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Abstract

The fields of cognitive science and philoso-
phy have proposed many different theories for
how humans represent “concepts”. Multiple
such theories are compatible with state-of-the-
art NLP methods, and could in principle be op-
erationalized using neural networks. We fo-
cus on two particularly prominent theories–
Classical Theory and Prototype Theory–in the
context of visually-grounded lexical represen-
tations. We compare when and how the behav-
ior of models based on these theories differs in
terms of categorization and entailment tasks.
Our preliminary results suggest that Classical-
based representations perform better for en-
tailment and Prototype-based representations
perform better for categorization. We dis-
cuss plans for additional experiments needed
to confirm these initial observations.

1 Introduction

There are many theories and proposed definitions
for what exactly constitutes a “concept”. Which
definition is the right one is a hotly debated topic
in philosophy and psychology, which has involved
a wide range of in-principle as well as empirical
arguments (Laurence and Margolis, 1999). De-
spite the lack of consensus as to their definition,
it’s generally agreed that representations of con-
cepts play a key role in natural language under-
standing, as the meaning of natural language ex-
pressions are necessarily defined in terms of their
denotations–i.e. the aspects of the grounded (non-
linguistic) world to which the expression refers.
For example, reasoning about how the word “owl”
relates to the word “bird” requires consideration
of how the thing or things referred to by “owl” re-
lates to the thing or things referred to by “bird”.
Thus, representations of the concepts to which lan-
guage refers is a key part of general language un-
derstanding.

It is not obvious, however, how one should
chose to represent concepts computationally, es-
pecially given that current state-of-the-art neural
models of grounded language can be seen as com-
patible with a number of theories for concepts, de-
pending on how the architectures and algorithms
are constructed. Thus, in this paper, we focus
in particular on lexical concepts, and study two
prominent theories which have both wide support–
as well as substantial criticism–within the psy-
chology and philosophy communities (Laurence
and Margolis, 1999). The first, Classical Theory,
represents concepts as the set of necessary-and-
sufficient conditions which define the extension of
the concept. For example, the representation of
owl is the set of conditions such that, if and only if
some entity meets every condition, that entity is an
owl. Classical Theory is the most frequently cited
in linguistics and NLP– it is the theory underlying
traditional formal semantics–and is often formal-
ized in terms of set theory, i.e. the extension of
“owl” is the set of all owls. The second theory
we explore is Prototype Theory, which represents
concepts as a single, prototypical instance of that
concept. For example, the representation of owl
would be a particular instance of owl that captures
the most characteristic, salient, typical, or other-
wise important properties associated with owls.
The degree to which some entity falls within the
extension of owl is then a function of how “sim-
ilar” that entity is to the prototype of owl. Thus,
unlike Classical Theory, there is no clear notion
of what is required in order to be an owl, and an
entity may be judged to be an owl on the basis of
“resemblance” despite having few definable prop-
erties in common with the prototype.

There are many points of differentiation that one
might make between Classical Theory and Proto-
type Theory. In particular, Classical Theory is typ-
ically associated with discreteness and binary-ness
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(e.g. an entity either is an owl or it is not) while
Prototype Theory is associated with graded judge-
ments. By this distinction, it seems that Classical
Theory is at odds with the state-of-the-art in NLP,
which hinges on continuous representations and
probabilistic judgements. However, in this paper
we highlight a different distinction between Clas-
sical and Prototype Theory, which enables both
theories to be operationalized in terms of contin-
uous representations. Specifically, we frame Clas-
sical Theory as concerned primarily with repre-
senting boundaries between classes and Prototype
Theory as concerned primarily with representing
the centers of classes. That is, Classical Theory
strives to determine the line that separates the least
owl-like owl from most owl-like non-owl, while
Prototype Theory strives to determine the proper-
ties that are most likely true of owls in general.

We conduct an empirical comparison of these
two theories by providing computational instanti-
ations of each in the context of visually-grounded
word representations. Specifically, we use im-
ages with a given label (i.e. images of owls) to
represent observed instances of each concept, and
encode all images into a shared space using a
Variational Autoencoder (VAE). We then build a
Classical-based representation by computing the
boundary which encompasses all instances of a
given concept, and build a Prototype-basesd repre-
sentation by computing the center of mass among
all instances of a given concept. We compare
these two models in terms of their performance
on two tasks: 1) categorization (i.e. determining
whether an instance falls within the extension of
the concept) and 2) entailment (deciding whether
one concept subsumes another). Our initial re-
sults suggest that the Classical-based representa-
tion consistently outperforms the Prototype-based
representation on tasks related to entailment, even
when we take into account the gradability of hu-
man entailment judgments. However, our results
also suggest that the Prototype-based representa-
tion is better suited to perform the categorization
task, although further investigation is needed to
draw a complete comparison.

2 Definitions

2.1 Notation

We will use C to represent a concept and x to rep-
resent a potential “instance” of the concept. Intu-
itively, we can think of x as an entity when C is a

concept corresponding to a noun like “cat”, but x
might also be an event, property, or any other more
abstract possible referent which might be consid-
ered to fall within the extension of C. C and X
represent the space of concepts and of instances,
respectively. We assume that a representation of
a concept must support the tasks of categorization
and entailment, as follows:

Categorization: A function fC : X → [0, 1]
which returns the probability that x falls within the
extension of C.

Entailment: A function entail : C × C → [0, 1]
which returns the probability that C2 can be in-
ferred from C1.

2.2 Classical Theory
In Classical Theory, a concept is represented as
a set of conditions which are necessary and suffi-
cient in order for an entity to fall within the exten-
sion of the concept. Typically, in formal linguis-
tics, this is discussed in terms of set theory: i.e.
the denotation of a word is the set of instances in
JCK ⊆ X which forms the extension of that word.
Thus, fC is simply the characteristic function of
this set. As classical theory is primarily concerned
with defining clear boundaries between what can
and can not be considered a member of the con-
cept, this is best captured as a binary function (in-
stances either are in the set or they are not):

fC(x) =

{
1 if x ∈ JCK
0 otherwise

(1)

Then, C1 is said to entail C2 if JC1K ⊆ JC2K:

entail(C1, C2) =

{
1 if ∀x(fC1(x) ≤ fC2(x))

0 otherwise
(2)

That is, whenever fC1(x) = 1, we must also have
fC2(x) = 1. We also can consider a relaxed def-
inition that supports graded (probabilistic) judg-
ments of entailment. Specifically, we can say that
the degree to which C1 entails C2 is determined
by the degree of overlap between these sets:

entail(C1, C2) =

∑
x∈X fC1(x)× fC2(x)∑

x∈X fC1(x)
(3)

That is, the probability that C1 entails C2 is ex-
actly the probability that a given instances of C1
is also an instance of C2.
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2.3 Prototype Theory
In Prototype Theory, a concept is represented as
a single “prototype”–i.e. an instance that falls
within the extension of the concept and captures
the most relevant, salient, or important properties
of the concept. In contrast to Classical Theory, the
features of the prototype do not represent neces-
sary criteria–it is possible for an instance to fall
within the extension of the concept despite hav-
ing few features in common with the prototype.
Concepts, then, are represented as a tuple con-
taining an exemplar xC and a distance function
d : X × X → R which specifies how similar an
arbitrary instance is to the exemplar. While there
is no crisp definition of the extension of the con-
cept, it is generally accepted that the criteria for
inclusion in the extension must be proportional to
the distance function (Osherson and Smith, 1981;
Kamp and Partee, 1995):

fC(x) ∝ d(x, xC) (4)

That is, for any pair of instances x, y, if
d(x, xC) < d(y, xC), it cannot be the case that
y is in the extension of C but x is not.

Traditional descriptions of Prototype Theory–
i.e. those described in Rosch and Lloyd (1978);
Kamp and Partee (1995)–do not explicitly define
how to reason about entailment under Prototype
Theory. Osherson and Smith (1981) proposed
the use of fuzzy set theory (Zadeh et al., 1996)
as a means for incorporating Prototype Theory
within the familiar logical framework for reason-
ing about entailment. However, this approach has
received significant criticism regarding the predic-
tions it makes about compositionality (Osherson
and Smith, 1981). Thus, we consider an alterna-
tive, simple definition of entailment which simply
says that C1 entails C2 to the extent that the exem-
plar of C1 falls within the extension of C2:

entail(C1, C2) = fC2(xC1) (5)

We begin with this definition as it is straightfor-
ward and reflects the basic spirit of Prototype The-
ory, without forcing it to look like set theory. We
will consider alternative definitions in future work.

3 Instantiation

We focus on lexical concepts, specifically those
corresponding to common nouns. We instantiate
the definitions given in Section 3.1 using images

to represent “instances”. That is, our X is the
space of all images and our C maps one-to-one
onto English nouns. A similar approach, using im-
ages as a representation of “the world”, has been
used previously (Young et al., 2014). We adopt
this approach as it enables a fairly direct way to
instantiate abstract formal theories using represen-
tations (pixels) which can be handled straightfor-
wardly by current computational models. We do
not make the claim that visual attributes are the
only relevant attributes which factor into represen-
tations of concepts. Rather, our focus is on test-
ing in general how the choice of representation af-
fects the predictions made by models, assuming
that some representation of “the world” is given
a priori. In other words, our choice to use only
visual attributes is a methodologically-motivated
choice, not a theoretically-motivated one.

3.1 Models

VAE. We encode all of our images into a shared
space using a standard variational autoencoder
(VAE) (Kingma and Welling, 2013). An advan-
tage of using a VAE in this research is that la-
tent features are encouraged to match a normal
distribution, enforcing a structure on the latent
space that allows euclidean geometric manipula-
tions such as interpolation. This allows us to
instantiate simple and intuitive euclidean eval-
uations when comparing theories. We train a
VAE to reconstruct image encodings from a pre-
tained CNN. In the following descriptions, ~x =
V AE(CNN(x)), i.e. the d-dimensional encod-
ing of an image obtained by applying a pertained
image classifier followed by our VAE encoder.

Classical-Based Method. Our definition of
Classical Theory requires only that we can define
the boundary for each concept. Given a set XC of
instances of a concept C–i.e. the set of images x
observed with label C–we define this boundary to
be the convex hull HC computed over ~x for ev-
ery x ∈ XC . That is, we compute the literal
boundary surrounding a set of encoded instances
(shown as solid lines in Figure 1). We can then
evaluate whether an arbitrary new instance x is a
member of C by computing whether ~x falls within
this boundary (Eq. 6). We can then produce en-
tailment judgments using Eq. 2 or 3 exactly.

fC(x) =

{
1 if ~x · HC ≤ 0

0 otherwise
(6)
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When evaluating on the entailment tasks (Sec-
tion 5.2) we consider two variants of this
Classical-based representation. First, we con-
sider a “strict” interpretation of entailment, where
C1 → C2 iff every instance in C1 is also in C2.
Second, we consider a soft representation in which
which C1 → C2 if the proportion instances from
C2 that are in C1 (i.e. Eq. 3) is at least τ . When
we use this soft representation, we set τ using per-
formance on a held-out validation set.

Prototype-Based Method. Our definition of
Prototype Theory requires that we can define a
prototype instance and a distance function for each
concept. Again, given XC , the set of images x ob-
served with label C, we approximate a probability
density function φC - in this case, as a multivariate
normal distribution. We then define the prototype
~xC to be the mode of φC . The distance function d

can then be defined as:

d(~x, ~xC) =
φC(~x)

φC( ~xC)
(7)

or the density at point ~x in φC . Because the den-
sity may evaluate to a value greater than 1, we nor-
malize by density at the prototype φC( ~xC). This
results in values in the range [0, 1], which are more
interpretable and comparable across scenarios. We
parameterize density function φC as a multivariate
normal distribution with mean µC and covariance
σ2C , resulting in prototype ~xC = µC . We chose
this distance function as it is arguably the simplest
way to compute “distance to the prototype” which
still allows asymmetry. That is, pure euclidean
distance would be simpler, but would lose the abil-
ity to represent directionality, meaning e.g. “owl”
would be as prototypical of “bird” as “bird” is of
“owl”. In future work, we will consider differ-
ent definitions of prototype and/or more complex
distance functions, as well as alternative, i.e. non-
Gaussian, representations.

When evaluating on the categorization tasks
(Section 5.2), we must use this distance function
to make a binary decision about whether or not
an instance falls within the extension of the con-
cept. Thus, analagous to how we softened the
Classical-based representation, which stricten our
Prototype-based representation by defining thresh-
old τ , and saying that fC(x) = 1 iff d(~x, ~xC) ≤ τ .
Again, when used, we set τ empirically based on
performance on a validation set.

Figure 1: Encodings of “bird of prey” and “owl” as
black and white dots respectively. The convex hull
(Classical-based representation) is represented by the
black lines. Colored gradients show multivariate nor-
mal distributions (Prototype-based representation).

3.2 Training

We train our VAE on IMAGENET (Deng et al.,
2009), which consists of approximately 1,000
images for each of 1,000 fine-grained, mutu-
ally exclusive categories corresponding to com-
mon nouns/noun phrases (e.g. “great grey owl”,
“knee pad”). These class labels have been
mapped onto the WORDNET (Miller et al., 1990)
ontology, which provides a tree structure of
hypernym-hyponym relationships. Since we want
representations for both fine-grained concepts as
well as higher-level concepts (in order to evaluate
entailment), we compose data of high-level con-
cepts from their lower-level hyponyms. For ex-
ample, for the high-level concept “bird of prey”,
we take all hyponyms of “bird of prey” according
to WORDNET (e.g. “great grey owl”, “kite”). Of
these, we identify those in IMAGENET and gather
instances of these subclasses to comprise the set
for the superclass “bird of prey”.

We hold out 100 instances of each low-level
class to keep for testing. We split our data evenly
between hypernym/hyponym labels and between
train/test sets to ensure that, e.g., if a particular
image of an owl is used as a “bird of prey” dur-
ing training, then that same instance is not seen as
an “owl” nor as a “bird of prey” during test. The
same image might be seen as both an “owl” and a
“bird of prey” during training.
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We feed each image through a pretrained im-
age classifier (Inception v3) (Szegedy et al., 2016),
and extract the 2048-dimensional output of the fi-
nal hidden layer, to be treated as the representa-
tion of that image. We use these data to train sev-
eral different configurations for the VAE. Our VAE
consists of a feed-forward encoder and decoder
network, each with two dense hidden layers with
ReLU activation. We define the hyperparameter d,
the dimensionality of the latent space. We experi-
ment with d ∈ 2, 3, 4, 8, 16, 32, 64, 128, 256. Hid-
den layers are scaled proportionally to the size of
the latent space, while input/reconstruction layer
sizes are fixed at 2048. We train each of these
with an Adam optimizer with a learning rate of
0.001. We save the weights with the best valida-
tion loss, stopping training after 5 epochs without
improvement. Training takes only a few minutes
on a desktop with an Nvidia GTX 1070 GPU.

3.3 Dimensionality Reduction

Due to the exponential complexity of algorithms
used to compute convex hulls (specifically Quick-
Hull (Barber et al., 1996)) we are unable to com-
pute Classical-based representations for values of
d > 4. For now, we address this by training the
VAE with higher dimensional encodings, then pro-
jecting into a lower dimension before applying the
Classical-based method. We report results for pro-
jected and unprojected variants of both Classical-
based and Prototype-based methods in Section 5.
Although initial experiments do not suggest a ben-
efit to using higher dimensions (i.e. d = 4 dimen-
sions did not outperform d = 2 in our early exper-
iments), a priority of our future work is to employ
more sophisticated algorithms from computational
geometry which will allow us to compute convex
hulls in higher-dimensional spaces.

4 Evaluation

4.1 Entailment

For entailment, we consider both the traditional
version of the task, in which entailment judg-
ments are binary, as well as a graded variant of
the task, in which concepts are said to entail one
another to varying degrees (e.g. a “robin” is said
to be a better instance of “bird” than a “pen-
guin” is, and thus “robin” entails “bird” more
than “penguin” entails “bird”). The observation
that humans produce graded entailment judgments
is what spurred Prototype Theory initially (Rosch

and Lloyd, 1978), and thus is a relevant evaluation
task. Examples of binary and graded entailment
judgements are given in Table 1.

Standard Graded
WBLESS HYPERLEX

stove→object X kangaroo→animal 6.0
scarf→garment X mammal→animal 6.0
pistol→ weapon X grape→food 5.9

grain→corn X animal→mammal 0.8
telephone→stove X horn→car 0.9
jacket→raincoat X plate→spoon 0.2

Table 1: Positive and negative examples from each of
our lexical entailment (LE) evaluation sets.

WBLESS. For the standard (binary) lexical en-
tailment task, we use the WBLESS lexical entail-
ment dataset (Weeds et al., 2014), which con-
sists of 1,168 word pairs, containing an equal
number of positive and negative lexical entail-
ment examples. Positive examples are hyponym-
hypernym pairs, where negative examples in-
clude reversed entailment pairs, co-hyponyms,
holonym-meronym pairs, and random word pairs.

HYPERLEX. For the graded entailment task, we
use the HYPERLEX (Vulić et al., 2017) dataset,
which contains human judgements of the degree
of lexical entailment in the range [0, 6]. We use
the noun component of HYPERLEX, which con-
tains 2,163 noun pairs with a mean score of 3.3.

IMAGENET Mapping. For each word/concept
C in WBLESS, we want to obtain a set of im-
ages XC that are considered instances of that
concept. To do this, we compute the hy-
ponym closure of C in WORDNET (contain-
ing all hyponym descendants, or all words that
entail C), and gather any that exist as IMA-
GENET class labels. For example, for the WB-
LESS concept “bird of prey”, we identify IMA-
GENET class labels {“kite”, “bald eagle”, “vul-
ture”, “great grey owl”}. All image instances
in these classes are then considered to comprise
Xbird of prey. Often, different concepts map to the
same synset. For example, “toad”→“frog” be-
comes “frog”→“frog”. Different pairs also map
to identical pairs in IMAGENET. For example,
“lizard”→“animal” and “lizard”→“creature”
each map to “lizard”→“animal”, despite having
different human judgement values. Finally, some
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pairs might map onto multiple synsets. In the for-
mer two cases, we leave these flaw as-is. In the
third case, we assign words to their first sense. Ex-
periments with multiple ways of processing these
conflicts showed no noticeable impact on results.

After filtering out pairs in which one or both
words have no corresponding images in IMA-
GENET, both of our datasets are left with a slight
entailment bias. Specifically, for WBLESS, we are
left with 463 examples (325 entailing, 138 non-
entailing). For HYPERLEX, we are left with 362
pairs, with a mean score of 4.0.

4.2 Categorization

We frame categorization as a binary classification
task for each of the 1000 base-level IMAGENET

categories. For each category, we take the 100
positive examples, and 100 random negative ex-
amples (from test data). We then evaluate whether
each instance belongs to that category.

5 Results

Quantitative results are shown in Table 2. Figure
2 shows illustrative examples of instances occur-
ring near the prototype vs. on the boundary, to
provide an intuition of the differences between the
two representations.

5.1 Model Variants

We consider several variants of each representa-
tion. For the Classical-based representation, we
consider both strict and soft variants (Section 3.1).
For the Prototype-based method, we train at var-
ious dimension sizes and find that d = 64 con-
sistently performs best on a held-out validation
set. For the Classical-based methods, we find that
d = 2 consistently performs best on validation.
To make as fair a comparison as possible, we also
evaluate both methods on representations achieved
by training the VAE with d = 64 and then project-
ing down to 2 dimensions. We note that this leads
to rough comparisons, and in future work, we in-
tend to find computational approaches which will
allow us to compute the Classical-based represen-
tations directly in high dimensions.

5.2 Lexical Entailment.

On lexical entailment, the best variant of the
Classical-based approach achieves a very high ac-
curacy of 0.90. The method based on a strict inter-
pretation of Classical Theory (τ = 1) achieves a

(a) On the boundary (b) Prototypical

Figure 2: Examples instances of great grey owl. In-
stances (a) on the Classical-based convex hull bound-
ary are on the left; instances (b) of the most “prototyp-
ical” owls are on the right.

very high precision of 0.99 on WBLESS. While
our results are not directly comparable to prior
work (since we are using only a subset of WB-
LESS), we note that this accuracy is quite high for
the task. For reference, prior work which used
image generality for lexical entailment achieves
a maximum accuracy of 0.75 on WBLESS (Kiela
et al., 2015a); an approach using hierarchical em-
beddings achieves an accuracy of 0.87 (Nguyen
et al., 2017); and recent work using a retrofitting
approach reports an accuracy of 0.91 (Vulić and
Mrkšić, 2017). In contrast, the Prototype-based
approach greatly over-predicts lexical entailment,
yielding high recall and low precision. The two-
dimensional and downward-projected configura-
tions perform no better than random, and the 64-
dimensional case is only marginally better.

We were surprised to find that the Classical-
based method also performed better than
Prototype-based on graded lexical entailment
(HYPERLEX), achieving a Spearman ρ score of
0.55 in both the strict and soft two-dimensional
cases. By comparison, Vulić and Mrkšić 2017
achieve a maximum Spearman ρ of 0.71 on
HYPERLEX nouns, while work using Poincaré
embeddings for learning hierarchical represen-
tations achieves a ρ of 0.51 (Nickel and Kiela,
2017). The Prototype-based approach again
performs only somewhat better than random on
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Standard LE Graded LE Categorization
(WBLESS) (HyperLex) (ImageNet)

Model Dim. Proj. Acc. Prec. Rec. F1 Spearman ρ Acc. Prec. Rec. F1

Random 0.70 0.70 1.00 0.82 0 0.50 0.50 1.00 0.67

Classical-based (strict) 2 – 0.81 0.99 0.72 0.83 0.55 - - - -
Classical-based (soft) 2 – 0.90 0.95 0.89 0.92 0.55 0.55 0.52 1.00 0.69
Classical-based (soft) 64 2 0.87 0.90 0.90 0.90 0.51 0.50 0.50 1.00 0.67

Prototype-based 2 – 0.67 0.67 0.97 0.80 0.08 0.59 0.56 0.9 0.67
Prototype-based 64 2 0.67 0.67 0.98 0.80 0.04 0.50 0.50 1.00 0.67
Prototype-based 64 – 0.76 0.76 0.95 0.84 0.20 0.72 0.66 0.92 0.77

Table 2: Results comparing Classical-based and Prototype-based approaches on lexical entailment (WBLESS and
HYPERLEX) and categorization (IMAGENET).

HYPERLEX, with the 64-dimensional configu-
ration performing best. We were surprised to
find that the Prototype-based method performed
worse on graded entailment, since Prototype
Theory should be well-suited to capturing graded
judgements. Further experiments are required
to diagnose the extent to which the poor perfor-
mance of the Prototype-based methods on lexical
entailment are due to theory vs. in particulars of
our instantiation.

Categorization. The only approach that per-
forms significantly better than random on catego-
rization is 64-dimensional Prototype-based. All 2-
dimensional cases (real and projected) perform at
chance, over-predicting positive categorizations.
This is unsurprising, as it can be expected that
more dimensions are needed to capture sufficient
information for differentiating classes. We note
that, since our image instances are represented as
pretrained IMAGENET classifier embeddings, high
categorization accuracy can be achieved with a
simple perceptron. However, we are not interested
in the task of categorization per se. Rather, our
goal is to assess the extent to which a single rep-
resentation of a concept can be used to perform
both categorization and entailment, without train-
ing task-specific modules.

6 Discussion

Several aspects of these initial results prevent us
from drawing strong conclusions. In particular:
the fact that we cannot compare the representa-
tions directly in high dimensions, the fact that we
focus on a small number of concrete nouns only,
and the fact that we choose one particular defini-
tion of prototype and distance function despite the
existence of many equally-plausible alternatives.

Nonetheless, despite being preliminary, our re-
sults suggest trends which are intuitive as well as
some which are counter-intuitive. In particular, we
were unsurprised to find that Classical-based rep-
resentations achieve high precision and all-around
high accuracy for tasks related to entailment. As
this theory was largely developed with the goal
of explaining logical inferences, it is intuitive that
such representations would be more sensitive to
distinctions which explain judgements about en-
tailment. Similarly, we were unsurprised to see
that the Prototype-based representations achieve
better performance at categorization, as such theo-
ries were originally motivated in terms of catego-
rization (rather than inference) phenomena.

The strong performance of the Classical-based
method on the graded entailment evaluation was
highly unexpected. Further investigation is re-
quired in order to understand whether these results
are attributable to something superficial (e.g. ar-
tifacts of the dataset), something methodological
(e.g. our choice of distance function), or some-
thing deeper about the relationship between these
two theories. However, this counter-intuitive re-
sult does emphasize how aspects of Classical The-
ory (i.e. the explicit representation of a “bound-
ary”) can play a role in the representation of
concepts without sacrificing the ability to make
graded or probabilistic predictions.

7 Related Work

Our work is very closely related to the work of
Young et al. (2014), which sought to instantiate
the formal semantics notion of set-theoretic en-
tailment using images to represent the “worlds”
to which natural language refers. Their work fo-
cused on representations motivated by Classical
Theory, and dealt with literal sets of discrete im-
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ages, meaning it could not generalize to refer-
ents outside the training data. Our Classical-based
method can be viewed as an updated version of
their approach, which uses a VAE in order to rep-
resent the visual world in a more flexible way. Our
Prototype-based method is novel with respect to
the work done by Young et al. (2014).

Also very closely related is Kiela et al. (2015b),
which represented a lexical concept as a set of im-
age encodings, and sought to make lexical entail-
ment decisions by comparing how dispersed ver-
sus compact images within a category were. We
note many aspects of Kiela et al. (2015b)’s ap-
proach which overlap with our own–namely, the
use of sets of images to derive representations of
concepts and the use of set overlap to determine
entailment. However, our focus is on a partic-
ular question which is tangential to Kiela et al.
(2015b). That is, we are interested in the differ-
ences between boundary-focused (Classical) rep-
resentations compared to center-focused (Proto-
type) representations, acknowledging either repre-
sentation is equally capable of capturing proper-
ties like dispersion and “generality” of a concept,
the focus of Kiela et al. (2015b)’s work.

In general, the present study relates to the am-
ple prior work on visually-grounded meaning rep-
resentations. Beinborn et al. (2018) gives an in-
depth survey of work in this area, from both a
computational and a cognitive perspective. Of
particular relevance to our work is prior work on
multimodal lexical semantics, e.g. work which
extends skipgram-like training procedures to in-
clude both visual and text information Lazaridou
et al. (2015); Silberer and Lapata (2012); Silberer
et al. (2017); Collell et al. (2017); Kiela et al.
(2016); Kiros et al. (2018). Such representations
not only perform better in practice, but have been
shown to be more cognitively-plausible in terms
of their ability to predict human brain activity
(Bulat et al., 2017). Beyond lexical representa-
tions, multimodal representations have been in-
corporated representations of more complex con-
cepts such as frames (Shutova et al., 2017) and
full sentences (Han et al., 2017). Again, our work
differs in that we are not focused on harnessing
visual data per se; rather, our focus is on how,
given a representation of the world to which we
can “ground” meaning, different theories can be
operationalized, and how the assumptions of these
theories affect performance on basic tasks. That

is, we view our work as complementary to, rather
than competing with, existing ongoing work on
multimodal and grounded representations.

Finally, there is an enormous body of work
aimed at modelling lexical entailment using text-
only training data, recently (Shwartz et al., 2016;
Chang et al., 2017; Vulić and Mrkšić, 2017;
Pavlick and Pasca, 2017; Pavlick et al., 2015).
Such work often treats lexical entailment as a su-
pervised learning problem, or at least as a task to
which we should tune directly. We view such ap-
proaches as fundamentally different from what we
present here. That is, our work focuses on how to
form concepts which relate language to the world,
with the assumption that inferences about entail-
ment should come from reasoning directly about
the extensions of these concepts, rather than indi-
rectly by relating the surface forms which refer to
those denotations.

8 Conclusion

Using a VAE to encode image embeddings into
a shared low-dimensional space, we compare a
Classical-based with a Prototype-based model of
concepts using common evaluations on lexical en-
tailment and categorization. The Classical-based
approach performed exceptionally well on lexi-
cal entailment detection, and relatively well on
graded entailment judgements. While the higher-
dimensional Prototype-based approach performed
well on categorization, in general our Prototype-
based approach performs subpar. The extent to
which this is theory vs. approach can’t be de-
termined by this research - the vagueness of the
distance function d proposed by Prototype Theory
gives way to a vast world of unexplored cogni-
tively plausible instantiations that we look forward
to exploring.
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