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Abstract

This work aims to infer mental health status
from public text for early detection of suicide
risk. It contributes to Shared Task A in the
2019 CLPsych workshop by predicting users’
suicide risk given posts in the Reddit subforum
r/SuicideWatch. We use a convolutional neu-
ral network architecture to incorporate LIWC
information at the Reddit post level about top-
ics discussed, first-person focus, emotional ex-
perience, grammatical choices, and thematic
style. In sorting users into one of four risk cat-
egories, our best system’s macro-averaged F1
score was 0.50 on the withheld test set. The
work demonstrates the predictive power of the
Linguistic Inquiry and Word Count dictionary,
in conjunction with a convolutional network
and holistic consideration of each post and
user.

1 Introduction

Psychological distress in the form of depression,
anxiety, and other mental health issues can have
serious consequences for individuals and society
(WHO, 2017). Unfortunately, stigma surround-
ing poor mental health may prevent disclosure
of suicidal ideation. For example, Oexle et al.
(2017) found that perceived stigma and the associ-
ated secrecy around mental illness were positively
linked with feelings of hopelessness and suicidal
ideation. McHugh et al. (2019) found that the stan-
dard practice of clinicians asking people about sui-
cidal thoughts fails in many cases, as 80% of pa-
tients who ultimately died of suicide reported no
suicidal thoughts when prompted by their general
practitioner.
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There is a need to supplement traditional meth-
ods for evaluating suicidality that minimize the
need for direct disclosure from the individual.
Some of those suffering from mental health chal-
lenges have adopted social media outlets, such as
Reddit’s r/SuicideWatch, as a means to cope (Park
et al., 2012; Robinson et al., 2016). Recent re-
search finds promising links between an individ-
ual’s mental well-being and the linguistic content
they share on social media (Coppersmith et al.,
2014; De Choudhury et al., 2016; Vioules et al.,
2018; Shing et al., 2018).

The Sixth Annual Workshop on Computational
Linguistics and Clinical Psychology (CLPsych
2019) includes a shared task on predicting a Red-
dit user’s degree of suicide risk based on their
posts in the r/SuicideWatch forum (Zirikly et al.,
2019). The task involves assigning a degree of
risk (no, low, moderate, or severe) to a user on
Reddit based on content they have posted on Red-
dit. For this task, researchers were given access
to the University of Maryland Reddit Suicidality
Dataset (Shing et al., 2018), made available with
assistance by the American Association of Suici-
dology. This dataset consists of ~1000 users an-
notated with the four-level scale, and a larger set
of 20,000 unannotated users.

2 Prior work

The baseline deep learning model for classifying
suicide risk on Reddit, by Shing et al. (2018),
builds on the convolutional neural network (CNN)
for language processing as laid out by Kim (2014).
Shing et al.’s CNN makes use of unigram word
embeddings, concatenated by post and then by
user, then constructs an overall user score using
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| Model | Precision | Recall | F1 |
CNN + GloVe vectors 0.55 0.43 0.42
Affect-only CNN + LIWC | 0.53 0.47 0.49
Primary: CNN + all LIWC | 0.65 0.55 0.56

Table 1: Average performance of our models in 10-fold
cross-validation on the training set

| Model | FullF1 | Flagged F1 | Urgent F1 |
Primary 0.37 0.88 0.77
Leave none out | 0.50 0.90 0.82
Balanced classes | 0.41 0.90 0.80

Table 2: Performance of our models by macro-
averaged F1 on the test set. ‘Full F1’ indicates score
across four classes, while ‘flagged’ and ‘urgent’ F1
reflect binary splits between no/some risk and non-
severe/severe risk, respectively. All three submitted
models use a convolutional network plus all LIWC fea-
tures.

sliding windows over that sequence. In a sepa-
rate approach, Shing et al. use an SVM to con-
sider post-level features but make an overall risk
assessment based on the most concerning individ-
ual post. Neither method incorporates distinct in-
sights from individual posts—where, for instance,
along series of moderately concerning posts might
indicate more serious risk. Our model incorpo-
rates information from multiple posts within the
CNN framework.

We additionally leverage prior social media
work (Braithwaite et al., 2016; Coppersmith et al.,
2015) that finds suicidality can be predicted from
a particular feature set, the Linguistic Inquiry and
Word Count (LIWC) dictionary, as distributed by
Tausczik and Pennebaker (2010).

3 Methods

All modeling methods were applied to the de-
identified Reddit data as part of Shared Task A.
Approval from CMU IRB was obtained on March
11 2019, and we adhered to the ethical review cri-
teria laid out by Zirikly et al. (2019).

3.1

Convolutional neural networks form the basic ar-
chitecture for our models. Following Shing et al.
(2018) and Kim (2014), we concatenate word em-
beddings for each word in a post, then concate-
nate these embedding sequences for all posts in
order of occurrence. Our implementation uses pre-
trained GloVe word embeddings by Pennington

Modeling with word embeddings
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et al. (2014) and code snippets from Neubig et al.
(2019).

In both of these experiments, we transform all
posts by a user into a two-dimensional array of
dimension num_total_words x embedding_size.
For the CNN, filter parameters that must be trained
are then window_size X embedding_size X
num_filters. Given the small size of the expert-
annotated dataset, we next explore ways to reduce
the number of features a network needs to train.

3.2 Modeling with post-level features

We next consider post-level features. In this
dataset the post body field is often empty, pre-
sumably when the post comprises only an im-
age or other embedded media, so features must
be robust to this variation. In all subsequent
models, each post component (title or body) is
represented as a one-dimensional vector of size
num_post_features. Calling each such 1-D vec-
tor x;j, we chronologically concatenate these vec-
tors for each post title and non-empty body for
user ¢ into a longer 1-D vector:

X; = Xi1 DXi2 D ... DXin-

Thus we represent each user with the concatenated
vector of all post features from posts 1 : n, where
n is their total number of post titles and non-empty
post bodies. The resulting vector for user ¢ has
shape 1 x (n * num_post_features). Users are
then batched for quicker training. Each user vec-
tor is padded to the length of the longest one, re-
sulting in a batch of k user vectors having shape
k X (Nmaqe * num_post_features). Masking pre-
vents back-propagation of weights to padding vec-
tors.

Others’ prior work successfully incorporated
LIWC features into suicidality detection (e.g.
Lightman et al. (2007)). Thus, we experiment with
sets of LIWC features as the summary of each post
by a user, then concatenate these features from
all of a user’s posts. In order to maintain cross-
post context while reducing the number of fea-
tures, the first model considers only features from
the ‘affect’ category. Using just these sentiments
appeared likely to predict self-destructive mental
state (Kumar et al., 2015). Subsequent models use
all 45 features provided in the LIWC dictionary.

We next apply a convolutional neural network
to this 1-D sequence of LIWC features. Our
network uses the keras implementation of a



one-dimensional CNN (Chollet et al., 2015), set-
ting both stride length and window size equal to
num_post_features and using num_filters
10 filters. This structure means that each win-
dow looks at LIWC features from a single post
title or body, and extracts relationships between
these features into 10 filter representations. The
model forgoes pooling (following Springenberg
et al. (2014)) in favor of maintaining independent
information about each post. Thus, after convo-
lution, the batch of k& users with max number of
POStS Nynqz has shape k X (npqq x num_filters).
Convolution is followed by a dropout layer set-
ting 30% of input units to 0 at any given timestep,
intended to reduce overfitting. The next two lay-
ers are fully connected, with 250 and 100 nodes,
respectively, and rectified linear activation func-
tions; thus, after passing through the second linear
layer, the data has shape k£ x 100. Finally, labels
are generated by a softmax output layer. Training
seeks to minimize cross entropy, and uses 10-fold
cross-validation (CV) on the training set.

‘Affect-only’ model

This model uses the four affect categories relating
to negative sentiment: ‘negative affect, ‘anger,’
‘anxiety, and ‘sadness’. We selected this sub-
set as a reasonable approximation of negative va-
lence, and to test its predictive performance with-
out broader information.

‘Primary’ model

The best-performing model on a set-aside devel-
opment set serves as our primary model. This
model differes from the affect-only model in in-
corporating all 45 LIWC categories as post fea-
tures.

‘Balanced classes’ model

Next, we provide our model with custom weights
corresponding to the penalty incurred while mis-
classifying each class. We provide larger weights
for the underrepresented ‘low risk’ and ‘moderate
risk’ classes to force the model to pay more atten-
tion to these categories while training.

‘Leave none out’ model

This final model used all available data for train-
ing. In the primary and balanced models, it was
clear that while training set performance continues
to improve, development set performance levels
off somewhere around 150 epochs. That is, cross-
validation results were optimized at epoch 235 for
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Figure 1: Confusion matrix on the test set from the
best-performing model

the primary model, and 67 for the balanced classes
model. Taking the average, this system uses the
model state after epoch 150 to predict test set re-
sults.

Our primary evaluation metric is the resulting
macro-averaged F1 score of our models; we report
averages on a set-aside development set (see Table
1). For three approaches, we also present macro-
averaged F1 scores on an unseen test set.

4 Results

With our initial convolutional network model, us-
ing GloVe word embeddings in a convolutional
neural net in the style of Kim (2014), we confirm
similar performance to Shing et al. (2018) with a
macro-averaged F1 score of 0.42. We also find that
this model strongly overfits the data; it performs
exceptionally well on the training data (F1=0.95)
but fails to generalize well on development data
(F1=0.42). This overfitting is expected, since the
size of our dataset is not sufficient to successfully
train large models.

The high overfitting and our model’s inability to
further learn from the dataset encourage us to fo-
cus on simpler models, and to thoughtfully select
our features.

The best-performing models all use LIWC fea-
tures at the post level, concatenated by user, and
run through a one-dimensional CNN with stride
length and window size equal to the number of
features.
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Figure 2: Filters for the best-performing model indicate

4.1 ‘Affect-only’ model

When representing each post as a vector of LIWC
affect features, we find that the base model
achieves an Fl-score of 0.47 in cross-validation.
We still find a significant discrepancy between our
model’s performance on seen/unseen data, indicat-
ing that it still suffers from overfitting. We experi-
ment with hyperparameters like dropout and num-
ber of filters, finding that a model with 10 filters
and 0.3 dropout probability outperforms all our
previous models with a macro-averaged CV F1-
score of 0.49.

On studying the performance of our model, we
find that its behaviour is not uniform across all
classes: it does well in labeling ‘no risk’ and ‘se-
vere risk,” but performs poorly in trying to label
the intermediate risk categories.

4.2 ‘Primary’ model

We next use variations to improve features pro-
vided while still minimizing parameters trained.
For our ‘primary’ model, we provide all 45 LIWC
category features to a CNN of the same structure.

In macro-averaging pairwise AUC scores on the
development set, this model scores 0.76. On the
test set, the model’s macro-averaged F1 is 0.37. A
random guessing strategy weighted by label fre-
quency would yield F1=0.25.

4.3

We find that this change boosts the model’s CV
performance on our development set to an F1
score of 0.57, with a macro-averaged AUC score
on the development set of 0.78. We also find that

‘Balanced classes’ model
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this model performs more uniformly across the
four classes than we see in the previous model, re-
sulting in a slightly better score on the unseen test
set, F1=0.40.

4.4 ‘Leave none out’ model

With this final model and feature architecture, we
train our model on the entire training dataset avail-
able for Task A, stopping after 150 epochs. This
model achieves our highest score on the test set,
a macro-averaged Fl-score of 0.50 on this task—
comparing favorably with the best-scoring system,
whose Fl-score is 0.53. We also note that our
model achieves high F1-scores (0.90 and 0.82 re-
spectively) for the ‘flagged’ and ‘urgent’ tasks.

This model’s final confusion matrix is shown
in Figure 1. We find that our model is best at
identifying the ‘no risk’ and ‘moderate risk’ users,
while it miscategorizes 42% of ‘severe risk’ cases
as ‘moderate risk’ as well. There are fewer ‘low
risk’ users, and about half of these are miscatego-
rized as ‘moderate risk’ as well.

5 Discussion

5.1 ‘Affect-only’ model

We can attribute this model’s difficulty with in-
termediate labels to our usage of only the nega-
tive ‘affect’ category from LIWC. This category
extracts counts for words associated with ‘nega-
tive_affect, ‘anger,” ‘anxiety,” and ‘sadness’, i.e,
words one would typically associate with severe
suicidality conditions; presence of (a large num-
ber of) these words may be common in Severe risk



users, whereas their absence might be a strong in-
dicator of No risk users. Poorer performance in
the intermediate categories may indicate inconsis-
tent use of emotion terms by those users, or may
suggest a smaller range of variation between those
categories as opposed to variation within the ex-
tremes.

5.2 ‘Primary’ and ‘balanced classes’ models

The ‘primary’ and ‘balanced classes’ models per-
form similarly, with a difference in F1 scores of
about 0.03. We believe that the latter model is
slightly more effective because its higher weights
for the intermediate categories counteracted those
labels’ lower representation in the training set.
This is borne out in the model’s slightly better per-
formance on those classes: it categorizes % of
‘low risk’ and %—g ‘moderate risk’ users correctly,
whereas the ‘primary’ model is right about 1% and
2% of such users, respectively. Macro-averaged F1
as the primary metric means that even this slight
improvement is significant when comparing the
two models.

It seems plausible that, because it was trained
for longer, the ‘primary’ model was more over-
fitted to the training data. Because we use 10-
fold cross-validation to train these models, we also
note that both these models are trained using 90%
of the training data; we hypothesize this missing
10% of data to be the primary reason that our
leave-none-out model outperforms both of these
models. A larger training dataset allows the model
to “observe” more data, which helps both with
getting more training data for under-represented
classes (e.g. low and moderate risk) and with gen-
eralizing better on all unseen data.

5.3 ‘Leave none out’ model

Difficulty identifying ‘low risk’ users may be par-
tially explained by the fact that fewer users from
the training set were in that class than any other—
just 10% of examples were labeled low risk, so
there was less opportunity to learn these features.
In Figure 2a, we plot the learned convolutional
layer weights from our final model with respect
to the input LIWC feature categories, finding that
each filter is activated (or deactivated) by a sub-
set of LIWC features. We hypothesize that each
filter focuses on learning presence or absence of
a particular character trait (or ‘sentiment’) from
each post. For instance, filter 9 is inversely as-
sociated with money, anxiety, and ‘we,” indicating

that someone describing their stress around money
would have a negative activation for Filter 9. See-
ing a stronger association between Filter 9 and ‘no
risk,” we can extrapolate that users who are not at
risk are less likely to be preoccupied with their fi-
nancial troubles on 1/SW.

While not all subsets are clear, we can observe
some patterns. For instance, Filter 2 has the high-
est positive weights for ‘hear, ‘negative_affect,’
‘death,” ‘percept, and ‘see.” We could hypothe-
size that a user activating this filter is preoccupied
with how they are perceived, and is also consid-
ering death (whether their own or that of a loved
one). This filter may indicate both a feeling of be-
ing observed, perhaps stigmatized, and an expe-
rience of suicidal ideation, as discussed by Oexle
etal. (2017).

5.4 Findings

Overall, this work demonstrates the power of
combining human feature-engineering with deep
learning in data-constrained situations. The Lin-
guistic Inquiry and Word Count dictionary, in con-
junction with a convolutional network, leads to a
holistic consideration of each post and each user,
all while reducing the overall number of parame-
ters the network needs to learn. Within the con-
straints of a relatively small dataset, we find that
our best model incorporates engineered features
and all available data to outperform a ‘baseline’
re-implementation of Shing et al. (2018).
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