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Abstract

Sentences are represented as hierarchical syn-
tactic structures, which have been successfully
modeled in sentence processing. In contrast,
despite the theoretical agreement on hierarchi-
cal syntactic structures within words, words
have been argued to be computationally less
complex than sentences and implemented by
finite-state models as linear strings of mor-
phemes, and even the psychological reality of
morphemes has been denied. In this paper, ex-
tending the computational models employed
in sentence processing to morphological pro-
cessing, we performed a computational sim-
ulation experiment where, given incremental
surprisal as a linking hypothesis, five com-
putational models with different representa-
tional assumptions were evaluated against hu-
man reaction times in visual lexical decision
experiments available from the English Lexi-
con Project (ELP), a “shared task” in the mor-
phological processing literature. The simula-
tion experiment demonstrated that (i) “amor-
phous” models without morpheme units un-
derperformed relative to “morphous” mod-
els, (i) a computational model with hierarchi-
cal syntactic structures, Probabilistic Context-
Free Grammar (PCFG), most accurately ex-
plained human reaction times, and (iii) this
performance was achieved on top of surface
frequency effects. These results strongly sug-
gest that morphological processing tracks mor-
phemes incrementally from left to right and
parses them into hierarchical syntactic struc-
tures, contrary to “amorphous” and finite-state
models of morphological processing.

1 Introduction

Sentences are represented as hierarchical struc-
tures, not linear strings of words (Chomsky, 1957;
Everaert et al., 2015). The hierarchical represen-
tations of sentences have been successfully mod-
eled in sentence processing (Hale 2001; Levy

2008; Boston et al. 2008; Demberg and Keller
2008; Roark et al. 2009; Fossum and Levy 2012;
cf. Frank and Bod 2011; Frank et al. 2012). In
contrast, despite the theoretical agreement on hi-
erarchical syntactic structures within words, es-
pecially derivational morphology, among various
linguistic theories (Lieber, 1992; Anderson, 1992;
Halle and Marantz, 1993; Aronoff, 1994), words
have been argued to be computationally less com-
plex than sentences (Langendoen 1981; Heinz and
Idsardi 2011; cf. Carden 1983) and implemented
by finite-state models as linear strings of mor-
phemes (Beesley and Karttunen, 2003; Roark and
Sproat, 2007; Virpioja et al., 2017), and even the
psychological reality of morphemes has been de-
nied by connectionist models (Baayen et al. 2011;
Milin et al. 2017; cf. Anderson 1992). Conse-
quently, the hierarchical representations of words
have not been sufficiently considered in morpho-
logical processing, with a few exceptions (Libben,
2003, 2006; de Almeida and Libben, 2005; Pollat-
sek et al., 2010; Song et al., 2019).

In this paper, extending the computational mod-
els employed in sentence processing to morpho-
logical processing, we perform a computational
simulation experiment where, given cumulative
surprisal as a linking hypothesis (Hale, 2001;
Levy, 2008), several computational models with
different representational assumptions are evalu-
ated against human reaction times (RTs) in vi-
sual lexical decision experiments available from
the English Lexicon Project (ELP; Balota et al.,
2007), a “shared task” in the morphological pro-
cessing literature, with special focus on deriva-
tional morphology. The goal of this paper is
to investigate whether morphological processing
tracks morphemes and parses them into hierarchi-
cal syntactic structures.

Specifically, we employ five computational
models with different representational assump-
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tions from sentence processing: two ‘“‘amor-
phous” models, Letter Markov Model and Sylla-
ble Markov Model, with transition probabilities
among letters and syllables, respectively, with-
out reference to morpheme units and three “mor-
phous” models, Markov Model, Hidden Markov
Model, and Probabilistic Context-Free Grammars
(PCFG), with conditional probabilities among
morphemes, part-of-speech (POS) tags, and non-
terminal nodes of hierarchical structures, respec-
tively. Importantly, in the sentence processing lit-
erature, Markov Models and PCFGs have been ex-
clusively compared (Frank and Bod, 2011; Fos-
sum and Levy, 2012), but these computational
models differ not only in the presence of hierar-
chical structures but also POS tags. Thus, we in-
cluded HMM as an important “midpoint” model
with POS tags but no hierarchical structures (cf.
Lau et al., 2016). The prediction is that, if mor-
phological processing tracks hierarchical syntac-
tic structures, PCFG should outperform the al-
ternative non-hierarchical models. Moreover, if
morphological processing tracks morphemes, the
“morphous” models should outperform the “amor-
phous” models.

2 Methods

2.1 Simulation Data

The simulation data was created by intersect-
ing two corpora: CELEX (Baayen et al., 1995)
and English Lexicon Project (ELP; Balota et al.,
2007). These two corpora were selected because
CELEX annotates morphological tree structures
on which PCFG can be trained supervisedly, while
ELP provides human reaction times (RTs) of vi-
sual lexical decision experiments against which
computational models can be evaluated. First,
every word except structurally ambiguous du-
plicates was extracted from the revised CELEX
(O’Donnell, 2015) that only includes morpho-
logically complex derived and monomorphemic
words, hence 22,969 CELEX words.! Second, ev-
ery word except those missing RTs or any control
predictors to be included in the baseline model was
extracted from the restricted ELP, hence 35,493
ELP words.” Finally, those sets of CELEX and

'The revised CELEX cleaned and expanded the origi-
nal CELEX via hand annotation and heuristic parsing. See
O’Donnell (2015, §7.2.2) for details.

2The restricted ELP only includes the words for which RT
is available and computes paradigmatic lexical statistics like
neighborhood density only among them. See Balota et al.
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ELP words were intersected, resulting in the sim-
ulation data of 13,244 morphologically complex
derived and monomorphemic words.?

In order to make sure that model performance
does not depend on the particular training/testing
split, we adopted Monte Carlo cross-validation
(MCCV), also known as repeated random sub-
sampling, that repeatedly and randomly samples
a subset of the full simulation data as the test-
ing data and assigns the remaining data as the
training data.* We only sampled bimorphemic
words as the testing data, either suffixed (e.g.
teach+er) or prefixed (e.g. un+lock), for the fol-
lowing two reasons. First, among morphologi-
cally complex words (n = 9,336), bimorphemic
words account for more than 70% (n = 6,551),
while trimorphemic, tetramorphemic, and super-
tetramorphemic words amount to only 24% (n =
2,277), 5% (n = 461), and 1% (n = 47), respec-
tively. In other words, super-bimorphemic words
can be nothing but outliers in the testing data. Sec-
ond, given that computational models are multi-
plicative in nature (Yang, 2017), it is not fair to
simultaneously test the words with different num-
bers of morphemes. That is, shorter words are ex-
ponentially more probable than longer ones, but
shorter expressions are not necessarily more ac-
ceptable or easier to process (Lau et al., 2016;
Sprouse et al., 2018). Given these two reasons,
for each MCCYV iteration, 10% of the bimor-
phemic words (n = 655) was randomly held out
as the testing data and the remaining 90% (n =
13,244 — 655 = 12,589) was assigned as the train-

(2007) for details.

3 Another possibility would be that, like Virpioja et al.
(2017), CELEX and ELP are independently used as train-
ing and testing data, respectively. While it is crucial in our
computational simulation for morphemes to be consistent in
training and testing data, however, morphological segmen-
tations are not comparable across the two corpora, causing
some morphemes to be unknown to computational models
during testing, hence poor performance. Therefore, the inter-
section of the two corpora was necessary to ensure that mor-
phemes are maximally identical in training and testing data.

*Another approach would be k-fold cross-validation
(kKFCV), that splits the full simulation data into k& mutually
exclusive and equally sized subsets and selects one subset for
testing and k—1 subsets for training. kFCV is unbiased in that
each word is guaranteed to get tested exactly once, but more
variable because the number of iterations is restricted to k,
the number of subsets. In contrast, MCCV is more robust
than kFCV in that the number of iterations is not limited to
the number of pre-split subsets (though biased because each
word may be tested different times). That is, there is a gen-
eral trade-off between variances and biases. Since the pur-
pose here is just to ensure that model performance is robust
among different training/testing splits, we adopted MCCV.



ing data. On the assumption that morphologi-
cally complex words are decomposed into com-
ponent morphemes before morphological parsing,
the testing words were represented as morpheme
sequences (e.g. [‘compute’, ‘ion’, ‘al’]).” The
number of iterations was set to 100 and the results
presented below are all averaged across those 100
iterations, where the unparsed testing words were

excluded (11 words per iteration on average).

2.2 Computational Models

The computational models were implemented
with Natural Language Tool Kit (NLTK; Bird
et al., 2009) in Python. The architectures of three
types of computational models are summarized
below: Markov Model, Hidden Markov Model,
and Probabilistic Context-Free Grammar.

Markov Model: A Markov Model (also called
n-gram model) was implemented with the model
module. The Markov Model can be defined by an
n-order Markov process that computes the transi-
tion probabilities of morphemes at position i given
the i-n context, e.g. P(m;|m;—n,m;—1). When
i = 1, the lst-order Markov Model (i.e. bigram
model) computes the transition probabilities of
morphemes at position i given the i—1 context, e.g.
P(m;|lm;—1). When n = 2, the 2nd-order Markov
Model (i.e. trigram model) computes the transi-
tion probabilities of morphemes at position i given
the i-2 context, e.g. P(m;|m;_1, m;—2). Given
the Markov assumption, the local probabilities of
component morphemes in morphologically com-
plex words are merely their transition probabili-
ties.

The transition probabilities are the model pa-
rameters empirically estimated from morpheme
sequences in the training data via Maximum Like-
lihood Estimation with token weighting and Lid-
stone smoothing at &« = 0.1. The Markov Model
is linear and string-oriented in that the transition
probabilities merely track morphemes from left to
right, which should effectively capture lexically
specific dependencies among morphemes.

>This is an empirical question whether morphological de-
composition and morphological parsing are the same or dif-
ferent morphological computation(s). One possibility would
be that top-down morphological parsing generates hierarchi-
cal structures while “emitting” morphemes as terminal nodes
that provide cues to morphological decomposition.

Bigram Markov Models append one word initial sym-
bol <w> as the necessary context to estimate the probability
of the first morpheme. Trigram Markov Models append two
word initial symbols <w>, <w> to provide the context for
the first morpheme, and so on.
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Hidden Markov Model (HMM): A HMM was
implemented with the hmm module. A HMM gen-
eralizes the Markov Model by hypothesizing “hid-
den” structures behind visible strings. The HMM
computes the transition probabilities of POS tags
at position 7 given the i—1 context, e.g. P(t;|t;—1),
and the emission probabilities of morphemes at
position i given POS tags at the same position
i, e.g. P(m;|t;). Although the HMM, like the
Markov Model, can be defined by an n-order
Markov process over POS tags, only the Bigram
HMM is investigated in this paper. The local prob-
abilities of component morphemes in morpholog-
ically complex words are the ratio of prefix prob-
abilities at position k to position k—1, where pre-
fix probabilities are the sum of path probabilities
compatible with morphemes until position £ (Ra-
binar, 1989).”

While the local probabilities of component mor-
phemes in structurally ambiguous words can be
computed via a forward algorithm (sum of all
paths) or a Viterbi algorithm (max of all paths),
given that most probability mass was allocated
to the best path and thus there were no sub-
stantial differences between forward and Viterbi
algorithms, we adopted the forward algorithm.
Both transition and emission probabilities are
the model parameters empirically estimated from
tagged morpheme sequences in the training data
via Maximum Likelihood Estimation with token
weighting and Lidstone smoothing at o = 0.1. The
HMM is structure-oriented in that hidden struc-
tures of POS tags are hypothesized behind visible
strings, but still linear because the transition prob-
abilities track POS tags from left to right.

Probabilistic Context-Free Grammar
(PCFG): A PCFG was implemented with the
grammar module. A PCFG is most represen-
tationally sophisticated among three types of
computational models investigated in this paper
and, crucially, can model hierarchical structures.
The PCFG computes nonterminal production
probabilities of right-hand sides given left-hand
side nonterminals, e.g. P(rhs|lhs), and termi-
nal production probabilities of right-hand side
terminals given left-hand side nonterminals, e.g.
P(m;lt;), corresponding to HMM emission prob-

"The term “prefix” as in prefix probabilities should not be
confused with the term “prefix” in morphology (i.e. a type
of affix linearly attached to the left of the base). The term
“prefix” here means morpheme sequences that the incremen-
tal algorithm has encountered up to the current position.



abilities. The local probabilities of component
morphemes in morphologically complex words
are the ratio of prefix probabilities at position k
to position k-1, where prefix probabilities are
the sum of tree probabilities compatible with
morphemes until position k (Earley, 1970; Stol-
cke, 1995). Note that HMMs and PCFGs make
different predictions even for bimorphemic words
because derivational affixes are head-lexicalized
in PCFGs (e.g. N — V er), while “emitted” from
POS tags in HMMs.

Just like HMMs, while the local probabilities of
component morphemes in structurally ambiguous
words can be computed via an Earley algorithm
(sum of all trees) or a Viterbi algorithm (max of all
trees), we employed the Earley algorithm which
may have interesting consequences for the incre-
mental nature of morphological processing. Both
nonterminal and terminal production probabilities
are the model parameters empirically estimated
from morphological tree structures in the training
data via Maximum Likelihood Estimation with to-
ken weighting and Lidstone smoothing at o = 0.1.
The PCFG is hierarchical and structure-oriented in
that the probabilities are defined over hierarchical
structures permitted by the grammar.

2.3 Linking Hypothesis

The information-theoretic complexity metric, sur-
prisal (i.e. self-information), was employed as a
linking hypothesis that bridges between represen-
tation and processing (Hale, 2001; Levy, 2008).
The surprisal of morpheme m, I(m), is defined as
Equation (1):

P(m) M)

I(m) = logy = —logy P(m)
The surprisal estimated by computational mod-
els has been demonstrated to explain self-paced
reading times or eye-fixation durations in sen-
tence processing (Boston et al., 2008; Demberg
and Keller, 2008; Roark et al., 2009; Frank and
Bod, 2011; Fossum and Levy, 2012) and remains
to be extended to morphological processing (cf.
Virpioja et al., 2017). Surprisal is a theory-neutral
complexity metric in that computational models
with different representational assumptions can be
compared on the same probabilistic ground, unlike
node counting (Miller and Chomsky, 1963) which
only applies to the models with hierarchical struc-
tures. Thus, despite different representational as-
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sumptions, Markov Model, HMM, and PCFG can
be equally evaluated through a lens of surprisal.
Interestingly, Levy (2008) and Smith and Levy
(2013) dubbed surprisal as a causal bottleneck:
“surprisal serves as a causal bottleneck between
the linguistic representations constructed during
sentence comprehension and the processing diffi-
culty incurred at a given word within a sentence”
(Levy, 2008, p.1128). That is, various representa-
tional hypotheses assumed by different computa-
tional models can be evaluated via only one com-
plexity metric (“the bottleneck™). See Hale (2016)
for a review of information-theoretic complexity
metrics.

On the assumption that morphological process-
ing proceeds incrementally from left to right, we
propose that processing costs of morphologically
complex words are proportional to cumulative sur-
prisal of their component morphemes. The cumu-
lative surprisal of word w, CI(w), is defined as
Equation (2):3

n

Zl(mz)

i=1

CI(w) = CI(my,...,my,) 2)

where I(m) is the surprisal of morpheme m de-
fined as Equation (1). In fact, the mathematical
equivalence of the cumulative surprisal of word w,
CI(w), and the vanilla surprisal of word w, I (w)
can be proved simply via the combination of the
chain rule and the Markov assumption.

2.4 Statistical Analyses

Ordinary linear regression models were fitted with
the 1m function in R.° The baseline regression
model was first fitted with log-transformed by-
item average RTs as the dependent variable and
control predictors as independent variables. For
each computational model, the target regression
model was then fitted with cumulative surprisal as
the independent variable of interest on top of con-
trol predictors in the baseline regression model.

8In sentence processing, the processing costs of words
within sentences can be easily measured with self-paced
reading or eye-tracking experiments, but the processing costs
of morphemes within words cannot, so that cumulative sur-
prisal should be computed to transform processing costs from
morphemes to words.

® Another approach would be linear mixed-effects regres-
sion (Baayen et al., 2008) with by-iteration random effects
without averaging across 100 MCCYV iterations. However,
because of methodological uncertainties and convergence
failures, we followed the standard practice of cross-validation
and averaged the results across 100 MCCYV iterations.



That is, the target and baseline regression models
minimally differ only in the presence of cumula-
tive surprisal. Therefore, the cumulative surprisal
estimated by computational models was evaluated
with nested model comparisons via log-likelihood
ratio tests based on the y2-distribution with df
= 1, the difference in the number of parameters
between two nested regression models. Further-
more, the control predictors were evaluated via
one-sample 7-tests on beta regression coefficients
based on the z-distribution, given that 7-statistics
approximately follow the z-distribution with 500
> observations.

Following Lignos and Gorman (2012), four
control predictors were included in the baseline re-
gression model relative to which cumulative sur-
prisal was evaluated: squared length, number of
syllables, orthographic neighborhood density, and
surface frequency. All control predictors were ob-
tained from the ELP.

Squared length: Length (i.e. number of letters)
has inhibitory effects on visual word recognition:
longer words are recognized more slowly. Since
New et al. (2006) found that the quadratic term of
length (i.e. number of letters squared) was closely
correlated with RTs in the ELP (i.e. “U-shaped
curve” of RT's as a function of length), we adopted
squared length.

Number of syllables: New et al. (2006) also
observed that number of syllables had “robust lin-
ear inhibitory effects” on visual word recogni-
tion independent of squared length and thus we
adopted number of syllables.

Orthographic neighborhood density: Ortho-
graphic neighborhood density has been recog-
nized to have inhibitory effects on visual word
recognition: words in denser neighborhood are
recognized more slowly. Yarkoni et al. (2008)
proposed a new measure of orthographic neigh-
borhood density called Orthographic Levenshtein
Distance (OLD) which was shown to predict RTs
in the ELP better than the classic measure known
as Coltheart’s N (Coltheart et al., 1977). Thus, we
included a version of OLD computed based on 20
closest orthographic neighbors (OLD20).

Surface frequency: Frequency has facilitatory
effects on visual word recognition and probably
is the most important predictor in the psycholin-
guistics literature: more frequent words are rec-
ognized more quickly. In morphologically com-
plex visual word recognition, theoretical interpre-
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tations of frequency crucially depend on the lin-
guistic units over which frequency is computed.
For example, surface frequency has been inter-
preted as an index of storage of morphologically
complex words as unanalyzed wholes, whereas
base frequency as a “litmus paper” of computa-
tion of morphologically complex words from com-
ponent morphemes. Among various frequency
norms such as the Brown Corpus (Kucera and
Francis, 1967), the CELEX (Baayen et al., 1995),
and the HAL (Burgess and Livesay, 1998), we
used the SUBTLEX frequency norm (Brysbaert
and New, 2009) which was demonstrated to pre-
dict RTs in the ELP better than the previous fre-
quency norms. Specifically, we log-transformed a
version of SUBTLEX frequency scaled per mil-
lion, because frequency is known to follow the
nonlinear Zipfian distribution (Zipf, 1949). Note
that surface frequency is proportional to unigram
probability estimated by “word unigram model”,
the model of storage discussed by Virpioja et al.
(2017), simply because unigram probabilities are
computed by dividing surface frequencies by the
corpus size.

2.5 Evaluation Metrics

Two evaluation metrics are derived from surprisal:
linguistic accuracy and psychological accuracy
(Frank and Bod, 2011; Fossum and Levy, 2012). 10
The linguistic accuracy of model M, LA(M), is
defined as Equation (3):

n

> I(mi)

=1

1

n

LA(M) = 3)

where I(m) is the surprisal of morpheme m de-
fined as Equation (1). That is, the linguistic ac-
curacy is the negative average surprisal over mor-
phemes of morphologically complex words in the
testing data. Note also that the linguistic accuracy
is just the negative of the NLP evaluation met-
ric cross-entropy. The linguistic accuracy may be
cognitively interpreted as offline grammaticality
judgment (Keller, 2000; Lau et al., 2016; Sprouse
et al., 2018): the higher the linguistic accuracy is,
the more grammatical the model “judges” the test-
ing data never seen before. Note that the linguistic
accuracy is completely independent of human be-

%Virpioja et al. (2017) call variants of linguistic and psy-
chological accuracies as text prediction and cognitive predic-
tion accuracies, respectively.



havior (i.e. human RTs), in contrast with the psy-
chological accuracy introduced below.

The psychological accuracy of model M,
PA(M), is defined as Equation (4):

PA(M) = ADg — ADy; @)

where AD is the delta deviance defined as —2
times log-likelihood and B is the baseline model
without cumulative surprisal included. That is, the
psychological accuracy is the decrease in delta de-
viance between the baseline model and the target
model fitted to the testing data. The psychological
accuracy may be cognitively interpreted as online
morphological processing: the higher psycholog-
ical accuracy is, the less costly the model “pro-
cesses” the testing data never seen before. For
example, suppose that the grammatical sentence
Colorless green ideas sleep furiously (Chomsky,
1957) empirically turned out to be less costly. The
most “human-like” model must assign the high
probability, hence the less surprisal, to this sen-
tence. Interestingly, Frank and Bod (2011) and
Fossum and Levy (2012) inductively observed that
linguistic and psychological accuracies are posi-
tively correlated (cf. Virpioja et al., 2017), sug-
gesting that the relationship between represen-
tation and processing is transparent (Chomsky,
1965; Hale, 2001).

3 Results

3.1 Linguistic and Psychological Accuracies

Linguistic and psychological accuracies of com-
putational models are summarized in Figure 1,
where the x-axis is linguistic accuracy (negative
average surprisal) and the y-axis is psychological
accuracy (decrease in delta deviance). The accu-
racies are averaged across 100 MCCYV iterations.
Points represent computational models and verti-
cal bars on the points are 95% confidence intervals
of the psychological accuracy.!! The horizontal
dashed line is x? = 3.84, the critical x2-statistic at
p=0.05 with df = 1.

First, “morphous” models were psychologically
more accurate than “amorphous” models. Nested
model comparisons via log-likelihood ratio tests
revealed that all “morphous” models were statisti-
cally significant (p < 0.01), but one of two “amor-

""Thanks to the central limit theorem, while the test statis-
tic itself is y>-statistic, the samples of x2-statistic follow the
Gaussian distribution, based on which 95% confidence inter-
vals can be computed.
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phous” models (i.e. Letter Markov Model) did not
reached statistical significance. Second, the PCFG
was psychologically most accurate among the five
computational models: PCFG (x? = 14.57) >
HMM (x? = 13.83) > Morpheme Markov Model
(x? = 13.65) > Syllable Markov Model (x? =
12.84) < Letter Markov Model (x2 = 3.52). Third,
the PCFG was also linguistically most accurate,
where the correlation between linguistic and psy-
chological accuracies among five computational
models was high (r = 0.81).

3.2 Control Predictors

Effects of control predictors are summarized in
Figure 2, where the x-axis is #-statistic and the y-
axis is control predictors. The z-statistics are av-
eraged across 100 MCCYV iterations. Points rep-
resent computational models and horizontal bars
on the points are 95% confidence intervals of the
t-statistic. Vertical dashed lines are r = £1.96, the
critical #-statistic at p = 0.05 with df = cc.

All control predictors except visual predictors
like squared length and number of syllables were
statistically significant (p < 0.05). The surface
frequency effects were most robustly observed
among the four control predictors: Letter Markov
Model (t = — 17.34), Syllable Markov Model (¢ =
—16.71), Morpheme Markov Model (t = - 16.19),
HMM (# = - 16.49), and PCFG (¢ = - 16.58). Note
that surface frequency was most pronounced in
combination with the PCFG among three “mor-
phous” models, suggesting that cumulative sur-
prisal estimated by the PCFG explains unique
variances not covered by surface frequency.

4 Discussion

In summary, the results of the simulation ex-
periment demonstrated that “morphous” models
were more psychologically accurate than “amor-
phous” models, contrary to “amorphous” mod-
els of morphological processing (Baayen et al.,
2011; Milin et al., 2017). Among three compu-
tational models with morpheme units, the PCFG
was most accurate both linguistically and psycho-
logically, suggesting that morphological process-
ing tracks hierarchical syntactic structures, con-
trary to finite-state models of morphological pro-
cessing (Beesley and Karttunen, 2003; Roark and
Sproat, 2007; Virpioja et al., 2017). Interestingly,
syntactic granularity was transparently mapped to
psychological accuracy: PCFG with hierarchical
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Figure 1: Linguistic and psychological accuracies of computational models, averaged across 100 MCCYV iterations.
The x-axis is linguistic accuracy (negative average surprisal), while the y-axis is psychological accuracy (decrease
in delta deviance). Points represent computational models. Vertical bars on the points are 95% confidence intervals
of the psychological accuracy. The horizontal dashed line is x? = 3.84, the critical y2-statistic at p = 0.05 with df
= 1. All computational models except Letter Markov Model were statistically significant (p < 0.01).

structures was more accurate than HMM with POS
tags but no hierarchical structures, which in turn
was more accurate than Markov Model with nei-
ther hierarchical structures nor POS tags, meaning
that hierarchical structures and POS tags made in-
dependent contributions for predicting human RT's
in visual word recognition. In addition, given
that the cumulative surprisal was computed by
the PCFG via a probabilistic Earley parser (Ear-
ley, 1970; Stolcke, 1995), a top-down parser that
incrementally computes probabilities morpheme
by morpheme in morphologically complex words,
this result may also indicate that morphological
processing proceeds incrementally from left to
right, despite the inherently non-incremental na-
ture of visual word recognition.'?

Moreover, the effects of surface frequency
and cumulative surprisal were simultaneously ob-
served, theoretically reflecting storage and com-
putation, respectively. The simultaneous effects of
surface frequency and cumulative surprisal were
not surprising under either the single-route de-
composition model of morphological processing
(Taft, 1979, 2004; Taft and Forster, 1975), where

12 An anonymous reviewer insightfully pointed out that the
Cohort Model (Marslen-Wilson, 1987) may harmonize with
the present idea that a probabilistic parser applied to morpho-
logical processing incrementally contracts the mental lexicon
from left to right, which remained to be investigated in future.
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storage and computation are indexed at function-
ally different stages of morphological processing
(cf. Solomyak and Marantz, 2010; Fruchter and
Marantz, 2015) or the dual-route model of mor-
phological processing (Pinker and Prince, 1988;
Pinker and Ullman, 2002), where storage and
computation “routes” work in parallel. While Vir-
pioja et al. (2017) interpreted the simultaneous
effects of storage and computation as evidence
in favor of the dual-route model of morphologi-
cal processing, however, since RTs are an “end-
point” measure of morphological processing, the
two competing models cannot be conclusively dis-
sociated. In fact, Virpioja et al. (2017, p.29) ad-
mits that “As the present study used simple RTs
which provide an end-point measure of the entire
recognition process, either or both of these alter-
natives about the word recognition process could
be correct”. Remember that surface frequency
was most pronounced with the PCFG among three
“morphous” models, indicating that the PCFG can
explain unique uncorrelated variances not covered
by surface frequency. Additionally, the recent con-
clusion reached by Virpioja et al. (2017) that de-
rived words are primarily stored in the mental lex-
icon, not computed from their component mor-
phemes, does not harmonize with the simultane-
ous effects of surface frequency and cumulative
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Figure 2: Effects of control predictors, averaged across 100 MCCYV iterations. The x-axis is #-statistic, while
the y-axis is control predictors. Points represent computational models. Horizontal bars on the points are 95%
confidence intervals of the f-statistic. Vertical dashed lines are t = +1.96, the critical ¢-statistic at p = 0.05 with df
= 00. All control predictors except visual predictors were statistically significant (p < 0.05).

surprisal, either.

Nevertheless, remember that we only sampled
bimorphemic words as the testing data. However,
as Libben (2003, 2006) pointed out, bimorphemic
words are not sufficient to distinguish hierarchi-
cal structures and linear strings, and trimorphemic
words are minimally required. In future, the com-
putational models must be evaluated against tri-
morphemic words to make sure that the results will
generalize beyond bimorphemic words.

5 Conclusion

In this paper, we performed a computational sim-
ulation experiment with human RTs in visual lex-
ical decision experiments available from the ELP
(Balota et al., 2007), a “shared task” in the mor-
phological processing literature, and evaluated
computational models with different representa-
tional assumptions via cumulative surprisal as a
linking hypothesis (Hale, 2001; Levy, 2008), in
order to investigate whether morphological pro-
cessing tracks morphemes and parses them into
hierarchical syntactic structures. Consequently,
the results of the simulation experiment demon-
strated that “morphous” models were psycholog-
ically more accurate than “amorphous” models
and, importantly, a computational model with hi-
erarchical syntactic structures, PCFG, was most
psychologically accurate among five computa-
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tional models, contrary to “amorphous” (Baayen
et al.,, 2011) and finite-state (Beesley and Kart-
tunen, 2003) models of morphological processing.
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