT (Devlin et al.,
2018), and GPT (Radford et al., 2018), have sig-
nificantly advanced the state-of-the art in a wide

1The code is available at https://github.com/
sattree/gap

2https://github.com/
google-research-datasets/gap-coreference
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Figure 1: ProBERT: Pronoun BERT. Token embed-
dings corresponding to the labeled pronoun in the input
text are extracted from the last layer of the language
model (BERT) and used for prediction.

range of NLP problems. All of them have a com-
mon theme in that a generative language model is
pretrained on a large amount of data, and is subse-
quently fine-tuned on the target task data. This ap-
proach of transfer learning has been very success-
ful. The current work applies the same philosophy
and uses BERT as the base model to encode low-
level features, followed by a task-specific module
that is trained from scratch (fine-tuning BERT in
the process).

GAP shared task presents the general GAP
problem in gold-two-mention (Webster et al.,
2018) format and formulates it as a classification
problem, where the model must resolve a given
pronoun to either of the two given candidates or
neither3. Neither instances are particularly dif-
ficult to resolve since they require understand-
ing a wider context and perhaps a knowledge of
the world. A parallel for this case can be drawn
from Question-Answering systems where identi-
fying unanswerable questions confidently remains
an active research area. Recent work shows that
it is possible to determine lack of evidence with

3There is a case in the GAP problem where the pronoun
in question may not be coreferent with either of the two men-
tioned candidates. Such instances will be referred to as Nei-
ther.

https://github.com/sattree/gap
https://github.com/sattree/gap
https://github.com/google-research-datasets/gap-coreference
https://github.com/google-research-datasets/gap-coreference
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M F Total
gap-development 1000 1000 2000
gap-validation 227 227 454
gap-test 1000 1000 2000
gpr-neither (section 2.1) 129 124 253
stage 2 test (kaggle)† 6499 5860 12359

Table 1: Corpus statistics. Masculine (M) and Femi-
nine (F) instances were identified based on the gender
of the pronoun mention labeled in the sample. †Only a
subset of these may have been used for final evaluation.

greater confidence by explicitly modeling for it.
Works of Zhong et al. (2019) and Kundu and Ng
(2018) demonstrate model designs with special-
ized deep learning architectures that encode evi-
dence in the input and show significant improve-
ment in identifying unanswerable questions. This
paper first introduces a baseline that is based on
a language model. Then, a novel architecture for
pooling evidence from off-the-shelf coreference
models is presented, that further boosts the con-
fidence of the base classifier and specifically helps
in resolving Neither instances. The main contribu-
tions of this paper are:

• Demonstrate the effectiveness of pretrained
language models and their transferability to
establish a strong baseline (ProBERT) for the
gold-two-mention shared task.

• Introduce an Evidence Pooling based neu-
ral architecture (GREP) to draw upon the
strengths of off-the-shelf coreference sys-
tems.

• Present the model results that placed 1st in
the GAP shared task Kaggle competition.

2 Data and Preprocessing

Table 1 shows the data distribution. All datasets
are approximately gender balanced, other than
stage 2 test set. The datasets, gap-development,
gap-validation, and gap-test, are part of the pub-
licly available GAP corpus. The preprocessing
and sanitization steps are described next.

2.1 Data Augmentation: Neither instances
In an attempt to upsample and boost the classifier’s
confidence in the underrepresented Neither cat-
egory (Table 2), about 250 instances were added
manually. These were created by obtaining clus-
ter predictions from the coreference model by Lee

et al. (2018) and choosing a pronoun and the two
candidate entities A and B from disjoint clusters.
However, in the interest of time, this strategy was
not fully pursued. Instead, the evidence pooling
module was used to resolve this problem, as will
become clear from the discussion in section 6.

2.2 Mention Tags

The raw text snippet is manipulated by enclosing
the labeled span of mentions with their associated
tags, i.e. <P> for pronoun, <A> for entity men-
tion A, and <B> for entity mention B. The pri-
mary reason for doing this is to provide the posi-
tional information of the labeled mentions implic-
itly within the text as opposed to explicitly through
additional features. A secondary motivation was
to test the language model’s sensitivity to noise in
input text structure, and its ability to adapt the pro-
noun representation to the positional tags. Figure
2 shows an example of this annotation scheme.

... NHLer Gary Suter and Olympic-medalist <A>
Bob Suter <A> are <B> Dehner <B>’s uncles.
<P> His <P> cousin is Minnesota Wild’s alter-
nate captain Ryan ...

Figure 2: Sample text-snippet after annotating the men-
tions with their corresponding tags. Bob Suter and
Dehner were tagged as entities A and B, and the men-
tion ’His’ following them was tagged as the pronoun.

2.3 Label Sanitization

Only samples where labels can be corrected un-
ambiguously based on snippet-context were cor-
rected4. The Wikipedia page-context and url-
context were not used. A visualization tool 5 was
also developed as part of this work to aid in this
activity. Table 2 lists the corpus statistics before
and after the sanitization process.

2.4 Coreference Signal

Transformer networks have been found to have
limited capability in modeling long-range depen-
dency (Dai et al., 2018; Khandelwal et al., 2018).
It has also been noticed in the past that the coref-
erence problem benefits significantly from global

4Corrected labels can be found at https:
//github.com/sattree/gap. This set was gen-
erated independently to avoid any unintended bias. More sets
of corrections can be found at https://www.kaggle.
com/c/gendered-pronoun-resolution/
discussion/81331#503094

5https://github.com/sattree/gap/
visualization

https://github.com/sattree/gap
https://github.com/sattree/gap
https://www.kaggle.com/c/gendered-pronoun-resolution/discussion/81331#503094
https://www.kaggle.com/c/gendered-pronoun-resolution/discussion/81331#503094
https://www.kaggle.com/c/gendered-pronoun-resolution/discussion/81331#503094
https://github.com/sattree/gap/visualization
https://github.com/sattree/gap/visualization
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Before sanitization After sanitization
A B NEITHER A B NEITHER Total

gap-development 874 925 201 857(-37)(+20) 919(-32)(+26) 224(-4)(+27) 2000
gap-validation 187 205 62 184(-10)(+7) 206(-7)(+8) 64(-4)(+6) 454
gap-test 918 855 227 894(-42)(+18) 860(-27)(32) 246(-8)(27) 2000

Table 2: GAP dataset label distribution before and after sanitization. (-x) indicates the number of samples that
were moved out of a given class and (+x) indicates the number of samples that were added post-sanitization.

knowledge (Lee et al., 2018). Being cognizant
of these two factors, it would be useful to inject
predictions from off-the-shelf coreference mod-
els as an auxiliary source of evidence (with input
text context being the primary evidence source).
The models chosen for this purpose are Paral-
lelism+URL (Webster et al., 2018), AllenNLP6,
NeuralCoref7, and e2e-coref (Lee et al., 2018).

3 Model Architecture

3.1 ProBERT: baseline model

ProBERT uses a fine-tuned BERT language model
(Devlin et al., 2018; Howard and Ruder, 2018)
with a classification head on top to serve as base-
line. The snippet-text is augmented with mention-
level tags (section 2.2) to capture the positional in-
formation of the pronoun, entity A, and entity B
mentions, before feeding the text as input to the
model. Position-wise token representation corre-
sponding to the pronoun is extracted from the last
layer of the language model. With GAP dataset
and WordPiece tokenization (Devlin et al., 2018),
all pronouns were found to be single token entities.

Let Ep ∈ RH (where H is the dimensionality
of the language model output) denote the pooled
pronoun vector. A linear transformation is applied
to it, followed by softmax, to obtain a probabil-
ity distribution over classes A, B, and NEITHER,
P = softmax(W TEp), where W ∈ RH×3 is the
linear projection weight matrix. All the parame-
ters are jointly trained to minimize cross entropy
loss. This simple architecture is depicted in Figure
1. Only H × 3 new parameters are introduced in
the architecture, allowing the model to use training
data more efficiently.

A natural question arises as to why this model
functions so well (see section 5.2) with just the
pronoun representation. This is discussed in sec-
tion 6.1.

6https://allennlp.org/models
7https://github.com/huggingface/

neuralcoref

3.2 GREP: Gendered Resolution by
Evidence Pooling

The architecture for GREP pairs the simple
ProBERT architecture with a novel Evidence
Pooling module. The Evidence Pooling (EP) mod-
ule leverages cluster predictions from pretrained
(or heuristics-based) coreference models to gather
evidence for the resolution task. The internals of
the coreference models are opaque to the system,
allowing for any evidence source such as a knowl-
edge base to be included as well. This design
choice limits us from propagating the gradients
through the coreference models, thereby losing in-
formation and leaving them noisy. The difficulty
of efficiently training deeper architectures paired
with the noisy cluster predictions (the best coref-
erence model has an F1 performance of only 64%
on gap-test) makes this a challenging design prob-
lem. The EP module uses self-attention mecha-
nism described in Vaswani et al. (2017) to com-
pute the compatibility of cluster mentions with re-
spect to the pronoun and the two candidates, entity
A, and entity B. The simple and easily extensible
architecture of this module is described next.
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x M
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x N
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Figure 3: Evidence Pooling module architecture

https://allennlp.org/models
https://github.com/huggingface/neuralcoref
https://github.com/huggingface/neuralcoref
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Suppose we have access to N off-the-shelf
coreference models and each predicts Tn mentions
that are coreferent with the given pronoun. Let
P, A, and B, refer to the mentioned entities la-
beled in the text-snippet as the pronoun and en-
tities A and B, respectively. Without loss of gen-
erality, let us consider the nth coreference model
and mth mention in the cluster predicted by it. Let
Em ∈ RTm×H , Ep ∈ RTp×H , Ea ∈ RTa×H and
Eb ∈ RTb×H , denote the position-wise token em-
beddings obtained from the last layer of the lan-
guage model for each of the mentions, where T
is the number of tokens in each mention. The first
step is to aggregate the information at the mention-
level. Self-attention is used to reduce the men-
tion tokens, an operation that will be referred to
as AttnPool (attention pooling) hereafter. A sin-
gle layer MLP is applied to compute position-wise
compatibility score, which is then normalized and
used to compute a weighted average over the men-
tion tokens for a pooled representation of the men-
tion as follows:

Mm = tanh(EmWm + bm) ∈ RTm×H (1)

am = softmax(Mm) ∈ RTm (2)

AttnPool(Em,Wm) = Am =

Tm∑
i

amEm ∈ RH

(3)
Similarly, a pooled representation of all men-

tions in the cluster predicted by the nth corefer-
ence model, and of P, A, and B entity mentions is
obtained. Let An ∈ RTn×H denote the joint rep-
resentation of cluster mentions, and Ap, Aa, and
Ab, the pooled representations of entity mentions.
Next, to compute the compatibility of the cluster
with respect to the given entities, we systemati-
cally transform the cluster representation by pass-
ing it through a transformer layer (Vaswani et al.,
2017). A sequence of such transformations is ap-
plied successively by feeding Ap, Aa, and Ab as
query vectors at each stage. Each such transformer
layer consists of a multi-head attention and feed-
forward (FFN) projection layers. The reader is re-
ferred to Vaswani et al. (2017) for further informa-
tion on MultiHead operation.

FFN(x) = tanh(Wxx+ bx) ∈ RTp×H (4)

Cp = FFN(MultiHead(Ap, Am, Am)) ∈ RTp×H

(5)

Ca = FFN(MultiHead(Aa, Cp, Cp)) ∈ RTa×H

(6)
Cb = FFN(MultiHead(Ab, Ca, Ca)) ∈ RTb×H

(7)
The transformed cluster representation Cb is

then reduced at the cluster-level and finally at the
coreference model level by attention pooling as:

Ac = AttnPool(Cb,Wc) ∈ RN×H (8)

Aco = AttnPool(Ac,Wco) ∈ RH (9)

Aco represents the evidence vector that en-
codes information obtained from all the corefer-
ence models. Finally, the evidence vector is con-
catenated with the pronoun representation, and is
once again fed through a linear layer and softmax
to obtain class probabilities.

C = [Ep;Aco] ∈ R2H (10)

P = softmax(W TC + b) ∈ R3 (11)

Language Model (BERT)

Input text (+ mention tags) Input text

Coref model

Evidence PoolingPronoun Pooling

Concat

Softmax

x N

Output Probabilities

Figure 4: GREP model architecture

The end-to-end GREP model architecture is il-
lustrated in Figure 4.

4 Training

All models were trained on 4 NVIDIA V100
GPUs (16GB memory each). The pytorch-
pretrained-bert8 library was used as the language
model module and saved model checkpoints were
used for initialization. Adam (Kingma and Ba,
2014) optimizer was used with β1 = 0.9, β2 =

8https://github.com/huggingface/
pytorch-pretrained-BERT/. BertTokenizer from
this package was used for tokenization of the text. BertAdam
was used as the optimizer. This package contains re-
sources for all variants of BERT, i.e. bert-base-uncased,
bert-base-cased, bert-large-uncased and bert-large-cased.

https://github.com/huggingface/pytorch-pretrained-BERT/
https://github.com/huggingface/pytorch-pretrained-BERT/
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F1
logloss

M F B O
Lee et al. (2017)† 67.7 60.0 0.89 64.0 -
Parallelism† 69.4 64.4 0.93 66.9 -
Parallelism+URL† 72.3 68.8 0.95 70.6 -
RefReader, LM & coref‡ 72.8 71.4 0.98 72.1 -
ProBERT (bert-base-uncased) 88.9 86.7 0.98 87.8 .382
GREP (bert-base-uncased) 90.4 87.6 0.97 89.0 .350
ProBERT (bert-large-uncased) 90.8 88.6 0.98 89.7 .376
GREP (bert-large-uncased) 94.0 91.1 0.97 92.5 .317
Human Performance (estimated) 97.2 96.1 0.99 96.6 -

Table 3: Single model performance on gap-test set by gender. M: masculine, F: feminine, B: (bias) ratio of feminine
to masculine performance, O: overall. Log loss is not available for systems that only produce labels. †As reported
by Webster et al. (2018). ‡As reported by Liu et al. (2019), their model does not use gold-two-mention labeled
span information for prediction.

0.999, ε = 1e−6, and a fixed learning rate of
4e−6. For regularization, a fixed dropout (Srivas-
tava et al., 2014) rate of 0.1 was used in all layers
and a weight decay of 0.01 was applied to all pa-
rameters. Batch sizes of 16 and 8 samples were
used for model variants with bert-base and bert-
large respectively. Models with bert-base took
about 6 mins to train while those with bert-large
took up to 20 mins.

For single model performance evaluation, the
models were trained on gap-train, early-stopping
was based off of gap-validation, and gap-test
was used for test evaluation. Kaggle compe-
tition results were obtained by training models
on all datasets, i.e. gap-train, gap-validation,
gap-test, and gpr-neither (a total of 4707 sam-
ples), in a 5-Fold Cross-Validation (Friedman
et al., 2001) fashion. Each model gets effectively
trained on 3768 samples, while 942 samples were
held-out for validation. Training would termi-
nate upon identifying an optimal early stopping
point based on performance on the validation set
with an evaluation frequency of 80 gradient steps.
Model’s access is limited to snippet-context, and
the Wikipedia page-context is not used. However,
page-url context may be used via coreference sig-
nal (Parallelism+URL).

5 Results

The performance of ProBERT and GREP models
is benchmarked against results previously estab-
lished by Webster et al. and Liu et al. (2019). It
is worth noting that Liu et al. do not use gold-two-
mention labeled spans for prediction and hence

their results may not be directly comparable. This
section first introduces an estimate of human per-
formance on this task. Then, results for single
model performance are presented, followed by en-
sembled model results that won the Kaggle com-
petition. F1 performance scores were obtained by
using the GAP scorer script9 provided by Webster
et al.. Wherever applicable, log loss (the official
Kaggle metric) performance is reported as well.

5.1 Human Performance

Errors found in crowd-sourced labels are consid-
ered a measure of human performance on this task,
and serve as a benchmark. The corrections are
only a best-effort attempt to fix some obvious mis-
takes found in the dataset labels, and were made
with certain considerations (section 2.3). This per-
formance measure is subject to variation based on
an evaluator’s opinion on ambiguous samples.

5.2 Single Model Performance

Single model performance on GAP test set is
shown in Table 3. The GREP model (with bert-
large-uncased as the language model) achieves a
powerful state-of-the-art performance on this task.
The model significantly benefits from evidence
pooling, gaining 6 points in terms of log loss and
2.8 points in F1 accuracy. Further analysis of the
source of these gains is discussed in section 6.

While it may seem that the significantly im-
proved performance of GREP has been achieved

9https://github.com/
google-research-datasets/
gap-coreference/blob/master/gap_scorer.
py

https://github.com/google-research-datasets/gap-coreference/blob/master/gap_scorer.py
https://github.com/google-research-datasets/gap-coreference/blob/master/gap_scorer.py
https://github.com/google-research-datasets/gap-coreference/blob/master/gap_scorer.py
https://github.com/google-research-datasets/gap-coreference/blob/master/gap_scorer.py
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Model Dataset
F1

logloss
M F B O

LM=bert-large-uncased, seed=42
OOF all 94.3 93.21 0.99 93.8 .261
OOF gap-test 94.2 93.7 0.99 93.9 .254

LM=bert-large-cased, seed=42
OOF all 94.3 93.9 0.99 94.1 .249
OOF gap-test 94.3 93.5 0.99 93.9 .242

Ensemble:
(LM=bert-large-uncased
+ seeds=42,59,75,46,91)

OOF all 94.8 94.2 0.99 94.5 .195
OOF gap-test 94.5 94.33 1.00 94.4 .193

Ensemble:
(LM=bert-large-cased
+ seeds=42,59,75,46,91)

OOF all 95.1 94.4 0.99 94.7 .187
OOF gap-test 94.9 94.1 0.99 94.4 .183

Ensemble:
(LM=bert-large-uncased,

bert-large-cased
+ seeds=42,59,75,46,91)

OOF all 95.3 94.7 0.99 95.0 .176
OOF gap-test 95.1 94.7 1.00 94.9 .175
Stage 2 test - - - - .137†

Table 4: GREP model performance results in the Kaggle competition. Out-of-fold (OOF) error is reported on all
data, i.e. gap-development, gap-validation, gap-test, and gpr-neither, as well as on gap-test explicitly for compari-
son against single model performance results. Since early stopping is based on OOF samples, OOF errors reported
here cannot be considered as an estimate of test error. Nevertheless, stage 2 test performance benchmarks the
model. †Due to a bug, the model did not fully leverage coref evidence, further gains are expected with the fixed
version.

at a small cost in terms of gender bias, an at-
tentive reader would realize that the model en-
joys improved performance for both genders. Per-
formance gains in masculine instances are much
higher compared to feminine instances, and the
slight degradation in bias ratio is a manifestation
of this. The superior performance of GREP pro-
vides evidence that for a given sample context, the
model architecture is able to successfully discrim-
inate between the coreference signals, and identify
their usefulness.

5.3 Kaggle Competition10

To encourage fairness in modeling, the competi-
tion was organized in two stages. This strategy
eliminates any attempts at leaderboard probing
and other such malpractices. Furthermore, mod-
els were frozen at the end of stage 1 and were only
allowed to operate in inference mode to generate
predictions for stage 2 test submission. Addition-
ally, no feedback was provided on stage 2 submis-
sions (in terms of performance score) until the end
of the competition.

GREP model is trained as described in section
4 and out-of-fold (oof) error on the held-out sam-
ples is reported. The experiments are repeated
with 5 different random seeds (42, 59, 75, 46,
91) for initialization. Finally, two sets of models
are trained with bert-large-uncased and bert-large-

10https://www.kaggle.com/c/
gendered-pronoun-resolution/

cased as the language models. The overall scheme
leads to 50 models being trained in total, and 50
sets of predictions being generated on stage 2 test
data. To generate predictions for submission, en-
sembling is done by simply taking the unbiased
weighted mean over the 50 individual prediction
sets.

Table 4 presents a granular view of the winning
model performance. This performance comes very
close to human performance and has almost no
gender bias. As the table shows, the ensemble
models achieve much larger gains in log loss as
compared to F1 accuracy. This is expected since
the committee of models makes more confident
decisions on “easier” examples. Two insights can
be drawn by comparing these results with the sin-
gle model performance presented in section 5.2:
(1) model accuracy benefits from more training
data, although the gains are marginal at best (92.5
vs 93.9) given that the model was trained on ap-
proximately twice the amount of data; (2) ensem-
bling has a similar effect as evidence pooling, i.e.,
models become more confident in their predic-
tions.

6 Discussion

Results shown in section 5 establish the supe-
rior performance of GREP compared to ProBERT.
This can be attributed to two sources: (1) GREP
corrects some errors made by ProBERT, reflected
in F1; and (2) where predictions are correct, GREP

https://www.kaggle.com/c/gendered-pronoun-resolution/
https://www.kaggle.com/c/gendered-pronoun-resolution/
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(a) A (b) B (c) NEITHER

Figure 5: Comparison of probabilities assigned by ProBERT and GREP. Figures show distribution of predicted
class probabilities assigned by the models to samples from that class.

GREP
ProBERT Incorrect Correct

A
Incorrect 44 38
Correct 28 784

B
Incorrect 37 39
Correct 9 775

NEITHER
Incorrect 45 44
Correct 11 146

Overall
Incorrect 126 121
Correct 48 1705

Table 5: Class-wise comparison of model accuracy for
ProBERT and GREP. Off-diagonal terms show cases
where GREP fixes errors made by ProBERT and vice-
versa.

is more confident in its predictions, reflected in
log loss. To investigate this, error analysis is per-
formed on gap-test.

Figure 5 shows a class-wise comparison of
probabilities generated by the two models. It can
be seen that GREP is more confident in its predic-
tions (all distributions appear translated closer to
1.0), and the improvement is overwhelmingly ev-
ident for the NEITHER class. To understand the
difference between the two models, confusion ma-
trix statistics are presented in table 5. The diago-
nal terms show the number of instances that the
two models agree on, and the off-diagonal terms
show where they disagree. The numbers reveal
that the evidence pooling module not only boosts
the model confidence but also helps in correctly
resolving Neither instances (44 vs 11), indicating
that the model is successfully able to build evi-
dence for or against the given candidates.

Appendix A details the behavior of GREP
through some examples. The first example is par-
ticularly interesting - while it is trivial for a human
to resolve this, a machine would require knowl-

edge of the world to understand “death” and its
implications.

6.1 Unreasonable Effectiveness of ProBERT
It would seem unreasonable that ProBERT is able
to perform so well with the noisy input text (due
to mention tags) and is able to make the classifica-
tion decision by looking at the pronoun alone. The
following two theories may explain this behavior:
(1) attention heads in the (BERT) transformer ar-
chitecture are able to specialize the pronoun repre-
sentation in the presence of the supervision signal;
(2) the special nature of dropout (present in every
layer) makes the model immune to a small amount
of noise, and at the same time prevents the model
from ignoring the tags. The analysis of attention
heads to investigate these claims should form the
scope of future work.

7 Conclusion

A powerful set of results have been established
for the shared task. Work presented in this pa-
per makes it feasible to efficiently employ neural
attention for pooling information from auxiliary
sources of global knowledge. The evidence pool-
ing mechanism introduced here is able to lever-
age upon the strengths of off-the-shelf coreference
solvers without being hindered by their weak-
nesses (gender bias). A natural extension of the
GREP model would be to solve the gendered pro-
noun resolution problem beyond the scope of the
gold-two-mention task, i.e., without accessing the
labeled gold spans.
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A Examples

Tables 6, 7, 8, and Figure 6 show an example of
how incorporating evidence from the coreference
models helps GREP to correct a prediction error
made by ProBERT. While the example is trivial
for a human to resolve, a machine would require
knowledge of the world to understand “death” and
its implications. ProBERT is unsure about the res-
olution and ends up assigning comparable prob-
abilities to both entities A and B. GREP, on the
other hand, is able to shift nearly all the proba-
bility mass from B to the correct resolution A, in
light of strong evidence presented by the coref-
erence solvers. Figure 6 illustrates an interesting
phenomenon; while e2e-coref groups the pronoun
and both entities A and B in the same cluster, the
model architecture is able to harvest information
from AllenNLP predictions, propagating the be-
lief that entity A must be the better candidate. The
above observations indicate that by pooling evi-
dence from various sources, the model is able to
reason over a larger space and build a rudimentary
form of world knowledge.

Tables 9, 10, 11, and Figure 7 show a second
example. This example is not easy even for a hu-
man to resolve without reading and understand-
ing the full context. A model may find this situ-
ation to be adverse given the presence of too many
named entities as distractor elements; and the url-
context can be misleading since the pronoun refer-
ent is not the subject of the article. Nevertheless,
the model is able to successfully build evidence
against the given candidates, and resolve with a
very high confidence of 92.5%.

Finally, a third example is shown in Tables
12 and 13. This example shows that the model
doesn’t simply make a majority decision, rather
considers interactions between the global structure
exposed by the various evidence sources.
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Ground truth

Off-the-shelf coreference model predictions

(a) Parallelism+URL

(b) AllenNLP

(c) NeuralCoref

(d) e2e-coref (Lee et al., 2018)

Table 6: Example 1 - Illustration of ground truth and coreference model predictions. Mentions belonging to a
coreference cluster are color coded and indexed. Visualizations were produced using the code module at https:
//github.com/sattree/gap/visualization.

https://github.com/sattree/gap/visualization
https://github.com/sattree/gap/visualization
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(a) Coreference model level attention weights. Indicates weightage given to evidence from each source.

(b) Cluster mention level attention weights. Indicates weightage given to each mention within an evidence cluster.

Figure 6: Example 1 - Visualization of normalized attention scores assigned by the hierarchical attention pooling
layers in the evidence pooling module

id Pronoun Pronoun
offset

A A
offset

A
coref

B B
offset

B
coref

Url

test-
282

her 410
Anna
MacIntosh

338 True
Mildred
Vergosen

475 False

http:
//en.
wikipedia.
org/
wiki/
Cyrus_S.
_Ching

Table 7: Example 1 - Sample details from GAP test set.

P(A) P(B) P(NEITHER)
ProBERT 0.405 0.452 0.142
GREP 0.718 0.038 0.244

Table 8: Example 1 - A comparison of probabilities assigned by ProBERT and GREP

http://en.wikipedia.org/wiki/Cyrus_S._Ching
http://en.wikipedia.org/wiki/Cyrus_S._Ching
http://en.wikipedia.org/wiki/Cyrus_S._Ching
http://en.wikipedia.org/wiki/Cyrus_S._Ching
http://en.wikipedia.org/wiki/Cyrus_S._Ching
http://en.wikipedia.org/wiki/Cyrus_S._Ching
http://en.wikipedia.org/wiki/Cyrus_S._Ching
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Ground truth

Off-the-shelf coreference model predictions

(a) Parallelism+URL

(b) AllenNLP

(c) NeuralCoref

(d) e2e-coref (Lee et al., 2018)

Table 9: Example 2 - Illustration of ground truth and coreference model predictions. Mentions belonging to a
coreference cluster are color coded and indexed.
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(a) Coreference model level attention weights. Indicates weightage given to evidence from each source.

(b) Cluster mention level attention weights. Indicates weightage given to each mention within an evidence cluster.

Figure 7: Example 2 - Visualization of normalized attention scores assigned by the hierarchical attention pooling
layers in the evidence pooling module

id Pronoun Pronoun
offset

A A
offset

A
coref

B B
offset

B
coref

Url

test-
406

he 803 Yang 636 False Wei 916 False

http:
//en.
wikipedia.
org/
wiki/
Wei_
Zheng

Table 10: Example 2 - Sample details from GAP test set.

P(A) P(B) P(NEITHER)
ProBERT 0.790 0.038 0.172
GREP 0.055 0.020 0.925

Table 11: Example 2 - A comparison of probabilities assigned by ProBERT and GREP

http://en.wikipedia.org/wiki/Wei_Zheng
http://en.wikipedia.org/wiki/Wei_Zheng
http://en.wikipedia.org/wiki/Wei_Zheng
http://en.wikipedia.org/wiki/Wei_Zheng
http://en.wikipedia.org/wiki/Wei_Zheng
http://en.wikipedia.org/wiki/Wei_Zheng
http://en.wikipedia.org/wiki/Wei_Zheng
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Ground truth

Off-the-shelf coreference model predictions

(a) Parallelism+URL

(b) AllenNLP

(c) NeuralCoref

(d) e2e-coref (Lee et al., 2018)

Table 12: Example 3 - Illustration of ground truth and coreference model predictions. Mentions belonging to a
coreference cluster are color coded and indexed.

P(A) P(B) P(NEITHER)
ProBERT 0.028 0.968 0.003
GREP 0.724 0.263 0.012

Table 13: Example 3 - A comparison of probabilities assigned by ProBERT and GREP


