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Abstract

Interactions among users on social network
platforms are usually positive, constructive
and insightful. However, sometimes people
also get exposed to objectionable content such
as hate speech, bullying, and verbal abuse
etc. Most social platforms have explicit policy
against hate speech because it creates an en-
vironment of intimidation and exclusion, and
in some cases may promote real-world vio-
lence. As users’ interactions on today’s social
networks involve multiple modalities, such as
texts, images and videos, in this paper we ex-
plore the challenge of automatically identify-
ing hate speech with deep multimodal tech-
nologies, extending previous research which
mostly focuses on the text signal alone. We
present a number of fusion approaches to in-
tegrate text and photo signals. We show that
augmenting text with image embedding infor-
mation immediately leads to a boost in perfor-
mance, while applying additional attention fu-
sion methods brings further improvement.

1 Introduction

While social network platforms give people the
voice to speak, they also have a need to mod-
erate abusive and objectionable content that
is harmful for their communities. Most so-
cial platforms have explicit policy against hate
speech (e.g. https://www.facebook.com/
communitystandards/hate_speech) be-
cause such content creates an environment of in-
timidation, exclusion, and in some cases promote
real-world violence.

The automatic identification of hate speech has
been mostly formulated as a natural language pro-
cessing problem (e.g. Mishra et al., 2018; Gu-
nasekara and Nejadgholi, 2018; Kshirsagar et al.,
2018; Magu and Luo, 2018; Sahlgren et al., 2018).
The signal from text, however, sometimes is not

sufficient for determining whether a piece of con-
tent (such as a post) on the social network plat-
forms constitutes hate speech. There is a need to
take into account signals from multiple modalities
in order to have a full comprehension of the con-
tent for hate speech classification. For example,
“these are disgusting parasites”, the sentence itself
can be either benign or hateful, depending on what
“these” refer to; and when it is combined with a
photo of people or symbols in a post, it is very
likely to be hate speech. We have seen many cases
where the text itself is benign, but the whole post
is hateful if we consider the context of the image.

There has been a number of research on mul-
timodal fusion in the deep learning era. For ex-
ample, Tong et al. (2017) apply an outer prod-
uct fusion method to combine text and photo in-
formation for the task of detecting human traf-
ficking. For the task of user profiling, formu-
lated as a multi-tasking classification problem, Vi-
jayaraghavan et al. (2017) propose a hierarchical
attention model; and Farnadi et al. (2018) propose
the UDMF framework, a hybrid integration model
that combines both early feature fusion and later
decision fusion using both stacking and power-set
combination. Zhong et al. (2016) also studied the
combination of image and captions for the task of
detecting cyberbullying. For the task of name tag-
ging, formulated as a sequence labeling problem,
Lu et al. (2018) apply a visual attention model to
put the focus on the sub-areas of a photo that are
more relevant to the text encoded by a bi-LSTM
model. For the task of image-text matching, Wang
et al. (2017) compare an embedding network that
projects texts and photos into a joint space where
semantically-similar texts and photos are close to
each other, with a similarity network that fuses
text embeddings and photo embeddings via ele-
ment multiplication. For the task of sentiment
analysis, Zadeh et al. (2017); Ghosal et al. (2018);
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Bagher Zadeh et al. (2018); Liu et al. (2018)
propose several models, namely contextual inter-
modal attention, dynamic fusion graph, and low-
rank multimodal fusion, for integrating visual, au-
dio, and text signals on the CMU-MOSEI data
set. There is also research initiative in multimodal
summarization (Li et al., 2017) and multimodal
translation (Calixto et al., 2017; Delbrouck and
Dupont, 2017). These works have demonstrated
the effectiveness of multimodal fusion methods in
problems where non-text signals play an important
role in disambiguating the text.

In this research, we explore deep multimodal
fusion of text and photo for the task of hate
speech classification on social networks, where
hate speech posts frequently appear with images.
We experiment with many fusion techniques, in-
cluding simple concatenation, bilinear transforma-
tion, gated summation, and attention mechanism.
We find that concatenation with photo information
in the convolution text classifier immediately gives
us a nice gain, while fusion with attention offers
further improvement. Specifically attention with
deep cloning, sparsemax, and symmetric gate pro-
vides the best performance. These results shall
shed light on better identifying hate speech to pro-
vide a safer community of online social networks.

2 Text And Photo Fusion

In this section we first describe our baseline con-
volutional text classifier, and the image features
of photos. We then describe many approaches of
fusing texts and photos, including basic concate-
nation, gated summation, bilinear transformation,
and attention with different alternations.

2.1 Convolutional text model
We adopt the convolutional sentence classification
architecture by Kim (2014) as our baseline text
model, as illustrated on the left hand side in Fig-
ure 1.

1. For each word in a piece of text, we retrieve
the pre-trained embeddings [v1, v2, ..., vn].
These embeddings are fixed during our
model training. We then apply a word-level
MLP on each of the word embeddings, creat-
ing the new word embeddings [v′1, v

′
2, ..., v

′
n].

This word-level MLP serves as a solution of
fine-tuning the word embeddings towards the
hate speech domain, by applying a systematic
transform to the whole embeddings space,

which has the benefit of also taking care of
words that do not appear in the training data.
We then apply a dropout layer on the word-
level so that the model is more robust against
word embeddings features.

2. We next apply a 1D-convolution to the words.
With proper padding, we ensure that the out-
put of the convolution matches the length of
the input for different ngram-window sizes
(Gehring et al., 2017). This offers the conve-
nience for executing attention operation (see
Section 2.5). The output of the convolution is
a list of vectors [c1, c2, ..., cn].

3. We then apply max-pooling and tanh to cre-
ate a fixed-size vector representation for the
piece of text, denoted as t.

4. Finally we apply dropout, MLP and softmax
on the vector t to discriminate between hate
vs benign.

2.2 Photo features

We first pre-train a deep neural network for image
classification, similar to the deep ResNet neural
architecture (He et al., 2016) for ImageNet (Deng
et al., 2009), with hundreds of millions of pho-
tos on a social network platform (not limited to
the domain of hate speech). For each photo, we
then extract the features from the second last layer,
which is a float vector of 4096 dimensions. Fi-
nally we run iterative quantization to convert this
vector into a hash of 256-bit binary vector (Gong
et al., 2013). We store the photo hashes for effi-
cient photo indexing, searching, and clustering.

In this research, we conveniently represent each
photo with its hash (Sablayrolles et al., 2018).
The hash takes advantage of the deep pre-trained
image network which offers discriminative se-
mantic representations. It preserves the simi-
larity between original photos: the photos with
smaller Hamming distance between their hashes
look similar to each other. While it is sub-
optimal as the iterative quantization might be
information-lossy, the photo hashing technique
provides an infrastructure-economic solution to
compactly store and promptly retrieve the infor-
mation of billions of photos on the platform.

Note that the hash comes from the second last
layer representations of the deep ImageNet-like
network. This has the flavor of transfer learning
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Figure 1: Model architecture of text and photo fusion: ellipses (in yellow) represent operations; and rectangles (in
green) represent vectors. Shapes in dot lines are clones of their corresponding components.

(Oquab et al., 2014), where we pre-train the net-
work with a large amount of out-of-domain pho-
tos, and then fix the second last layer and below.
The hash offers a generic representation for which
we will then fine-tune with in-domain photos.

2.3 Basic fusion: concatenation

The most straightforward way of integrating text
with photo features is to concatenate t and p, as
illustrated in Figure 1, where t is the text repre-
sentation vector after max-pooling and tanh ac-
tivation function, and p is the 256-dimensional
photo hash as mentioned before. The concatenated

vector is followed by dropout, MLP and softmax
operations for the final hate speech classification.
Note that with this basic concatenation, the photo
hash p would actually impact the text representa-
tion t through back-propagating the loss down to
the word embeddings MLP.

2.4 Additional fusion
On top of the basic concatenation, we have also
explored other fusion techniques: gated summa-
tion and bilinear transformation.

• Gated summation Miyamoto and Cho
(2016) propose a gated summation approach
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to integrate word and character information.
We adopt their approach and apply it to
text and photo fusion, as illustrated in Equa-
tion (1). We first apply linear transformations
to t and p so that they have the same dimen-
sion |t′| = |p′|. We then calculate a gate G
as a sigmoid (σ) function on p′, where up (a
weighed vector) andBp (a bias scalar) are pa-
rameters to be learned. We then use the gate
value G to weigh the summation of t′ and p′

to create the fusion vector f . We use the vec-
tor concat(t, p, f) for the target hate speech
classification.

t′ =Wt · t+ bt

p′ =Wp · p+ bp

G = σ(uTp · p′ +Bp)

f = G ∗ t′ + (1−G) ∗ p′

(1)

The gated summation approach is later fur-
ther extended in Lu et al. (2018), referred
to as visual modulation gate, to dynamically
control the combination of visual and textual
signals, as illustrated in Equation (2).

βt = σ(Wt · t′ + Ut · p′ + bt)

βp = σ(Wp · t′ + Up · p′ + bp)

m = tanh(Wm ∗ t′ + Um ∗ p′ + bm)

f = βt ∗ t′ + βp ∗m

(2)

In this paper, we will refer to Miyamoto and
Cho (2016)’s formula as simple-gated fusion
and Lu et al. (2018)’s formula as symmetric-
gated fusion.

• Bilinear transformation is a filter to in-
tegrate the information of two vectors
into one vector. Mathematically we have
bilinear(t′, p′, dim) = t′T · M · p′ + b,
where dim is a hyper-parameter indicating
the expected dimension of the output vector,
M is a weight matrix of dimension (dim,
|t′|, |p′|), and b is a bias vector of dimen-
sion dim. Again we concatenate t, p, and
bilinear(t′, p′, dim) for hate speech classifi-
cation.

2.5 Attention mechanism
Attention mechanism was initially proposed in
neural machine translation to dynamically adjust

the focus on the source sentence (Bahdanau et al.,
2014), but its application has been extended to
many areas including multimodal fusion (Lu et al.,
2018; Ghosal et al., 2018; Bagher Zadeh et al.,
2018). The idea of attention is to use the informa-
tion of a vector (called query) to weighted-sum a
list of vectors (called context). Mathematically,
it is implemented as Equation (3). The context
vector is the 1D-convolution output [c1, c2, ..., cn]
from text, while the query vector is the photo vec-
tor p′. Wa is a parameter to be learned.

si = softmax(cTi ·Wa · p′) i = 1, ..., n

a = sum(si ∗ ci)
(3)

• Simple vs symmetric-gated fusion Once
we have the attention vector a, which is a
weighted sum of the ci vectors from text sig-
nal only, we will further apply fusion with
the photo information g′. Again we can
consider the fusion techniques described in
Section 2.4. In this paper we experiment
with both the simple- and symmetric-gated
fusions, as bilinear is pretty expensive to
run. We use the concatenation of t, g, and
gated fusion(a, g′) for hate speech classifi-
cation.

• Sparsemax vs softmax We also experi-
ment with sparsemax (Martins and Astudillo,
2016), an alternative to softmax, in Equa-
tion (3) for calculating the attention vector
a. Sparsemax is an activation function that
outputs a vector of sparse probabilities where
most of the values are zero, which could offer
a more selective and compact attention focus.

• Deep vs shallow Another implementation
detail is whether to back-propagate the
derivatives when we clone the vectors
c1, c2, ..., cn for attention calculation. Shal-
low clone, which makes a copy of ci but stops
the back-propagation (during attention), has
less impact on the convolutions and word-
embeddings; while deep clone, passing the
derivatives through to convolutions and word
embeddings, has a bigger impact.

3 Experiments

3.1 Data
We sample from seven months of user-reported
data on a social network platform, which users re-
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Positive Negative Total
Train & dev 320K 58K 378K
Test 42K 11K 53K

Table 1: Data set size

port as hate speech. Every piece of content con-
tains some text and exactly one photo. These data
are then reviewed by the platform according to
the community standard1. Contents that are deter-
mined to violate the community standard receive
a positive label while otherwise negative. We use
the last month of the data as test set, while the first
six months of data are randomly split with 90% as
training set and 10% as development set for deter-
mining early stopping. Table 1 gives some rough
stats of the data set size.

3.2 Hyper-parameters

In our experiments, the dimension of pre-trained
word embeddings is 300. The new word embed-
dings after word-level MLP is also set at 300-
dimension. Both word-level and classification-
level dropout rates are set to 0.2. We use convolu-
tion windows [1, 3, 5] with 128 filters each. These
parameters were tuned in pilot studies to optimize
the baseline convolution text classification perfor-
mance. The dimension of fusion vectors p′, t′, and
a is set to be 128. We use ADAM optimizer with a
learning rate of 0.001. We run 20 epochs for train-
ing and select the best model with development
data.

3.3 Results

A hate speech classifier can be used for many
purposes, for example, to down-rank contents in
newsfeed service, to proactively report contents
for human reviews, to provide feedback for the
creating users, or to provide warning message for
consuming users. Generally a different decision
threshold is needed for each scenario. Thus we use
ROC-AUC as the performance metric in this pa-
per, which measures the classifier’s performance
across all scoring points.

Results are shown in Table 2. The convolution
text model gives us a baseline of 82.1. When con-
catenating the photo features p in the convolution
training, we immediately get a nice boost to 84.0.
We do not see a clear gain with additional fusion

1 https://www.facebook.com/
communitystandards/hate_speech

(a) Convolutional text model

(b) Basic concatenation fusion model

(c) Attention model (symmetric, deep, sparsemax)

Figure 2: Score distribution histogram: blue for benign
and red for hate speech. X axis is classifier score. Y
axis is the count of items in the score segment.

using gated summation, either simple gate or sym-
metric gate. Bilinear transformation even brings
the performance down. We speculate that there
might be an overfitting issue with bilinear but we
didn’t investigate further as bilinear transforma-
tion runs very slow, about 8X to 10X slower than
the other approaches.

Fusion using attention mechanism turn out to
work pretty well. Generally, we see that deep
cloning tends to perform better than shallow
cloning, suggesting the benefit of deeper engage-
ment of text and photo information. We see that
sparsemax tends to perform better than softmax,

https://www.facebook.com/communitystandards/hate_speech
https://www.facebook.com/communitystandards/hate_speech
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Inputs Additional Fusion Mode Attention Mode ROC-AUC
max clone

t 82.1
t, g 84.0
t, g, fusion(t’, g’) simple gated 83.9
t, g, fusion(t’, g’) symmetric gated 84.1
t, g, fusion(t’, g’) bilinear 82.7
t, g, fusion(attention(t’, g’), g’) simple gated softmax shallow 84.0
t, g, fusion(attention(t’, g’), g’) simple gated softmax deep 84.6
t, g, fusion(attention(t’, g’), g’) simple gated sparsemax shallow 84.3
t, g, fusion(attention(t’, g’), g’) simple gated sparsemax deep 84.6
t, g, fusion(attention(t’, g’), g’) symmetric gated softmax shallow 84.1
t, g, fusion(attention(t’, g’), g’) symmetric gated softmax deep 84.7
t, g, fusion(attention(t’, g’), g’) symmetric gated sparsemax shallow 84.3
t, g, fusion(attention(t’, g’), g’) symmetric gated sparsemax deep 84.8

Table 2: Experimental Results

suggesting the benefit of sparse weights on the
summation of convolution outputs, which gives a
higher focus on the important segments and to-
tally ignores the trivial segments. We also see that
symmetric gate tends to perform better than sim-
ple gate, suggesting the benefit of weighing the
gated summation using both text and photo infor-
mation (over using the photo channel only). Fi-
nally using the attention fusion with deep cloning,
sparsemax, and symmetric gate gives us a perfor-
mance of 84.8, another nice improvement over ba-
sic concatenation, which is statistically significant
at the 99% confidence level. In practice, we have
found that improvement of 0.5 AUC would gener-
ally lead to observed production quality.

3.4 Discussion
Figure 2 shows the score distributions for three
models: the baseline convolutional text model,
the basic concatenation fusion model, and the at-
tention fusion model with symmetric-gate, deep
clone, and sparsemax. The baseline model has a
spike at the score of about 0.13, which involves
a significant false negative. Error analysis reveals
that this is the section where posts contain none
but OOV words.2 Thus the text model extracts no
useful signals but only uses the prior distribution
which classifies all those posts as benign. With the

2Texts on social network platforms are very noisy – there
are typos, misspellings, long digits, foreign languages, and
other online specials such as hashtags that we do not have in
our limited vocabulary. A character model such as (Zhang
et al., 2015) and (Bojanowski et al., 2017) should help to al-
leviate such problems though.

concatenation of photo signals, the model can then
learn to classify a piece of content as hate speech if
there is a similar photo previously labelled as hate
speech in the training data, which helps to improve
recall.

We have also found cases where the photo
signals help to improve precision as well. We
found that when users have their posts deleted by
the platform they sometimes make a screen shot
(which is a photo) of the deleted post, and post it
with some texts complaining or appealing about
the community standard. The majority of these re-
posts are still hate speech, with a few exceptions
where the original posts were deleted by mistakes.
When training with text signals only, the model
is overfitted towards text and it thus treats all the
posts that complain or appeal the community stan-
dards as hate speech. With the integration of photo
signals, the model actually learns that a piece of
text complaining about community standard pol-
icy with a benign photo does not necessarily create
hate speech, and so is able to avoid fitting all posts
of policy complaining to hate speech.

The improvement of additional attention fusion
over basic concatenation is a bit subtle. We ob-
serve that when both the text and the photo alone
do not constitute a strong signal for hate speech,
the basic concatenation model tends to classify the
post as benign, although together they might cre-
ate an impression of hate speech. With the addi-
tional attention fusion, the model would be able
to highlight on some key phrases in the text to
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correctly recall some posts of hate speech. For
example, with the text “If you look at the photo,
I do think that they are disgusting parasites” and
a photo of people, the attention model would be
able to focus on the word “parasites” and catches
it as hate speech. Sparsemax shines especially for
longer texts. This is also shown in Figure 2 as the
attention model is able to push more hate speech
posts (in red) to the right hand side.

4 Conclusion

Interactions among users on social network plat-
forms enable constructive and insightful conver-
sations and civic participation; however, verbal
abuse such as hate speech could also happen and
lead to degraded user experience or even worse
consequence. As users’ interactions on today’s so-
cial networks involve multiple modalities, in this
paper we take the challenge of automatically iden-
tifying hate speech with deep multimodal tech-
nologies, expanding on previous research that
mostly focuses on the text signal alone. We ex-
plore a number of fusion approaches to integrate
text and photo signals, including concatenation,
bilinear, gated summation, and attention fusion.
We find that simply concatenating the text and
photo embeddings immediately leads to a boost
in performance, while additional attention fusion
with symmetric gate, deep clone, and sparsemax
brings further improvement. Our future work in-
cludes investigating fusion with multiple photos,
and fusion with more modalities (such as audio
and video).
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