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Abstract

This paper describes our system for the first
and second shared tasks of the fourth So-
cial Media Mining for Health Applications
(SMM4H) workshop. We enhance tweet rep-
resentation with a language model and distin-
guish the importance of different words with
Multi-Head Self-Attention. In addition, trans-
fer learning is exploited to make up for the data
shortage. Our system achieved competitive re-
sults on both tasks with an F1-score of 0.5718
for task 1 and 0.653 (overlap) / 0.357 (strict)
for task 2.

1 Introduction

Automatic adverse drug reaction (ADR) detection
and extraction are of great social benefits to public
health, with which pharmacovigilance (Sarker and
Gonzalez, 2015) can be performed at a broader
and more automatic level. Recent research fo-
cus their attention on online public sources such
as tweets due to their availability and authen-
ticity (Onishi et al., 2018; Adrover et al., 2015;
Salathé and Khandelwal, 2011).

The SMM4H shared task is proposed (Weis-
senbacher et al., 2019) to enhance ADR recog-
nition. Task 1 is a binary classification task be-
tween ADR mentioned tweets and drug name only
tweets, followed by task 2 to extract the particu-
lar position of ADR entities. Based on the work
we did last year (Wu et al., 2018), we extend our
previous model with hierarchical tweet representa-
tion and multi-head self-attention (HTR-MSA) to
a model using both hierarchical tweet representa-
tion and attention (HTA) to jointly participate both
tasks. Moreover, additional features and a lan-
guage model are incorporated to enhance the se-
mantic representations. In task 1, transfer learning
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on a smaller dataset is exploited. In task 2, we add
a CRF layer for the named entity recognition task.

2 Our Approach

Our HTA model can be divided into the follow-
ing three parts: hierarchical word representation,
hierarchical tweet representation and tweet classi-
fication, which are introduced as follows.

2.1 Hierarchical Word Representation
In order to combat out-of-vocabulary medical ter-
minology, misspellings and user created abbrevia-
tions, we propose a character modeling at a lower
level before traditional word representation. We
denote the character sequence of ith word as wi =
[Ci,1,Ci,2, ...,Ci,N ], where N is the word length.
A character embedding matrix Mc ∈ RV×D is
utilized to convert wi into vector sequence Ec

i =
[ei,1, ei,2, ..., ei,N ], where V denotes the character
vocabulary size and D denotes the dimension of
character embedding.

After a character embedding is generalized,
character-level convolutional neural network is
employed to capture local combined character fea-
ture. Assuming the window size of CNN filters is
2w + 1 and Uc, bc are kernel and bias parameters
respectively, a convolutional representation hi,j of
character embedding vectors from position j − w
to j + w is formed as follows:

hi,j = ReLU(Uc × ei,(j−w):(j+w) + bc) (1)

To remove unnecessary information, we apply the
max pooling to pertain only the most salient fea-
ture of the ith word.

Other features are added at a word level, such
as word2vec-twitter (Godin et al., 2015) word em-
bedding, pos-tag from NLTK library (Bird et al.,
2009) and sentiment lexicon1. To strengthen the

1http://sentiwordnet.isti.cnr.it/
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medical meaning of word representation, word ap-
pearance in SIDER 4.1 medical lexicon2 is trans-
formed to one-hot vector as additional feature. Be-
sides, the language model ELMo embedding (Pe-
ters et al., 2018) is incorporated to overcome the
shortage of limited data and get better semantic
meaning. Since ELMo contains character level in-
formation in their model, it fits better to our task
goal than other language model that utilizes a fixed
word look-up dictionary.

The final output of our hierarchical word rep-
resentation is the concatenation of character rep-
resentation, word embedding, pos-tag, sentiment
lexicon, medical lexicon feature and language
model output.

2.2 Hierarchical Tweet Representation
We first send word representation obtained in the
previous module to a Bi-LSTM layer to encode
long-distance information. The Bi-LSTM output
of a sentence of length M is denoted as H =
[h1,h2, ...,hM ].

The second layer takes advantage of multi-head
self-attention (Vaswani et al., 2017) to mine inter-
nal relation between words in the same sentence.
In our layout, the representation vector mi,j of the
jth word learned by the ith attention head is com-
puted by weighted summation of H:

α̂i
j,k = hj

TUihk, (2)

αi
j,k =

exp(α̂i
j,k)

ΣM
m=1 exp(α̂

i
j,m)

, (3)

mi,j = Wi(Σ
M
m=1α

i
j,mhm), (4)

Ui and Wi are the parameters of the ith
self-attention head, and αi

j,k represents the re-
lated weight between jth and kth words. Af-
ter concatenating outputs from h different self-
attention heads, we get the representation mj =
[m1,j ;m2,j ; ...;mh,j ] of the jth word.

2.3 Tweet Classification
For task 1, we use an additive attention mechanism
to selectively combine word representations. The
model is trained with a cost-sensitive weighted
loss function (Santos-Rodrguez et al., 2009). Sen-
tence level binary labels are then generated for
task 1. However, in task 2 word level labels are
needed, so we use a CRF layer to predict word
level entity tags after self-attention vectors pro-
duced in the lower level.

2http://sideeffects.embl.de/

3 Experiments

3.1 Experiment Settings

In our experiments,the word embedding we use is
400 dimension and Bi-LSTM network has 2×200
units. The CNN network has 400 filters with win-
dow size of 3. There are 16 heads in the multi-head
self-attention network, and the output dimension
of each head is 16. Adam is selected as the opti-
mizer.

Transfer learning is conducted on the CADEC
medical ADR dataset (Karimi et al., 2015) first in
task 1. However, we do not adopt this method in
task 2 due to the relative small training dataset of
this task. For the word classification, we train for
this task a marginal CRF with probabilities as out-
put.

3.2 Experiment Results

Detailed evaluation score is illustrated in table 1,
which illustrated the effectiveness of our ap-
proach. In task 1, our model outperforms the av-
erage score among all participants by 0.070. In
task 2, the improvement on relax F1 is also sig-
nificant, we improve 0.115 on relax F1 and 0.040
on strict F1. Besides, compared to the best model
we submitted for task 1 last year (Wu et al., 2018),
which reached a 0.522 F1 score, our method with
the language model and transfer learning improves
the original model by 0.050.

4 Conclusion

We design HTA, a hierarchical tweet representa-
tion and attention model for SMM4H shared task
1 and 2, our model attains high evaluation scores
on both tasks and generates promising application
value.
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Task 1 Task 2 (relax) Task 2 (strict)
Precision 0.467 0.612 0.329

Recall 0.738 0.698 0.390
F1 Score 0.572 0.653 0.357

Average F1 (mean) 0.502 0.538 0.317
F1 Range (mean) 0.3308 0.486 0.422

Table 1: Evaluation Results.
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