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Abstract
We present our 7th place solution1 to the Gen-
dered Pronoun Resolution challenge, which
uses BERT without fine-tuning and a novel
augmentation strategy designed for contextual
embedding token-level tasks. Our method
anonymizes the referent by replacing candi-
date names with a set of common place-
holder names. Besides the usual benefits of
effectively increasing training data size, this
approach diversifies idiosyncratic information
embedded in names. Using same set of com-
mon first names can also help the model rec-
ognize names better, shorten token length, and
remove gender and regional biases associated
with names. The system scored 0.1947 log
loss in stage 2, where the augmentation con-
tributed to an improvements of 0.04. Post-
competition analysis shows that, when using
different embedding layers, the system scores
0.1799 which would be third place.

1 Introduction

Gender bias has been an important topic in nat-
ural language processing in recent years (Boluk-
basi et al., 2016; Reddy and Knight, 2016; Chi-
appa and Gillam, 2018; Madaan et al., 2018).
GAP (Gendered Ambiguous Pronouns) dataset is
a gender balanced labeled corpus of 8,908 am-
biguous pronoun-name pairs sampled from En-
glish Wikipedia, built and released by Webster
et al. (2018) to challenge the community for gen-
der unbiased pronoun resolution systems.

In the Gendered Pronoun Resolution challenge
which is based on GAP dataset, we designed a
unique augmentation strategy for token-level con-
textual embedding models and applied it to fea-
ture based BERT (Devlin et al., 2019) approach
for a 7th place finish. BERT is a large bidirec-
tional transformer trained with masked language

1The code is available at
https://github.com/boliu61/gendered-pronoun-resolution

model, which is fine-tuned to state-of-the-art re-
sults on a variety of NLP benchmark tasks. Four
version of BERT model weights were released in
October 2018, following a family of NLP transfer
learning models in the same year, ELMo (Peters
et al., 2018), ULMFit (Howard and Ruder, 2018)
and OpenAI GPT (Radford et al., 2018).

Although augmentation has been shown to be
very effective in deep learning (Xie et al., 2019),
most NLP augmentation methods are on document
or sentence level, such as synonym replacement
(Zhang et al., 2015), data noising (Xie et al., 2017)
and back-translation (Yu et al., 2018). For token
level tasks like pronoun resolution, only the name
and pronoun embeddings are in the model input.
Even though altering whole document also affect
these embeddings, direct change to the names has
much bigger impact to the model.

The main idea of our augmentation is to re-
place each name in the name-pronoun pair by a
set of common placeholder names, in order to
(1) diversify the idiosyncratic information embed-
ded in individual names and leave only the con-
textual information and (2) remove any gender
or region related bias in names. In other words,
to anonymize the names and make BERT extract
name-independent features purely about context.
With the same set of common first names from the
training corpus as the placeholders, the model can
recognize candidate names more easily and em-
bed contextual information more compactly into
single tokens. This technique could also be used
in other token level tasks to anonymize people or
entity names.

2 Model

Our system is an ensemble of two neural network
models, the “End2end” model and the “Pure Bert”
model.
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End2end model: This model uses the scor-
ing architecture proposed in Lee et al. (2017),
but with BERT embeddings. Since candidate
names A and B are already given in this task,
the model doesn’t have mention scores, only an-
tecedent scores, which is a concatenation of BERT
embeddings of the name (A or B); BERT embed-
dings of the pronoun; their element-wise similar-
ity (between A/B and P); and non-BERT features
such as distance between the name and the pro-
noun, whether the name is in the URL and lin-
guistic features (syntactic distances and parts of
sentence etc).

Pure BERT model: The input of this model is
only the concatenated BERT embeddings of name
A, name B and the pronoun, which are fed into
two fully connected hidden layers of dimensions
512 and 32 before the softmax output layer.

2.1 Augmentation

Our augmentation strategy works this way: for
each sample, replace all the occurrences of names
A and B by 4 sets of placeholder names during
both training and inference unless certain condi-
tions are met. In training, it will make the epoch
size 5 times as big. In inference, the model will
make 5 predictions for each sample which are to
be ensembled—this is also known as TTA (test
time augmentation).

The 4 sets of placeholder names are

F: Alice, Kate, M: John, Michael

F: Elizabeth, Mary, M: James, Henry

F: Kate, Elizabeth, M: Michael, James

F: Mary, Alice, M: Henry, John

The names were chosen from most common
names in stage 1 data. For each sample, use
the male pair if the pronoun is masculine (“he”,
“him”, or “his”) and female pair otherwise.

We have experimented with fewer or more
sets of placeholder names, and alternative name
choices which are more “modern” (common
names in GAP are mostly old fashioned, as many
articles are about historical figures), but none
worked better than the original set of names we
initially chose.

The conditions for not applying augmentation
are:

1. If the placeholder name already appear in
original document. e.g. in the following doc-
ument, do not apply the augmentation sets
that have “Alice” as a placeholder name,

Alice went to live with Nick’s sister
Kathy, who desperately tried to ...

2. If A or B is full name (first and last name),
but the first name or last name appear alone
elsewhere in the document. e.g. If we re-
place “Candace Parker” (name B) by “Kate”
in the following sentence, the model would
not known “Kate” and “Parker” are the same
person

... the Shock’s Plenette Pierson
made a hard box-out on Candace
Parker , causing both players to
become entangled and fall over. As
Parker tried to stand up, ...

3. If the name has more than two words, such as
“Elizabeth Frances Zane” or “Jose de Vene-
cia Jr”, We don’t replace it because it would
be difficult to implement rule 2.

4. If one of name A or B is a substring of the
other, e.g. name A is “Erin Fray” and name
B is “Erin”. These are likely tagging errors.

In stage 1 data, for each set of placeholder
names there are 8%, 2%, 1% and 1% data that
met these conditions respectively and 88% was
augmented. Note that the first 8% are different for
each set of placeholder names—only the 4% cor-
responding to conditions 2-4 wasn’t augmented at
all.

3 Experiments

We used the official GAP dataset to build the sys-
tem. There are 2000 data in both test and devel-
opment sets and 454 in validation set. We used
all of test and development plus 400 random rows
in validation set (4400 in total) to train the system
and left 54 as a sanity check to test the inference
pipeline. The gender is nearly equally distributed
in the training data with 2195 male and 2205 fe-
male examples.

There are 12359 samples in stage 2 test data, but
only 760 were revealed to have been labeled and
used for scoring. Effectively, there are 760 stage 2
test data—all the others were presumably added to
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prevent cheating. The gender distribution is again
almost equal with 383 female and 377 male exam-
ples.

The meta information for both End2end and
Pure Bert model is shown in Table 1. For each
model, we trained two versions, one based on
BERT Large Uncased, the other based on BERT
Large Cased. For the competition, we used layer
-4 (fourth to last hidden layer) embeddings for
the End2end model and a concatenation of lay-
ers -3 and -4 for the Pure BERT model. As will
be shown in the results section, we re-trained the
models after the competition with layers -5 and -6
and achieved better results.

Pre-processing: As reported in the competition
discussion forum, there are some clear label mis-
takes in GAP dataset. We identified 159 misla-
bels (74 development, 68 test, 17 validation) to the
best of our ability by going through all the exam-
ples with a log loss of 1 or larger. We trained the
system using corrected labels but report all results
evaluated with original labels.

Post-processing: The problem with using
clean labels to train and dirty labels to evaluate
is that, loss will be huge for very confident
predictions if the label is wrong (i.e. when the
predicted probability for the wrong-label class is
very small). We solved this problem by clipping
predicted probabilities smaller than a threshold
0.005, which was tuned with cross validation. The
idea is similar to label smoothing (Szegedy et al.,
2016) and confidence penalty (Pereyra et al.,
2017)

All the training was done in Google Colab with
a single GPU. We used 5-fold cross validation for
stage 1 results, and 5-fold average for stage 2 test
results. End2end model was trained 5 times us-
ing different seeds with each seed taking about 30
minutes; Pure BERT model was trained only once
which took about 50 minutes.

Each team is allowed two submissions for this
shared task. Above described is our submission
A. Submission B is the same except that (1) it
was trained on GAP test and validation sets only
(2454 training samples instead of 4400), and (2)
it didn’t use the linguistic features. Submission B
has worse results than A in both stage 1 and stage
2 as expected.

4 Results and discussion

4.1 Augmentation results
In Table 2, we show the contribution of augmen-
tation to the End2end model. In both uncased
and cased versions and their ensemble, stage 1 log
loss improved by about 0.01 when augmentation
is added in training but not inference. And an-
other massive 0.05 and 0.04 improvement for the
uncased and cased version respectively is achieved
when TTA is used. For the ensemble, augmenta-
tion improved the score from 0.3470 to 0.3052.

The reason that this augmentation method
worked so well can be explained in number of
ways.

1. BERT contextual embeddings of a name con-
tain information of both the context and the name
itself. Only the contextual information is relevant
for coreference resolution—whether the name is
Alice or Betty or Claire does not matter at all.
By replacing all names by the same set of place-
holders, only the useful contextual information re-
mains for the model to learn.

2. By using the same set of names in both
training and inference, the noise from individual
names are further reduced, i.e., the model will
likely know they are names when it sees the same
placeholder names during inference. This is even
more so for foreign (non Western) names, as there
are some articles in GAP about foreign figures.
Without augmentation, it’s less likely that BERT
model trained on English corpus can recognize,
for example, a lowered cased (Romanized) Chi-
nese name as a name.

3. For gender-neutral names (including certain
foreign names) and males with a typically femi-
nine name or females with a typically masculine
name, the model can much easily resolve the gen-
der after augmentation.

4. When a long name or uncommon name is
tokenized into multiple word-piece tokens, we use
the average embeddings of all these tokens. Since
all the placeholder names are common first names
thus tokenized into single token, the syntactic in-
formation may be embedded better into a single
vector than the average of a few.

5. TTA will generate four additional predictions
for each sample. Ensemble of them and the un-
augmented one gives an extra boost.

Reason #1 is related to training only, #5 related
to inference only, #2-4 to both training and infer-
ence. An indirect proof of #2-4 is: in TTA, the
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Model End2end Pure BERT
ensemble weights 0.9 0.1
BERT embeddings layer -4 concatenation of layer -3 and -4
architecture Lee et al. (2017) concatenation of A, B, Pronoun embeddings and FCN
non-BERT features yes no
model size 5 MB 36 MB
seed average average of 5 seeds only 1 seed
training time per seed 30 min 50 min

Table 1: Meta information of two models.

model uncased cased ensemble
no augmentation 0.3878 0.3771 0.3470
augmentation only in training 0.3796 0.3671 0.3355
augmentation in both training and inference 0.3308 0.3308 0.3052

Table 2: Stage 1 results improvements in End2end model due to augmentation

order of the 4 augmentations’ scores varies de-
pending on the model (not reported due to space
limit), but they all always outperform the one with-
out augmentation. In other words, given a trained
model, the prediction on any of four augmented
version is better than prediction on original data.

4.2 Overall results

In Table 3, we report the log loss scores of single
models and the ensemble. For stage 1, we use the
5-fold cross validation scores, trained with cleaned
labels and evaluated using original labels. We also
tuned the ensemble weights based on scores with
cleaned labels (not shown).

During the competition, we experimented with
BERT embedding layers -1 to -4 by trying dif-
ferent combinations of layers and their sum and
concatenation and settled on layer -4 for End2end
model and concatenation of -3 and -4 for Pure
BERT model. After the competition ended, we re-
alized lower layers work better on this task. So we
re-trained the models using layer -5 for End2end
model and layer -5 and -6 for Pure BERT model.

The results are significantly better across the
board, as shown in Table 4. In fact, the stage 2
score 0.1799 is good enough for third place on the
leaderboard. The ensemble weights were tuned
on stage 1 data using clean labels as before.

After the competition, we also calculated the
gender breakdown for all single and ensemble
models based on the gender of the pronoun, re-
ported also in Table 3 and 4. During the competi-

tion, we trained the system and tuned the ensem-
ble weights solely based on overall score. As a re-
sult, it exhibits some degree of gender bias in both
stages, similar to Webster et al. (2018) and the sys-
tems cited therein. The final ensemble’s bias is
0.93 in stage 1 and 0.96 in stage 2, with bias rep-
resented by the ratio of masculine and feminine
scores.

Interestingly, the 4 single models demonstrate
different level of bias, ranging from 0.91 to 1.03
in stage 1, and from 0.85 to 1.09 in stage 2. The
larger variance is due to the much smaller stage 2
test size. Had the evaluation metrics been different
than the overall log loss, we could have addressed
it by assigning different weights to each single
model. For instance, if systems were judged
by the worse of feminine and masculine scores
(to penalize heavily biased systems), we would
have tuned the weights differently, sacrificing
some overall score for a more balanced perfor-
mance. For example, with ensemble weights
[0.18, 0.42, 0.12, 0.28] and clipping threshold of
0.006, the overall score and gender bias of our
post-competition system would be 0.2855 and
0.97 in stage 1 instead of the original version with
better overall (0.2846) and a larger bias (0.93), as
shown in the last row of Table 4. On stage 2 data,
the bias became slightly worse to 0.96 from 0.97.
But since the stage 1 dataset is about six times as
large as stage 2, the latter version is still the more
gender unbiased system considering both sets.

During results checking, we noticed a clear
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discrepancy between the document styles of two
stages. There are many more shorter documents
in stage 2, as shown in the top plot of Figure 1. In
many of the shorter documents, the pronoun refers
to name A, which is the page entity. The aver-
age predicted probabilities of the three classes A,
B and Neither are 0.61, 0.35 and 0.05, compared
with 0.44, 0.46 and 0.10 in stage 1.

However, as revealed by the stage 2 solution,
94% of the stage 2 data are unlabeled, which was
probably generated differently (e.g. most unla-
beled data have length smaller than 455). The
length distribution of the 760 “real” labeled data
used for scoring is very close to stage 1, as shown
in the bottom plot of Figure 1. So is the predicted
probability distribution (0.45, 0.46, 0.09). Then
what could explain the 0.1 log loss difference be-
tween the two stage 2? We boostrapped 760 sam-
ples from stage 1 predictions for 10,000 times, the
simulated stage 2 score is smaller than actual stage
2 score for only once (0.01%). So the discrepancy
is not solely due to variance from smaller sample
size in stage 2.

Our best educated guess is cleaner labels: our
stage 1 score evaluated using clean labels is
0.1993, which is much closer to stage 2 score.
The organizer likely spent more effort quality-
checking the smaller stage 2 labels. Obviously,
different pre-processing criteria during data prepa-
ration could also have made stage 2 data inherently
easier to resolve.

5 Conclusion

We presented a simple yet effective augmenta-
tion strategy that helped us finishing 7th place
in the Gendered Pronoun Resolution challenge
without fine-tuning. We reasoned how this tech-
nique helped the model achieving higher scores
by anonymizing idiosyncrasy in individual names
while also handling gender and other biases to
some degree. We demonstrated how the sys-
tem could be altered slightly to (1) get a better
score good for 3rd place by only changing BERT
embedding layers or (2) become more gender-
unbiased by using different ensemble weights.

Even though our solution only used feature-
based approach, we expect this augmentation
method to work as well with fine-tune BERT ap-
proach, which could potentially further improve
the score.

Figure 1: Comparisons of document length distribu-
tions of two stages. Top: all 12359 documents in stage
2. Bottom: the 760 “real” documents used for scoring
in stage 2.
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