Multilingual Named Entity Recognition Using Pretrained Embeddings,
Attention Mechanism and NCRF

Anton A. Emelyanov
MIPT, Sberbank
Moscow, Russia

login-const@mail.ru

Abstract

In this paper we tackle multilingual named en-
tity recognition task. We use the BERT Lan-
guage Model as embeddings with bidirectional
recurrent network, attention, and NCRF on
the top. We apply multilingual BERT only
as embedder without any fine-tuning. We
test out model on the dataset of the BSNLP
shared task, which consists of texts in Bulgar-
ian, Czech, Polish and Russian languages.

1 Introduction

Sequence labeling is one of the most fundamental
NLP models, which is used for many tasks such as
named entity recognition (NER), chunking, word
segmentation and part-of-speech (POS) tagging. It
has been traditionally investigated using statistical
approaches (Lafferty et al., 2001), where condi-
tional random fields (CRF) (Lafferty et al., 2001)
has been proven to be an effective framework, by
taking discrete features as the representation of in-
put sequence (Sathiya and Sellamanickam, 2007).
With the advances of deep learning, neural se-
quence labeling models have achieved state-of the-
art results for many tasks (Peters et al., 2017).

For the purpose of this paper, we consider neu-
ral network solution for multilingual named entity
recognition for Bulgarian, Czech, Polish and Rus-
sian languages for the BSNLP 2019 Shared Task
(Piskorski et al., 2019). Our solution is based on
BERT language model (Devlin et al., 2018), use
bidirectional LSTM (Hochreiter and Schmidhu-
ber, 1996), Multi-Head attention (Vaswani et al.,
2017), NCRFpp (Yang and Zhang, 2018) (be-
ing neural network version of CRF++framework
for sequence labelling) and Pooling Classifier (for
language classification) on the top as additional in-
formation.

94

Ekaterina Artemova
National Research University
Higher School of Economics

echernyak @hse.ru
echernyak@hse.ru

2 Task Description

2.1 Data Format

The data consists of raw documents and the an-
notations, separately provided by the organizers.
Each annotation contains a set of extracted entities
and their types without duplication. We convert
each raw document and corresponding annotations
to labeled sequence and predict named entity label
for each token in the input sentence. The docu-
ments are categorized into topics. There are two
topics in the dataset released first: named “brexit”
and ““asia_bibi”.

2.2 Tasks

The BSNLP Shared Task has three parts (Piskorski
etal., 2019):

1. Named Entity Mention Detection and Classi-
fication;

2. Name Lemmatization;
3. Cross-lingual entity Matching.

For more details about the dataset and the task
refer to the description on the web page'. We
focused on Named Entity Mention Detection
(Named Entity Recognition) in this work.

3 System Description

We propose modeling the task as both sequence
labeling and language classification jointly with a
neural architecture to learn additional information
about text. The model consists of one encoder,
which on its own is build from the pretrained mul-
tilingual BERT model, followed by several train-
able layers and two decoders. While the first de-
coder generates output tags, the second decoder

"Full BSNLP Shared Task description available at
http://bsnlp.cs.helsinki.fi/shared_task.html.

Proceedings of the 7th Workshop on Balto-Slavic Natural Language Processing, pages 94-99,
Florence, Italy, 2 August 2019. (©2019 Association for Computational Linguistics

identifies the language of the input sentence”. The
system architecture is presented in Figure 1 and
consists of seven parts:

1. BERT Embedder as pretrained multilingual
language model;

Weighted aggregation of BERT output;

. Recurrent BiLSTM layer to be trained for the
NER task;

. Multi-Head attention to take shorter depen-
dencies between words into account;

linear layer as the head of the encoder part;

NCRF++ inference layer for decoding, i.e. fi-
nal sequence labelling;

. Concatenation operation of Max Pooling,
Average Pooling and last output of Multi-
Head attention layer, later passed to linear
layer for classification as a second decoder
for language identification.

3.1 Neural Network Architecture

3.1.1 BERT Embedder

The BERT embeddings layer contains Google’s
original implementation of multilingual BERT
language model. Each sentence is preprocessed
as described in BERT paper (Devlin et al., 2018):

1. Process input text sequence to WordPiece
embeddings (Wu and Mike Schuster, 2016)
with a 30,000 token vocabulary and pad to
512 tokens.

Add first special BERT token marked
‘4[CLS]’7‘

3. Mark all tokens as members of part “A” of the
input sequence.

But instead of BERT’s original paper (Devlin
et al., 2018) we keep “B” (“Begin”) prefix for la-
bels and do a prediction for “X” labels on training
stage. BERT neural network is used only to em-
bed input text and don’t fine-tune on the training
stage. We freeze all layers except dropout here,
that decreases overfitting.

2Our code is available at
https://github.com/anonymize/slavic-ner. This code is
based on https://github.com/sberbank-ai/ner-bert.

95

We take hidden outputs from all BERT layers
as the output of this part of the neural network and
pass to the next level of the neural network. So the
shape of output is 12 x 768 for each token of 512
length’s padded input sequence.

3.1.2 BERT Weighting

Here we sum all of BERT hidden outputs from
previous part:

m—1
0j =%) bisi)
1=0

where
e 0; is output vector of size 768;

om
BERT;

12 is the number hidden layers in

e b; is output from ¢ BERT hidden layer;
e v and s; is trainable task specific parameters.

As we do not fine-tune BERT, we should adapt
its outputs for our specific sequence labeling task.
The suggested weighting approach is similar to
ELMo (Peters et al., 2018), with a lower number
of weighting vectors parameters s;. This approach
can help to learn importance of each BERT output
layer for this task and and network doesn’t lose too
much information about text, that was stored in all
BERT outputs.

3.1.3 Recurrent Part

This part contains two LSTM networks for for-
ward and backward passes with 512 hidden units
so that the output representation dim is 1024 for
each token. We use a recurrent layer for learning
dependencies between tokens in an input sequence
(Hochreiter and Schmidhuber, 1996).

3.1.4 Multi-Head Attention

After applying the recurrent layer, we use Self-
attention mechanism to learn any other dependen-
cies in a sequence for each token. This can be de-
noted as D(dp|S), where D is some hidden de-
pendency; dj, is the h head of attention, and S is
all sequence. each head can learn its dependen-
cies such as morphological, syntactic or seman-
tic relationships between words (tokens). Presum-
ably, dependencies may look as shown at Figure 2.
Also, mechanism attention can compensate limi-
tations of the recurrent layer when working with
long sequences (Bahdanau et al., 2015). In our

(1) (lang |
"

'

NCRF++, nbest=11
(output dim 14)

| Linear
} [Linear] (output dim 4)

Linear
(output dim 14)

Multihead Attention
block

(output dim 1024)
BILSTM «‘ :4 :4
(output dim 1024) ‘ L _— H
Weigthed sum
(output dim 768)

BERT output
from all of 12 layers
(output dim12 x 768)

Pooling
(output dim 3 x 1024)

e 0 5 |

BERT

358

3

Figure 1: The system architecture

architecture, we use multihead-attention block as
proposed in the paper “attention is all you need”
(Vaswani et al., 2017). We took 6 heads and value
and key dim 64.

3.1.5 Inference for NER Task

After the input sequence was encoded, we achieve
the final representation of each token in a se-
quence. This representation is passed to Linear
layer with tanh activation function and gets a vec-
tor with 14 dim, that equals to the number of en-
tities labels (include supporting labels “pad” and
“[CLS]”). The inference layer takes the extracted
token sequence representations as features and as-
signs labels to the token sequence. As the infer-
ence layer, we use Neural CRF++ layer instead
of vanilla CRF. That captures label dependencies
by adding transition scores between neighboring
labels. NCRF++ supports CRF trained with the
sentence-level maximum log-likelihood loss. Dur-
ing the decoding process, the Viterbi algorithm is
used to search the label sequence with the high-
est probability. But also, NCRF++ extends the de-
coding algorithm with the support of nbest output
(Yang and Zhang, 2018). We chose the nbest pa-
rameter equal to 11, because we have 11 meaning-

96

ful labels. In this decision we followed the original
article (Yang and Zhang, 2018).

3.1.6 Inference for Language Classification

We train our system for language classification.
For the classification inference, we use Pooling
Linear Classifier block as proposed in ULMFiT
paper (Howard and Ruder, 2018). We pass out-
put sequence representation H from Multihead-
attention part to different Poolings and concat (as
shown in Figure 1):

he = [ho, mazpool(H), meanpool(H)] (2)

where [] is concatenation;

ho 1is first output significant vector of
Multihead-attention part (which does have

“[CLS]” label).

The result of concat Pooling (3x1024) is passed
to Linear layer, and that predicts probability for
four language classes (Bulgarian, Czech, Polish
and Russian).

3.2 Postprocessing Prediction

After getting labels for the sequence of WordPiece
tokens, we should convert prediction to word level

labels extraction named entities. Each WordPiece
token in the word is matched with neural network
label prediction. We use ensemble classifier on
labels by count all predicted labels for one word
except “X” and select label for a word with the
higher number of votes.

For final prediction we unite token’s sequences
which have not “O” (“Other”) label to spans and
write to result of entities set.

4 Training the System

4.1 Data Conversion

On the training stage we divide the input data into
two parts: the training set (named “brexit”) and
development set (named “asia_bibi”’). Hence we
train the system on one topic and evaluate the sys-
tem on another topic. Because the input contains
raw text and annotation, but BERT take words se-
quence as input, we convert data to word level IOB
markup (Ramshaw and Marcus, 1995). After that,
each word was tokenized by WordPiece tokenizer
and word label matched with IOBX labels.

On the prediction stage result, labels were re-
ceived by voice classifier. After this, we transform
word predictions to spans markup. The results of
develop evaluation stage described in Table 1.

After evaluation stage we train our network on
all input data (“brexit” and ‘“asia_bibi”) to make
final predictions on the blind test set.

4.2 Training Procedure

The proposed neural network was trained with
joint loss:

L=Lsr + ﬁclf 3)

where Lgr is maximum log-likelihood loss
(Yang and Zhang, 2018) for the sequence label-
ing task and L.y is Cross Entropy Loss for the
language classification.

We use Adam with a learning rate of le — 4,
61 = 0.8, B 0.9, L2 weight decay of 0.01,
learning rate warm up, and linear decay of the
learning rate. Also, gradient clipping was applied
for weights with clip = 1.0.

Training of proposed neural network architec-
ture was performed on one GPU with the batch
size equal to 16, the number of epochs equal to
150, but stopped at epoch number 80 because the
loss function has ceased to decrease. The model
required only around 3 GB of memory instead of

97

fine-tuning all BERT model, which would have re-
quired more than 8 GB GPU memory. All training
procedure lasted around five hours on one GPU
with the evaluation of development set on each
epoch.

The final model was trained on unit of training
and development datasets.

5 Results and Discussion

5.1 Evaluation Results

As baseline for BSNLP Shared Task we use a sim-
ple CRF tagger and obtain exact word level f1-
score 0.372 on the development dataset.

Finally we use joint model for named entity
recognition task and language classification task
because the model without part of the classifica-
tion gave a result by several percent less than pro-
posed final model. This means that the joint model
pays attention to a specific language morphology
and some connections between words within one
language.

label precision | recall | fl-score
PER 0.733 0.725 | 0.729
PRO 0.384 | 0.547 | 0.451
EVT 0.385 0.370 | 0.377
LOC 0.648 0.872 | 0.744
ORG 0.550 | 0.630 | 0.587
avg/total | 0.540 | 0.629 | 0.578

Table 1: Evaluation metrics on development dataset

For proposed neural network architecture the
evaluation of the training stage was produced on
development dataset. Table 1 shows span-level
metrics precision, recall, and f1-measure. For de-
velopment set, we obtained the following scores:
language classification quality (fl-score): 0.998
and Multilingual Named Entity Recognition qual-
ity (f1-score): 0.70 for exact word level matching
and 0.578 for exact full entities matching. Also we
train model without language classification, which
resulted in f1-score equal to 0.66 . This confirms
the impact of language classification. Our model
significantly outperforms the CRF baseline.

The evaluation of test dataset presented in Ta-
ble 2 (relaxed partial matching) and Table 2 (re-
laxed exact matching) is measured by the BSNLP
Shared Task organizers.

Relaxed partial matching

label | precision | recall | fl-score
PER | 0.84955 | 0.87119 | 0.86023
LOC | 0.77526 | 0.93197 | 0.84642
ORG | 0.62642 | 0.87170 | 0.72898
PRO | 0.42079 | 0.81416 | 0.55483
EVT | 0.24074 | 0.15476 | 0.18841

All | 0.90142 | 0.69917 | 0.78752

Relaxed exact matching

label | precision | recall | fl-score
PER | 0.76835 | 0.74023 | 0.73317
LOC | 0.87747 | 0.73014 | 0.79705
ORG | 0.71390 | 0.52295 | 0.60369
PRO | 0.34439 | 0.18506 | 0.24075
EVT | 0.10714 | 0.16667 | 0.13043

All | 0.56225 | 0.46901 | 0.50102

Table 2: Evaluation metrics on test dataset

5.2 Error Analysis

First of all, we face some errors with converting
from origin data format (raw and annotations) to
word markup and back to origin format after pre-
dictions were made. This problems stand for extra
spaces, bad Unicode symbols and symbols, absent
in WordPiece vocabulary. Other errors are caused
by neural network prediction failures. The model
turns to be overfitted on the negative label “O”
so that there are many false positives in the pre-
diction. Lastly, the infrequent labels “PRO” and
“EVT” are often confused.

6 Related Work

The related work has several parts: firstly, our
work follows the recent trend of using pretrained
neural languages models, such as (Devlin et al.,
2018; Peters et al.,, 2018; Howard and Ruder,
2018). The main difference between original
BERT’s approach for named entity recognition
task (Devlin et al., 2018) we use its only as in-
put embeddings of sequence without fine-tuning.
From ELMo paper (Peters et al., 2018) we use
weighting approach for different outputs from net-
work and getting final representation of sequence.
From ULMFiT work we took part which is re-
lated to the final decoding for classification (Pool-
ing Classifier) without proposed language model
(Howard and Ruder, 2018). Secondly we model
the task of NER as a joint sequence labeling and
classification task following other joint architec-

98

tures (Liu and Lane, 2016; Nguyen et al., 2016).

7 Conclusion and Future Work

We have proposed neural network architecture
that solves Multilingual Named Entity Recogni-
tion without any additional labeled data for Bul-
garian, Czech, Polish and Russian languages. This
implementation allows to train the model even
on a modern personal computer with GPU. This
neural network architecture can be used for other
tasks, that can be reformulated as a sequence la-
beling task for any other language.

As the next steps in the study of the underlying
architecture, we can increase or decrease the num-
ber of units on each layer or remove the recurrent
layer or multihead-attention layer. As improve-
ments of the system, we can fine-tune BERT em-
beddings and put additional layers on top of BERT
or pass other modern language models as an input.

Acknowledgments

The article was prepared within the framework
of the HSE University Basic Research Program
and funded by the Russian Academic Excellence
Project “5-100”. We are thankful to the Muppets
and to the BSNLP shared task organizers.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural Machine Translation by
Jointly Learning to Align and Translate. CoRR,
abs/1409.0473.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In NAACL-HLT.

Sepp Hochreiter and Jiirgen Schmidhuber. 1996. Lstm
can Solve Hard Long Time Lag Problems. In NIPS.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal Language Model Fine-tuning for Text Classifi-
cation. In ACL.

John D. Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In ICML.

Bing Liu and Ian Lane. 2016. Attention-Based Recur-
rent Neural Network Models for Joint Intent Detec-
tion and Slot Filling. In INTERSPEECH.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent

https://doi.org/10.18653/v1/N16-1034

neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, page 00309, San Diego, Cali-
fornia. Association for Computational Linguistics.

Matthew E. Peters, Waleed Ammar, Chandra Bhaga-
vatula, and Russell Power. 2017. Semi-supervised
sequence tagging with bidirectional language mod-
els. In ACL.

Matthew E. Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee, and
Luke S. Zettlemoyer. 2018. Deep contextualized
word representations. In NAACL-HLT.

Jakub Piskorski, Laska Laskova, Micha Marciczuk,
Lidia Pivovarova, Pavel Pib, Josef Steinberger, and
Roman Yangarber. 2019. The second cross-lingual
challenge on recognition, classification, lemmatiza-
tion, and linking of named entities across Slavic
languages. In Proceedings of the 7th Workshop
on Balto-Slavic Natural Language Processing, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Lance A. Ramshaw and Mitchell P. Marcus. 1995.
Text Chunking using Transformation-Based Learn-
ing. CoRR, cmp-1g/9505040.

Keerthi Sathiya and Sundararajan Sellamanickam.
2007. Crf versus svm-struct for sequence labeling,
volume 1. Yahoo Research Technical Report.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. In NIPS.

Yonghui Wu and Quoc VLe Mohammad Norouzi
Wolfgang Macherey Maxim Krikun Yuan Cao Qin
Gao Klaus Macherey Mike Schuster, Zhifeng Chen.
2016. Googles neural machine translation sys-
tem: Bridging the gap between human and machine
translation, volume arXiv:1609.08144.

Jie Yang and Yue Zhang. 2018. Ncrf++: An Open-
source Neural Sequence Labeling Toolkit. In ACL.

99

https://doi.org/10.18653/v1/N16-1034

