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Abstract

How do children learn abstract concepts
such as animal vs. artifact? Previous re-
search has suggested that such concepts
can partly be derived using cues from
the language children hear around them.
Following this suggestion, we propose a
model where we represent the children’s
developing lexicon as an evolving net-
work. The nodes of this network are based
on vocabulary knowledge as reported by
parents, and the edges between pairs of
nodes are based on the probability of their
co-occurrence in a corpus of child-directed
speech. We found that several abstract
categories can be identified as the dense
regions in such networks. In addition,
our simulations suggest that these cate-
gories develop simultaneously, rather than
sequentially, thanks to the children’s word
learning trajectory which favors the explo-
ration of the global conceptual space.

1 Introduction:

One of the central challenges in cognitive devel-
opment is to understand how concepts develop
(Carey, 2009; Keil, 1992; Gopnik and Meltzoff,
1997). Of particular interest is the case of abstract
concepts which have non-obvious shared proper-
ties such as “animal” and “artifact”. For exam-
ple, a cat and a bird are perceptually quite different
but they share some fundamental properties (e.g.,
breathing, feeding, and reproducing) which make
them animals (as opposed to artifacts). In such
cases, learning requires in part cultural/linguistic
cues which provide information beyond what can
be obtained through the senses (Gelman, 2009;
Harris, 2012; Csibra and Gergely, 2009).

One way children’s conceptual learning can
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benefit from the language they hear around them
is through word co-occurrence. For example, one
can learn an abstract concept (e.g., animal) sim-
ply by observing how its instances (e.g., “cat” and
“bird”) go together in speech. Indeed, previous
work has shown that the caregiver’s input con-
tains rich co-occurrence information about vari-
ous abstract concepts (Huebner and Willits, 2018).
This work, however, has explored the conceptual
space from an adult perspective (using the words
uttered by the caregivers). Here we explore how
abstract concepts may develop from the children’s
perspective, investigating how their word learning
trajectory influences the higher-level organization
of their developing lexicon.

We study the real conceptual development
(i.e. as induced by the real trajectory of word
learning) in comparison to two hypothetical de-
velopmental scenarios induced by two possible
mechanisms of word learning. On the first mech-
anism, past lexical knowledge facilitates the fu-
ture learning of related words, e.g., the word “cat”
is more likely to be followed by another animal
name than it is to be followed by a food name
(Steyvers and Tenenbaum, 2005; Borovsky et al.,
2016). On the second mechanism, past lexical
knowledge does not influence future learning, e.g.,
learning the word “cat” does not necessarily in-
crease the odds that the next word will be another
animal name (Hills et al., 2009; Sizemore et al.,
2018).

The paper is organized as follows. First, we
describe the research strategy. In brief, we repre-
sented the developing lexicon as an evolving net-
work and we used word co-occurrence in parent
speech as a measure of words’ relatedness. We op-
erationalized abstract concepts as the highly inter-
connected regions of the network. Second, we ex-
plore how the pattern of children’s word learning
influences higher-level conceptual development,
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and whether this development corresponds to si-
multaneous or sequential conceptual growth.

2 Data and Methods

2.1 Constructing Lexical Networks

The networks’ nodes were nouns from Word-
bank (Frank et al., 2017), an open repository
aggregating cross-linguistic developmental data
of the MacArthur-Bates Communicative Develop-
ment Inventory (CDI), Toddler version (Fenson et
al., 1994). Pairs of nouns were linked by weighted
edges representing their semantic similarity de-
rived based on co-occurrence in the corpus of
child-directed speech CHILDES (MacWhinney,
2014), using the Word2Vec algorithm (Mikolov et
al., 2013).

First, we constructed the end-state network
based on all nouns learned by the last age of acqui-
sition. We used a subset of CDI nouns for which
cross-linguistic translations are present, allowing
us to explore cross-linguistic variability. We used
data from the following ten languages: Croatian,
Danish, English, French, Italian, Norwegian, Rus-
sian, Spanish, Swedish, and Turkish. The size
of this subset varied from 314 in Russian (repre-
senting 100% of total nouns present in the CDI
data of this language) to 176 in Turkish (represent-
ing 59.26% of total nouns). Second, in order to
study development towards the end-state, we con-
structed a different network at each month, based
on the nouns that have been learned by that month.

2.2 Identifying Abstract Concepts in a
Network

We assume that abstract concepts correspond to
clusters of highly interconnected nodes in the net-
works. We identified such clusters using Walk-
Trap (Pons and Latapy, 2006), an unsupervised
community detection algorithm based on the fact
that a random walker tends to be trapped in dense
parts of a network. Figure 1 shows the outcome
of cluster identification in the end-state network
in English. The algorithm obtained four major
clusters corresponding to the categories of clothes,
food, animal and artifacts. We refer to this end-
state clustering as C*. To examine developmental
change in the conceptual organization, we ran the
cluster identification algorithm at each month of
acquisition ¢, and we compared the resulting clus-
tering, noted C;, to that of the end-state C*. The
method of this comparison is detailed below.
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2.3

We measure conceptual development by compar-
ing C; to C* across time. We used a standard
method in clustering comparison, which is based
on word pairs on which the two clusterings agree
or disagree (Rand, 1971; Hubert and Arabie,
1985). We quantify clustering comparison using
precision P(C;) and recall R(C;), defined as fol-
lows:

Measuring Conceptual Development

_ [tp(Cy)|
PC) = e+ 1@l

[tp(Ci)| + [fn(Cy)]

Where tp(C;) are the true positives, defined as the
word pairs that are placed in the same cluster un-
der C; and in the same cluster under C*. fp(C;) are
the false positives, defined as the pairs placed in
the same cluster under C; and in different clusters
under C*. Finally, fn(C;) are the false negatives,
defined as the pairs placed in different clusters un-
der C; and in the same cluster under C*.

We made this comparison using different de-
grees of clustering granularity. More precisely,
we fixed the same number of clusters for both
C; and C*, and we varied this number from two
to four clusters. We did not use the trivial case
of one cluster, nor did we use more than four
clusters, since this number was optimal for the
largest network (i.e., the end-state network) based
on the modularity maximization criterion (New-
man, 2006).

2.4 Learning Mechanisms

We examined how abstract concepts develop un-
der an average word learning trajectory derived
from real developmental data. To construct this
trajectory, we used the normative age of acqui-
sition, that is, the age at which a word is pro-
duced by at least 50% of children in each language
(Goodman et al., 2008). As mentioned above,
we compared this development to the development
induced by a first hypothetical trajectory where
known words influence future word learning and a
second hypothetical trajectory where learning pro-
ceeds regardless of what words are already known.

We instantiated the first trajectory through sam-
pling from one conceptual category at a time: the
first word is selected randomly from one cluster,
subsequent words are sampled from the same clus-
ter. After all words from this cluster are used, a
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Figure 1: Network obtained using a sample of nouns in CDI data (nodes), and co-
occurrence-based similarity from a corpus of child-directed speech (edges). Colors
indicate highly interconnected clusters identified using unsupervised network com-
munity detection. The clusters correspond, overall, to four higher-level concepts:

animal, food, clothes, and artifacts.

word from a different cluster is chosen, and the
same process is repeated until all clusters are cov-
ered. We call this sampling procedure the sequen-
tial model. We instantiated the second trajectory
through a uniform sampling across time from the
end-state vocabulary. We call this sampling proce-
dure the simultaneous model.

3 Results

Figure 2 shows the scores obtained through com-
paring C* to C; at different points in time ¢. For
the real word learning trajectory, both precision
and recall start relatively low, indicating that the
induced conceptual organization is initially quite
different from that of the end-state. Both measures
converge towards 1 (i.e., perfect score) as C; be-
comes more and more similar to C*.

The simultaneous model mimics closely the
patterns of real conceptual development, explain-
ing almost all the variance in mean precision
(R? = 0.94) and recall (R? = 0.99). In contrast,
the sequential model had generally a higher preci-
sion, i.e., it induced fewer false positive pairs. This
result is due to the fact that we sampled instances
from the same category. However, the same model
had generally lower recall scores, i.e., it induced
more false negative pairs. This second result was
due to the fact that sampling from the same cate-
gory leads to clusterings that are finer in their con-
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ceptual granularity than the end-state. As a con-
sequence of this discrepancy with respect to real
development, the sequential model explained less
variance than the simultaneous model did in both
its mean precision (R? = 0.44) and recall (R? =
0.96).

4 Discussion

Can children learn abstract concepts based on
word co-occurrence in the language they hear
around them? Previous work has shown that child-
directed speech contains information about sev-
eral abstract concepts (Huebner and Willits, 2018).
Here we investigated when and how this informa-
tion becomes available to children as their lexi-
cal network grows. We found that even with a
small lexicon, several high-level concepts such as
“animal”, “artifact”, “food” and “clothes” emerge
bottom-up as clusters of highly interconnected
nodes in the network. Furthermore, compared
with a model that posited sequential learning, we
found that these categories tended to emerge in
concert with one another.

The development of the higher-level conceptual
structure seems to be unaffected by the order with
which words are acquired (as long as this order ap-
proximates a uniform sampling from the end-state
lexicon), suggesting that the process of concep-
tual development can accommodate a wide range
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Figure 2: Mean precision and recall scores obtained through comparing the end-
state clustering to clusterings at different months of acquisition, averaged across
languages and numbers of clusters. Colors indicates real and hypothetical word

sampling mechanisms. Errors bars represent 95% confidence intervals.

of word learning trajectories without a qualitative
change in the higher-level organization. For exam-
ple, whether acquisition starts first with the words
“cat” and “banana” or with the words “cow” and
“potato” does not qualitatively affect the higher-
level organization involving “animal” and “food”.
This property is important as it suggests, for in-
stance, that development is resilient to variabil-
ity in the children’s linguistic input (Slobin, 2014;
Hart and Risley, 1995).

Developmental changes were captured by pre-
cision and recall. The increase in precision means
that false positives decrease over time: some word
pairs that are initially lumped together in a same
category, are eventually differentiated. Similarly,
the increase in recall means that false negatives de-
crease, that is, some word pairs that are initially
distinct, become eventually subsumed by a same
category. These patterns suggest a process of con-
ceptual reorganization involving both “differentia-
tion” and “coalescence” as has been suggested in
the developmental literature (Carey, 2009).

That said, these developmental changes were
not necessarily related to specific concepts (since
the patterns were similar in the simultaneous
model where we randomized the order of word
learning). Instead, this finding suggests that differ-
entiation and coalescence of word pairs in our data
are related to the change in the vocabulary size
across development: As more words are added to
their lexical network, learners may approximate
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better the underlying conceptual organization of
the mature lexicon and would make fewer catego-
rization errors. Indeed, research in network sci-
ence indicates that properties of a real network
become more distorted as the size of a sampled
sub-network decreases (Leskovec and Faloutsos,
2006).

One limitation of this study is that we used the
normative age of acquisition, computed using dif-
ferent children at different age groups. This choice
was due to the cross-sectional nature of available
CDI data. Though such a measure has been widely
used to study important aspects of the early lexi-
cal networks (Hills et al., 2009; Stella et al., 2017,
Storkel, 2009), it only applies at the population
level. In our case, though we found that concepts
develop simultaneously, individual children may
display, at least locally, a sequential-like behav-
ior. For example, prior knowledge about dinosaurs
may enable the learning of new dinosaur-related
words more easily (Chi and Koeske, 1983).

In sum, this work provided a quantitative ac-
count of how abstract concepts can emerge from
the interaction of the children’s emerging vocab-
ulary and the properties of their linguistic input.
One important direction for future work is to in-
vestigate the extent to which the correlational find-
ings obtained in this study (e.g., the identity of cat-
egories formed across development or the fact that
categorization errors decrease with the size of the
lexicon) can be corroborated by controlled behav-



ioral experiments.

All data and code are available at
https://github.com/afourtassi/conceptNet
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