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Introduction

Since its inaugural meeting in 2010, the Cognitive Modeling and Computational Linguistics workshop
has served as a unique venue for research at the intersection of cognitive science and natural language
processing. Previous CMCLs have highlighted work on developing parsers based on different grammar
formalisms; computational accounts of human language acquisition, comprehension, or production; and
modeling the representation of concepts in a cognitively relevant way. This year, we have received
31 paper submissions, 18 of which were accepted as regular workshop papers (58%). Two cross-
submissions have been accepted for a poster presentation.

The 2019 meeting of the Cognitive Modeling and Computational Linguistics (CMCL) workshop follows
in the tradition of many CMCLs past. We are proud to have selected a broad spectrum of talks and topics
this year, ranging from parsing models, to models of sentence comprehension, to speech production, to
distributional semantics methods. We are also proud to host a poster session that is larger than in previous
years, increasing the reach of our workshop and allowing us to support more junior researchers and more
works in progress.

Our invited speakers come from both industry and academic research backgrounds. Attendees are
participating from across the globe.

Support for CMCL comes from a wide range of academic sponsors, without whom we would not have
been able to sponsor four travel awards, a best paper award, and partially offset the costs of participation
of our invited speakers. As such we gratefully acknowledge support from the Institute of Language,
Communication and Brain (ILCB), Marseille; Laboratoire Parole et Langage (LPL), Aix-en-Provence;
and Computational Linguistics Laboratory (Coling Lab), Pisa.
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Abstract

Recent psycholinguistic evidence suggests
that human parsing of moved elements is
‘active’, and perhaps even ‘hyper-active’: it
seems that a leftward-moved object is related
to a verbal position rapidly, perhaps even
before the transitivity information associated
with the verb is available to the listener. This
paper presents a formal, sound and complete
parser for Minimalist Grammars whose search
space contains branching points that we can
identify as the locus of the decision to perform
this kind of active gap-finding. This brings
formal models of parsing into closer contact
with recent psycholinguistic theorizing than
was previously possible.

1 Introduction

Minimalist Grammars (MGs) (Stabler, 1997,
2011) provide an explicit formulation of the cen-
tral ideas of contemporary transformational gram-
mar, deriving from Chomsky (1995). They have
allowed formal insights into syntactic theory it-
self (Kobele, 2010; Kobele and Michaelis, 2011;
Hunter, 2011; Graf, 2013), and there has been
some work using MGs as the basis for psycholin-
guistic modeling. But this psycholinguistic work
has focused primarily on sentence-processing at
a relatively high level of abstraction, considering
various measures of the workload imposed by dif-
ferent kinds of sentences — either information-
theoretic metrics (Hale, 2003, 2006; Yun et al.,
2015), or metrics based on memory load (Kobele
et al., 2012; Graf and Marcinek, 2014; Brennan
et al., 2016) — rather than the algorithmic-level
questions of how derivations are pieced together
incrementally.

A significant amount of experimental sentence-
processing work aims to investigate exactly these
kinds of algorithmic-level questions as they apply

to long-distance syntactic dependencies, for ex-
ample filler-gap dependencies between a moved
wh-phrase and its base position. This is the kind
of syntactic construction that MGs are particu-
larly well-placed to describe (in contrast to simpler
formalisms such as context-free grammars where
parsing is well-studied), but it has been difficult
to connect the experimental psycholinguistic work
with any incremental, algorithmic-level MG pars-
ing algorithms. Most parsing strategies proposed
by psycholinguists have not been easy to relate to
formal models of parsing.

2 Motivation and Background

A significant problem that confronts the human
sentence-processor is the treatment of filler-gap
dependencies. These are dependencies between a
pronounced element, the filler, and a position in
the sentence that is not indicated in any direct way
by the pronunciation, the gap. A canonical ex-
ample is the kind of dependency created by wh-
movement, for example the one shown in (1).

(1) What did John buy yesterday?

The interesting puzzle posed by such dependen-
cies is that a parser, of course, does not get to “see”
the gap: it must somehow determine that there is
a gap in the position indicated in (1) on the basis
of the properties of the surrounding words, for ex-
ample the fact that ‘what’ must be associated with
a corresponding gap, the fact that ‘buy’ takes a di-
rect object, etc.

Experimental psycholinguistic work has uncov-
ered a number of robust generalizations about how
the human parsing system decides where to posit
gap sites in amongst the pronounced elements as it
works through a sentence incrementally. One con-
ceivable strategy would be to posit gaps “only as
a last resort, when all other structural hypotheses
about that part of the sentence have been tried and
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have failed” (Fodor, 1978, p.433). But the strategy
that comprehenders actually employ is essentially
to treat gaps as a “first resort”, or what has be-
come known as the “active filler” or “active gap-
finding” strategy: hypothesize that there is a gap
in any position where there might be one, and re-
tract this hypothesis if subsequent input provides
bottom-up evidence disconfirming it (Fodor, 1978;
Stowe, 1986; Frazier and Clifton, 1989). Specif-
ically, there is reason to believe that the depen-
dency in (1) is constructed before the parser en-
counters ‘yesterday’. A primary piece of evidence
for this is the so-called “filled-gap effect”: in a
sentence like (2), we observe a reading slowdown
at ‘books’ (Stowe, 1986).

(2) What did John buy books about yester-
day?

This slowdown is what one might expect if a de-
pendency between ‘what’ and the object-position
of ‘buy’ is constructed — actively, as a first re-
sort — before the comprehender reads past ‘buy’,
and then has to be retracted when ‘books’ is read.
(What was hypothesized to be a gap position is in
fact filled, hence “filled-gap effect”.)

This basic generalization prompts a number of
questions about the details of when and how this
sort of hypothesizing of a gap takes place: in
particular, one can ask what counts as a posi-
tion where there “might be” a gap, and how this
strategy interacts with the intricate grammatical
constraints upon the relevant long-distance depen-
dencies. See for example Traxler and Pickering
(1996), Phillips (2006), Staub (2007), Wagers and
Phillips (2009), and Omaki et al. (2015), among
many others, for investigations of these issues.

At present it is difficult for the generaliza-
tions emerging from this experimental work to be
framed in terms of the workings of a parser for
contemporary transformational grammars. Con-
sider for comparison the earlier empirical work
on attachment preferences and garden path the-
ory (e.g. Frazier and Clifton, 1996): since the fo-
cus was on grammatical relationships that were lo-
cal in phrase-structural terms, the strategies being
discovered could be understood as strategies for
searching through the hypothesis space induced by
the operations of a context-free parser. For exam-
ple, the garden-path effect in (3) can be interpreted
as evidence that given the locally ambiguous pre-
fix ‘When Fido scratched the vet’, readers pursue
the analysis in (4a) rather than the one in (4b).

This is an instance of the Late Closure preference.

(3) When Fido scratched the vet (and his new as-
sistant) removed the muzzle.

(4) a. When [S Fido scratched the vet] [S . . . ]
b. When [S Fido scratched] [S the vet . . . ]

Another way to put this is to say that after the word
‘scratched’, a bottom-up parser has the choice be-
tween performing a reduce step (to analyze this
verb as a complete, intransitive VP) or perform-
ing a shift step (supposing that other remaining in-
put will also be part of the VP), and it prefers the
latter. See Figure 1, where the initial empty se-
quence of stack elements is indicated by ε. If we
suppose that the parser first explores the branch
of the search space shown on the left in Figure 1,
corresponding to the structure in (4a), then the dis-
ruption observed at the word ‘removed’ in (3) can
be linked to the idea that this word triggers back-
tracking to the branching point shown in the dia-
gram, so that the alternative intransitive-verb anal-
ysis in (4b) can be constructed by following the
other branch.

In principle, it should be possible to give an
analogous description of the active filler strategy
for positing gaps: we can imagine a description
of the parser’s search space that allows us to state
preferences for one kind of transition (the kind that
interrupts “local processing” and posits a gap as-
sociated with an earlier filler) over another (the
kind that continues working with local material).
This is difficult at present, however, because there
are relatively few formal models of parsing that
treat both long-distance dependencies and local
dependencies in a cohesive, integrated manner.
Aside from this technical hurdle, however, the ac-
tive filler strategy can be regarded as having the
same form as the Late Closure preference: just as
humans’ first guess given the prefix ‘When Fido
scratched the vet’ is (4a) rather than (4b), their first
guess given the prefix ‘What did John buy’ is (5a)
rather than (5b).

(5) a. What did John buy . . .
b. What did John buy . . .

3 Minimalist Grammars

A Minimalist Grammar (Stabler, 1997,
2011) is defined with a tuple G =
〈Σ, B, Lex,C, {MERGE,MOVE}〉, where Σ is
the vocabulary, B is a set of basic features, Lex
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ε

(WHEN,(0,1))

(WHEN,(0,1)), (NP,(1,2))

(WHEN,(0,1)), (NP,(1,2)), (V,(2,3))

(WHEN,(0,1)), (NP,(1,2)), (VP,(2,3))

(WHEN,(0,1)), (S,(1,3))

(WHEN,(0,1)), (S,(1,3)), (D,(3,4))

(WHEN,(0,1)), (S,(1,3)), (D,(3,4)), (N,(4,5))

(WHEN,(0,1)), (S,(1,3)), (NP,(3,5))

reduce

shift ‘vet’

shift ‘the’

reduce

(WHEN,(0,1)), (NP,(1,2)), (V,(2,3)), (D,(3,4))

(WHEN,(0,1)), (NP,(1,2)), (V,(2,3)), (D,(3,4)), (N,(4,5))

(WHEN,(0,1)), (NP,(1,2)), (V,(2,3)), (NP,(3,5))

(WHEN,(0,1)), (NP,(1,2)), (VP,(2,5))

(WHEN,(0,1)), (S,(1,5))

reduce

reduce

reduce

shift ‘vet’

shift ‘the’ reduce

Figure 1: Part of the search space for the locally-ambiguous prefix ‘0 When 1 Fido 2 scratched 3 the 4 vet 5’ in a
bottom-up shift-reduce parser. The left branch is the route favoured by Late Closure (Frazier and Clifton, 1996).
The garden-path effect in (3) can be seen as a consequence of the reanalysis required when a parser searches this
left branch first.

is a finite lexicon (as defined just below), C ∈ B
is the start category, and MERGE and MOVE are
the generating functions. The basic features of the
set B are concatenated with prefix operators to
specify their roles, as follows:

categories, selectees = B
selectors = {=f | f ∈ B}
licensees = {-f | f ∈ B}
licensors = {+f | f ∈ B}

Let F be the set of role-marked features, that is,
the union of the categories, selectors, licensors
and licensees. Let T = {::, :} be two types,
indicating “lexical” and “derived” structures,
respectively. Let C = Σ∗ × T × F ∗ be the
set of chains. Let E = C+ be the set of ex-
pressions; intuitively, an expression is a chain
together with its “moving” sub-chains, if any.
Finally, the lexicon Lex ⊂ Σ∗ × {::} × F ∗ is a
finite set. The functions MERGE and MOVE are
defined in Table 1. Note that each MERGE rule
deletes a selection feature =f and a corresponding
category feature f , so the result on the left side
of each rule has two features less than the total
number of features on the right. Similarly, each

MOVE rule deletes a licensor feature +f and a
licensee feature -f . The rules (understood as
functions from right-to-left, or “bottom-up”) have
pairwise disjoint domains; that is, an instance
of a right side of a rule is not an instance of
the right side of any other rule. The set of all
structures that can be derived from the lexicon
is S(G) = closure(Lex, {MERGE,MOVE}).
The set of sentences L(G) = {s | s · C ∈
S(G) for some type · ∈ {:, ::}}, where C is the
“start” category.

Two simple derivations are shown in Figures 2
and 3. These trees have elements of the grammar’s
lexicon (not shown separately) at their leaves. At
each binary-branching node we write the structure
that results from applying MERGE to the struc-
tures at the daughter nodes; and at each unary-
branching node we write the structure that results
from applying MOVE to the structure at the daugh-
ter node.

The lowest MERGE step shown in Figure 2, for
example, combines (via MERGE3, specifically) the
lexical items for ‘buy’ and ‘what’; the d category
feature on ‘what’ can satisfy the first of the =d se-
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merge is the union of the following 3 rules, each with 2 elements on the right,
for strings s, t ∈ Σ∗, for types · ∈ {:, ::} (lexical and derived, respectively),
for feature sequences γ ∈ F ∗, δ ∈ F+, and for chains α1, . . . , αk, ι1, . . . , ιl (0 ≤ k, l)

(MERGE1) lexical item s selects non-mover t to produce the merged st
st : γ, α1, . . . , αk → s :: =fγ t · f, α1, . . . , αk

(MERGE2) derived item s selects a non-mover t to produce the merged ts
ts : γ, α1, . . . , αk, ι1, . . . , ιl → s : =fγ, α1, . . . , αk t · f, ι1, . . . , ιl

(MERGE3) any item s selects a mover t to produce the merged s with chain t
s : γ, α1, . . . , αk, t : δ, ι1, . . . , ιl → s · =fγ, α1, . . . , αk t · fδ, ι1, . . . , ιl

move is the union of the following 2 rules, each with 1 element on the right,
for δ ∈ F+, such that none of the chains α1, . . . , αi−1, αi+1, . . . , αk has -f as its first feature:

(MOVE1) final move of t, so its -f chain is eliminated on the left
ts : γ, α1, . . . , αi−1, αi+1, . . . , αk → s : +fγ, α1, . . . , αi−1, t : -f, αi+1, . . . , αk

(MOVE2) nonfinal move of t, so its chain continues with features δ
s : γ, α1, . . . , αi−1, t : δ, αi+1, . . . , αk → s : +fγ, α1, . . . , αi−1, t : -fδ, αi+1, . . . , αk

Table 1: Rules for minimalist grammars from Stabler 2011, §A.1.

lectors on ‘buy’, and these two features are deleted
in the resulting structure. This resulting struc-
ture, like the two above it, consists of two chains:
as well as the chain1 that participates “as usual”
in the structure-building steps of combining with
the subject and silent complementizer, there is the
chain ‘what : -wh’ representing the wh-element
that is “in transit” throughout these steps of the
derivation. Given this separation of a structure
into its component chains, movement amounts to
bringing together two chains. The (formally re-
dundant) dashed line in the figure links the MOVE

step at the root of the derivation to the structure
that gave rise to the ‘what’ chain that this MOVE

step acts on. The last two steps of the deriva-
tion effectively wrap (Bach, 1979) the components
‘John buys’ and ‘what’ around the (as it happens,
silent) complementizer.

4 Previous MG Parsers

Stabler (2013) presented the first systematic gen-
eralization of incremental/transition-based CFG
parsing methods to MGs, specifically a top-down
MG parser. This requires a complete root-to-leaf
path to a lexical item before it can be scanned, and
therefore only allows a filler (e.g. a wh-phrase) to
be consumed once we commit to a particular po-
sition for the corresponding gap (e.g. matrix sub-

1In traditional terminology, this first chain happens to be a
trivial or one-membered chain, i.e. one that does not undergo
any movement.

what John buys : c

John buys : +wh c,what : -wh

John buys : v,what : -wh

buys : =d v,what : -wh

what :: d -whbuys :: =d =d v

John :: d

ε :: =v +wh c

Figure 2: Example derivation for: what John buys

ject position, matrix object position, embedded
subject position, etc.). In terms of the tree di-
agrams like Figures 2 and 3, both the solid-line
connection from the root down to a wh-phrase and
the dashed-line connection are established before
the wh-phrase can be consumed. The ambiguity-
resolution question raised by filler-gap dependen-
cies therefore amounts to a choice between com-
peting analyses that diverged before the filler was
consumed, rather than a choice of how to extend a
particular analysis like in Figure 1. See Hunter (in
press) for more detailed discussion.

Stanojević and Stabler (2018) adapt the idea
of left-corner parsing from CFGs to MGs. This
parser can consume a wh-filler without commit-
ting to a particular gap site for it, and therefore —
unlike the Stabler (2013) parser — there is a sin-
gle sequence of steps that it can take to parse a
prefix such as ‘What does John think’ which can
be extended with either a subject-gap or object-
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what John buys books about : c

John buys books about : +wh c,what : -wh

John buys books about : v,what : -wh

buys books about : =d v,what : -wh

books about : d,what : -wh

about : p,what : -wh

what :: d -whabout :: =d p

books :: =p d

buys :: =d =d v

John :: d

ε :: =v +wh c

Figure 3: Example derivation for: what John buys books about

gap structure.2 But it does this without identifying
a “filler site” for the wh-phrase either: the wh-
phrase, in effect, remains entirely disconnected
from the rest of the structure until its gap site
is encountered, then the rest of the clause(s) out
of which the wh-phrase moves is assembled, and
only then is the wh-phrase slotted into its surface
position as part of the linking of this clause into
its surroundings. In terms of the tree diagrams:
while this parser does allow the solid-line con-
nection from the root down to a wh-phrase to be
unknown when the wh-phrase is scanned, it con-
structs the dashed-line connection only after this
solid-line connection is eventually established.

The goal here is to adjust the parsing mecha-
nisms of Stanojević and Stabler (2018) so that they
produce a search space where the choice points
are more in line with the psycholinguistic liter-
ature’s framing of the choices that confront the
human sentence-processing mechanism regarding
filler-gap dependencies. With respect to the tree
diagrams, we would like a parser that can establish
the dashed-line connection down to a wh-phrase at
the point where the wh-phrase is consumed, and
delay the solid-line connection until later.

5 Move-Eager Left-Corner MG Parsing

We maintain an input buffer and a store. Each
item in the store is either an element of the form
((start index, end index) · category), or an impli-
cation (written with⇒) from one such element to
another. There is a distinguished “top” item in the

2Leaving aside questions of how movement dependen-
cies are treated, left-corner parsing is also generally regarded
as more psychologically plausible for reasons relating to the
memory demands imposed by different kinds of embedding
configurations in basic, movement-free structures (Resnik,
1992).

store; additional items are unordered. We begin
with an implication ((0, n) · c)⇒ ((0, n) ROOT)
in the store, where c is the starting category of the
grammar and ‘ROOT’ is a distinguished grammar-
external symbol.

A SHIFT transition consumes a word from the
buffer and puts a corresponding element ((i, i +
1) :: X) into the top position in the store, or
((i, i) :: X) in the case of shifting an empty string.

We define the other parsing transitions in terms
of the five MG grammatical rules in Table 1.

If R is a binary grammatical rule A → B C
and we have B at the top of our store, then the
transition relation LC(R) allows us to replace this
B with the implication C ⇒ A; or, if we have
C at the top of our store, then LC(R) allows us
to replace C with the implication B ⇒ A. The
idea in the latter case is that, since we have al-
ready found a C, finding a B in the future is now
all that we need to do to establish an A. This is
familiar from left-corner CFG parsing, and forms
the core of how MERGE steps are parsed (since the
MERGE rules are the binary rules). For example,
if we have found a preposition spanning from po-
sition i to position j, i.e. ((i, j) :: =d p), then
LC(MERGE1) allows us to replace this with an im-
plication ((j, k) · d)⇒ ((i, k) : p). The right side
of this implication has type ‘:’, since it is necessar-
ily non-lexical; the type of the left side is unspeci-
fied (· ∈ {:, ::}).

Given an implicationX ⇒ Y somewhere in our
store, a central idea from (arc-eager) left-corner
parsing is that parsing steps that produce anX can
be connected, or chained together, with this stored
implication to instead produce a Y (and in this
case we remove the implication from the store).
We can think of X ⇒ Y as a fragment of tree
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structure that has Y at the root and has an “un-
filled” X somewhere along its frontier (or a con-
text, a Y tree with an X hole); if there is a step
we can take that can produce an X , that X can be
plugged in to the tree fragment.

For any parsing transition T , there are four vari-
ants C0(T ), C1(T ), C2(T ) and C3(T ) that con-
nect, in slightly varying configurations, the items
produced by T itself with implications already in
the store.

(6) a. If T produces B and we already have
B ⇒ A, then C0(T ) produces A.

b. If T produces B ⇒ A and we already
haveC ⇒ B, then C1(T ) producesC ⇒
A.

c. If T produces C ⇒ B and we already
haveB ⇒ A, then C2(T ) producesC ⇒
A.

d. If T produces C ⇒ B and we already
have B ⇒ A and D ⇒ C, then C3(T )
produces D ⇒ A.

In all cases the relevant pre-existing implications
are removed from the store. C0 connects a shifted
lexical item with the antecedent of an implication,
i.e. the “unfilled” slot at the bottom of some tree
fragment. Rules C1(T ) and C2(T ) are similar to
function composition, or the B combinatory rule
of CCG (Steedman, 2000).3 C1(T ) and C2(T )
differ from each other in whether it is the top or
bottom of the fragment newly created by T that
connects with a pre-existing fragment; C3(T ) is
for the more complicated cases where connections
are made at both ends of the fragment created by
T . See Figure 4.

The place where the parser presented here dif-
fers from that of Stanojević and Stabler (2018) is
in the treatment of MOVE rules. These are treated
as ways to “extend” the other parsing transitions.
Given a grammar rule MOVEn of the form A →
B, if a parsing transition T produces an implica-
tion C ⇒ B, then MVn(T ) produces C ⇒ A.4

(The parser of Stanojević and Stabler (2018), in
contrast, would wait until C is completed and we
simply haveB, at which point a standalone MOVE-
transition would replace this with A.)

3Resnik (1992, p.197) emphasizes this relationship be-
tween arc-eager parsing’s connect rules and function com-
position, and the analogy to CCG’s function composition op-
eration specifically.

4Note that whereas ⇒ “points upwards” in the tree, →
points downwards (cf. Table 1).

With these rules, we obtain a search space
that better allows us to precisely express the ac-
tive/greedy gap-finding strategies that the psy-
cholinguistic evidence supports. This is illustrated
by the traces shown in Figures 5-6.5

The first interesting step in Figure 5 is Step 2,
which builds the MERGE3 step (i.e. the bottom
application of MERGE in Figure 2 discussed ear-
lier) on top of ‘what’ to produce an implication.
Given the actual surroundings of ‘what’ in Fig-
ure 2, (the feature parts of) this implication would
be =d =d v ⇒ =d v,-wh.6 But it could also
be =dγ ⇒ γ,-wh for any other feature-sequence
γ (cf. Table 1), so the parser creates an implication
where these additional features are left as variables
to be resolved by unification later. This is the new
store item shown in Step 2, where the start and end
positions of the selector of ‘what’ are likewise un-
known and left as variables n0 and n1, α3 is the
first feature of γ (which we actually know cannot
be a licensor) and α4 is the rest of γ.7

The next step shifts the empty complementizer
into the store. The resulting item has no variables,
and spans from position 1 to position 1.

Step 4 is perhaps the most complex and interest-
ing step. At its core is the fact that LC(MERGE1)
constructs, from the silent complementizer whose
features are =v +wh c, an implication from the
its complement (features v, plus possible movers)
to its parent (features +wh c, plus possible
movers). But the right-hand side of this implica-
tion is something that MOVE1 can apply to; specif-
ically, MOVE1 applied to +wh c, -wh produces
c. So putting these together, MV1(LC(MERGE1))
produces an implication from v,-wh to c. And C2
can chain this together with the initial implication
from c to ROOT, to produce an implication from
v,-wh to ROOT as the end result. This new store

5An implementation using depth-first backtracking search
is available at https://github.com/stanojevic/Move-Eager-
Left-Corner-MG-Parser

6In these sequences of feature-sequences, spaces bind
more tightly than commas.

7Leaving the other features of the wh-phrase’s selector as
variables allows us to remain completely agnostic about the
base position of the wh-phrase. But a version of this parser
that did not do this would still avoid the problem for the top-
down MG parser discussed in Section 4: it would commit
to the immediate surroundings of the wh-phrase’s base posi-
tion (for which there are only finitely many options) before
moving on from consuming the filler, but it would remain
agnostic about how far this surrounding material is from the
root of the tree. Committing to the immediate surroundings
of the wh-phrase would not be unnatural in languages with
rich case-marking.
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Figure 4: Illustration of connecting operations C0, C1, C2 and C3. The newly created item is shaded in each case.

item in Step 4 says, in effect, that finding a v span-
ning positions 1 to n0, out of which has moved the
-wh element already found spanning positions 0
to 1, will allow us to conclude that the root of a
complete tree spans positions 0 to n0. The impli-
cation established at Step 2 remains in place, un-
affected by this step.

Step 6 places ‘John’ in the subject position:
LC(MERGE2) creates an implication from some se-
lector with features =dγ (plus movers, if any) to
the parent node with features γ (plus the same
movers, if any). By taking γ to be v and taking
the relevant movers to be -wh, the right-hand side
of this new implication can be unified with the left-
hand side of the one established at Step 4; and fur-
thermore, the left-hand side of the new implica-
tion can be unified with the right-hand side of the
one established at Step 2 (i.e. the parent of the wh-
phrase). The new implication is therefore chained
together with two existing ones, by C3, to produce
an implication simply from =d =d v to ROOT.
The left-hand side of this implication is plugged
in when we shift the next word, ‘buys’.

Particularly important for the goals outlined
above is that instead of the C3(LC(MERGE2)) tran-
sition in Step 6, the parser also has the option of
taking the C2(LC(MERGE2)) transition shown in
Step 6’ in Figure 6. This transition involves the
same MERGE step putting ‘John’ in the subject
position, and connects the resulting structure “up-
wards” to the sought-after v,-wh in the same way,
but does not connect the bottom of the resulting

structure to the surroundings of the wh-phrase that
were constructed at Step 2. Instead, the sister node
of the subject (features =d v,-wh) is left open
as the left-hand side of the implication to ROOT,
and the implication constructed at Step 2 remains.
This is exactly what is required in the sentence be-
ing parsed in Figure 6, where the gap is further
embedded inside the direct object. But the first
five steps are the same in both cases.8

The choice between whether to take Step 6 or
6’ therefore reflects exactly the choice between
whether to follow the active filler strategy or not,
just as the the choice between a shift step and a
reduce step in Figure 1 reflects the choice between
whether to follow the Late Closure strategy or not;
recall the discussion of (4) and (5) above. The
observed human preference for active gap-finding
might therefore be formulated as a preference for
C3 transitions over C2 transitions, just as Late Clo-
sure effects can be formulated as the result of a
preference for shift transitions over reduce tran-
sitions. On this view, the filled-gap effect in (2)
(i.e. the disruption at ‘books’) is the result of back-
tracking out of an area of the search space that a
C3 transition led into, corresponding to the analy-
sis in (5a), back to a branching point from which

8The same can be said of the Stanojević and Stabler
(2018) parser. But that parser would establish the connec-
tion between the ‘know’ clause and the ‘eat’ clause only after
reaching the gap site in ‘John knows what Mary ate’, in con-
trast to the way the two clauses would be connected immedi-
ately upon entering the ‘eat’ clause in ‘John knows that Mary
ate’.
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0 init ((0, n0) ·1 c)⇒ ((0, n0) ROOT)

1 SHIFT ‘what’ ((0, 1) :: d -wh)
((0, n0) ·1 c)⇒ ((0, n0) ROOT)

2 LC(MERGE3) ((n0, n1) ·2 =dα3α4)⇒ ((n0, n1) : α3α4), ((0, 1) : -wh) α3 6= +f9
((0, n7) ·8 c)⇒ ((0, n7) ROOT)

3 SHIFT ε ((1, 1) :: =v +wh c)
((n4, n5) ·6 =dα7α8)⇒ ((n4, n5) : α7α8), ((0, 1) : -wh) α7 6= +f13
((0, n11) ·12 c)⇒ ((0, n11) ROOT)

4 C2(MV1(LC(MERGE1))) ((1, n0) ·1 v), ((0, 1),-wh)⇒ ((0, n0) ROOT)
((n3, n4) ·5 =dα6α7)⇒ ((n3, n4) : α6α7), ((0, 1) : -wh) α6 6= +f8

5 SHIFT ‘John’ ((1, 2) :: d)
((1, n0) ·1 v), ((0, 1),-wh)⇒ ((0, n0) ROOT)
((n3, n4) ·5 =dα6α7)⇒ ((n3, n4) : α6α7), ((0, 1) : -wh) α6 6= +f8

6 C3(LC(MERGE2)) ((2, n0) ·1 =d =d v)⇒ ((0, n0) ROOT)

7 C0(SHIFT) ‘buys’ ((0, 3) ROOT)

Figure 5: Trace of the parser’s progress on ‘What John buys’, with a gap in object position. Variables are sub-
scripted, and unification of variables when the rules apply is restricted by the indicated inequalities. Note that the
(derived, lexical) type indicators are variables when they are introduced before the type is specified.

6’ C2(LC(MERGE2)) ((2, n0) : =d v, ((0, 1),-wh)⇒ ((0, n0) ROOT)
((n2, n3) ·4 =dα5α6)⇒ ((n2, n3) : α5α6), ((0, 1) : -wh) α6 6= +f8

7’ SHIFT ‘buys’ ((2, 3) :: =d =d v
((2, n4) : =d v, ((0, 1),-wh)⇒ ((0, n4) ROOT)
((n6, n7) ·8 =dα9α10)⇒ ((n6, n7) : α9α10), ((0, 1) : -wh) α10 6= +f11

8’ C2(LC(MERGE1)) ((3, n0) ·1 d, ((0, 1),-wh)⇒ ((0, n0) ROOT)
((n3, n4) ·5 =dα6α7)⇒ ((n3, n4) : α6α7), ((0, 1) : -wh) α7 6= +f8

9’ SHIFT ‘books’ ((3, 4) :: =p d
((3, n2) ·3 d, ((0, 1),-wh)⇒ ((0, n2) ROOT)
((n5, n6) ·7 =dα8α9)⇒ ((n3, n4) : α6α7), ((0, 1) : -wh) α9 6= +f9

10’ C3(LC(MERGE1)) ((4, n0) ·1 =d pα8α9)⇒ ((0, n0) ROOT)

11’ C0(SHIFT) ‘about’ ((0, 5) ROOT)

Figure 6: Trace of the parser’s progress on ‘What John buys books about’, with gap inside a PP inside an object.
As anticipated in the discussion of example (5) above, the first five steps, up to and including the shift step that
consumes the subject ‘John’, are the same as in Figure 5, and so we do not repeat them again, showing only how
the remaining steps differ.

8



we can take a C2 transition instead to construct the
analysis in (5b).

This general, formal hypothesis of a preference
for C3 transitions over C2 transitions has the po-
tential to make predictions about human parsing
preferences in domains beyond those that directly
prompted the active gap-finding generalization.

6 Conclusion

The main contribution we would like to highlight
is that this parser’s search space, for sentences
containing a filler-gap dependency, is shaped in
such a way that it contains branching points cor-
responding to the choice of whether to (a) posit
a gap actively as a first-resort when the opportu-
nity arises, or (b) explore other analyses of the lo-
cal material first before resorting to positing a gap.
This makes it possible to at least state, in a pre-
cise and general way, the widely-accepted gener-
alization that the human parsing mechanism takes
the former option (i.e. adopts the active-filler strat-
egy), and formulate a theory that includes a stip-
ulation to this effect. But if the facts had turned
out differently it would have been just as easy to
stipulate that the other option is taken instead, and
so in this respect we make no claim here to hav-
ing progressed towards an explanation of the ob-
served active-filler generalization. Rather we hope
to have pinpointed more precisely what there is to
be explained.

This kind of formal instantiation of the active
filler idea may also provide a way for variations
on the broadly-accepted core idea to be formu-
lated in ways that make precise, distinguishable
predictions. For example, looking more closely
at Figures 5 and 6, we see that the parser actu-
ally posits the gap site before consuming the word
that precedes the gap: this happens in Step 6 be-
fore shifting ‘buys’ in Figure 5, and in Step 10’
before shifting ‘about’ in Figure 6. This emerges
as a consequence of the fact that, given a binary-
branching tree node, a left-corner parser uses one
daughter to predict the other (its sister) rather than
constructing both independently (as a bottom-up
parser would). Since the parser already “knows
about” the gap, the way it goes about establish-
ing a structure where the gap and a verb are sis-
ters (if this is what it chooses to do) is by using
the gap to predict the verb in its sister position
— even though the verb might be usually thought
of as appearing to the left of the gap. Although

this perhaps diverges from the most natural un-
derstanding of the strategies discussed in the psy-
cholinguistics literature, it appears to be similar to
the “hyper-active” gap-finding strategy that Omaki
et al. (2015) report some evidence for.

A second way in which the details of Figures 5
and 6 may differ from the usual conception of the
active filler strategy is that the filler wh-phrase is
integrated into its surface position after the com-
plementizer is shifted in Step 3. In a sense it is
the +wh feature on the complementizer that re-
ally triggers the construction of the MOVE step of
the derivation, rather than the filler, and the filler
is identified as the moved -wh element only in-
directly by virtue of the fact that it covers the re-
quired span, from position 0 to position 1. In these
sentences with a null complementizer this differ-
ence is not really meaningful, but it may be in lan-
guages that allow an overt complementizer to co-
occur with a fronted wh-phrase.

Finally, one of the most well-known properties
of active gap-finding is that it is island-sensitive:
humans do not posit gaps in positions which are
separated from the filler position by an island
boundary (e.g. Traxler and Pickering, 1996; Wa-
gers and Phillips, 2009). In future work we intend
to investigate whether this effect might fall out as
a natural consequence of certain grammatical en-
codings of the relevant island constraints.

Acknowledgments

The second author was supported by ERC H2020
Advanced Fellowship GA 742137 SEMANTAX
grant. The second and third authors devised and
implemented the parser described here; the first
author contributed the psycholinguistic motiva-
tions and interpretations.

References
Emmon Bach. 1979. Control in Montague Grammar.

Linguistic Inquiry, 10(4):515–531.

J.R. Brennan, E.P. Stabler, S.E. VanWagenen, W.-M.
Luh, and J.T. Hale. 2016. Abstract linguistic struc-
ture correlates with temporal activity during natu-
ralistic comprehension. Brain and Language, 157-
158:81–94.

Noam Chomsky. 1995. The Minimalist Program. MIT
Press, Cambridge, Massachusetts.

Janet Dean Fodor. 1978. Parsing strategies and con-
straints on transformations. Linguistic Inquiry,
9(3):427–473.

9



Lyn Frazier and Charles Clifton. 1989. Successive
cyclicity in the grammar and the parser. Languages
and Cognitive Processes, 2(4):93–126.

Lyn Frazier and Charles Clifton. 1996. Construal.
MIT Press, Cambridge, MA.

Thomas Graf. 2013. Local and transderivational con-
straints in syntax and semantics. Ph.D. thesis,
UCLA.

Thomas Graf and Bradley Marcinek. 2014. Evaluat-
ing evaluation metrics for minimalist parsing. In
Procs. 2014 ACL Workshop on Cognitive Modeling
and Computational Linguistics (CMCL), page 2836.

John T. Hale. 2003. Grammar, uncertainty and sen-
tence processing. Ph.D. thesis, Johns Hopkins Uni-
versity.

John T. Hale. 2006. Uncertainty about the rest of the
sentence. Cognitive Science, 30:643–672.

Tim Hunter. 2011. Syntactic Effects of Conjunctivist
Semantics: Unifying Movement and Adjunction.
John Benjamins, Philadelphia.

Tim Hunter. in press. Left-corner parsing of minimal-
ist grammars. In R.C. Berwick and E.P. Stabler, ed-
itors, Minimalist Parsing. Oxford University Press.

Gregory M. Kobele. 2010. Without remnant move-
ment, MGs are context-free. In Mathematics of
Language 10/11, LNCS 6149, pages 160–173, NY.
Springer.

Gregory M. Kobele, Sabrina Gerth, and John T. Hale.
2012. Memory resource allocation in top-down
minimalist parsing. In Procs. Formal Grammar
2012, Opole, Poland.

Gregory M. Kobele and Jens Michaelis. 2011. Dis-
entangling notions of specifier impenetrability. In
M. Kanazawa, A. Kornai, M. Kracht, and H. Seki,
editors, The Mathematics of Language, pages 126–
142. Springer, Berlin.

Akira Omaki, Ellen F. Lau, Imogen Davidson White,
Myles L. Dakan, Aaron Apple, and Colin Phillips.
2015. Hyper-active gap filling. Frontiers in Psy-
chology, 6(384).

Colin Phillips. 2006. The real-time status of island
phenomena. Language, 82:795–823.

Philip Resnik. 1992. Left-corner parsing and psycho-
logical plausibility. In Proceedings of the Four-
teenth International Conference on Computational
Linguistics (COLING ’92), pages 191–197.

Edward P. Stabler. 1997. Derivational minimalism. In
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Abstract 

The word to that precedes verbs in English 
infinitives is optional in at least two 
environments: in what Wasow et al. (2015) 
have called the “do-be construction”, and in 
the complement of help, explored in the 
present work. Wasow et al. found that a 
preceding infinitival to increases the use of 
optional following to in the environment 
they examined, but the use of to in the 
complement of help is reduced following to 
help. We examine two hypotheses 
regarding why the same function word is 
primed by prior use in one construction and 
inhibited in another. We then test 
predictions made by the two hypotheses, 
finding support for one of them.  

1 Introduction 

Wasow et al. (2015) investigated factors that 
influence the optional use of to in examples like 
(1),1 which Flickinger and Wasow (2013) had 
dubbed the “do-be construction”. 

All they do is (to) report gloomy things.2  (1) 

The subject of this construction always contains a 
relative clause containing a form of the verb do; its 
main verb is a copula; and the copula is followed 
by a verb phrase, whose inflection must take one of 
three forms: the one matching the form of do (as in 
2), the full infinitive form (that is, with to, as in 3), 
or a bare infinitive (without to, as in 4).  

What we're doing is going down the same path.  (2) 
One thing he did was to listen. (3) 
The best that can be done is discuss this issue.  (4) 

                                                             
1 All examples in this paper are drawn from the Corpus of 
Contemporary American English (COCA; Davies, 2008-). 

Wasow et al. found that a variety of factors 
influence the choice between the last two of these. 
In particular, the rate of to in the post-copula VP is 
significantly higher than would be expected (given 
the other factors) when the occurrence of do in the 
subject is infinitival, as in (4)—that is, to do. This 
was attributed to the well-known phenomenon of 
priming (cf. Branigan and Pickering, 2017 and 
references cited there).  
 Another environment in which the infinitival to 
is optional is in VP complements of the verb help, 
with or without noun phrase (NP) object, as in (5). 

We helped (them) (to) clear the table.  (5) 

Descriptive grammars of English (e.g., Peters, 
2004:247) often note this peculiarity of help, 
sometimes anecdotally suggesting factors that 
might influence the use of to. Among these is the 
form of help. More specifically, in the words of 
Lohmann’s (2011) quantitative corpus study of this 
phenomenon, “The bare infinitive is preferred after 
cases of to help.” This is just the opposite of 
priming: A preceding to reduces, rather than 
increases, the use of to in this construction. Such 
anti-priming has been given a number of names in 
the linguistics literature, including haplology, the 
Obligatory Contour Principle (OCP), and horror 
aequi. See Walter (2007) for a detailed discussion 
and many examples of the application of these 
terms. We will use the term interference.  
 Our question is why a preceding occurrence of 
infinitival to increases the use of to in one 
environment where it is optional, but has the 
opposite effect in another. What is it about these 
two constructions that leads to this difference in the 
use of to?  

2 The original token included optional to in the source corpus. 
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 We begin by presenting a multivariate corpus 
study of help (to), investigating factors that 
simultaneously influence the use of to, interference 
being just one among several. Section 2 
summarizes the compilation and annotation of our 
sample then presents our statistical model of these 
data. Section 3 discusses two possible explanations 
for the opposite influence of a preceding infinitival 
to on the use of a following optional to in the two 
constructions, then further explores a prediction 
that follows from one of the two hypotheses 
presented, providing data confirming that 
prediction. 

2 Corpus Study of help (to) 

Lohmann’s earlier study of help (to), as we have 
termed the construction, was based on a smaller 
sample (N=1,718) and explored fewer factors of 
influence than Wasow et al.’s study of do-be (to). 
The do-be (to) work also drew from the Corpus of 
Contemporary American English (COCA), vs. 
Lohmann’s use of data from the British National 
Corpus. For better comparison then with the prior 
results for do-be (to), we have followed Wasow et 
al. in investigating a similar range of factors, with 
data drawn from COCA, in the present study using 
a downloaded version pre-tagged for part of 
speech, with a total of 520M words divided among 
five genres: academic, fiction, magazines, 
newspapers, and spoken.  

2.1 Extracting Tokens 

We began by programmatically identifying 135K 
sentences that included a verb-tagged form of help. 
We then passed these sentences through the 
CoreNLP PCFG constituency parser (version 
2.0.2; Klein and Manning, 2003; Manning et al., 
2014) to annotate grammatical structure. 

Our initial look through several dozen examples 
found that help (to) constructions were represented 
by a surprising variety of structures in parser 
output, including a number that we considered to 
be incorrect. This guided us in crafting a syntactic 
tree search query (TGrep2; Rohde, 2005) aimed at 
balancing precision and recall,3 while still allowing 
maximal flexibility in terms of any intervening 

                                                             
3 Of all tokens returned, precision is defined as the fraction 
that were intended targets. Of all intended targets, recall is 
the portion returned by the search. 
4 We randomly selected 100 tokens from our original sample 
of all COCA sentences that had included a form of help and 

material: between infinitival to and help (i.e., “split 
infinitives”); between help (or a direct-object NP) 
and to (if present) preceding the complement verb; 
or between to and the complement verb. We 
identified 78,283 tokens for further analysis. 
Checking a random sample (N=100) found 
precision of 98.3%, recall of 76.3%, yielding F1 
measure 85.9.4 

2.2 Factors in our Analysis 

To model variation in our dependent measure, the 
presence or absence of to before a VP complement 
of help, we began by considering elements 
analogous to those previously shown to be 
significantly predictive of optional to in the do-be 
construction, including phonological, syntactic, 
cognitive, and information-theoretic measures. 
Specifically, we programmatically annotated each 
token for: 

• The primary independent variable (predictor) 
of interest, whether help is preceded by 
infinitival to (again, allowing intervening 
material). Per Lohmann (2011), infinitival to 
is expected to disfavor optional to before 
complement verb (i.e., interference). 

• Accessibility of the complement verb lemma, 
as reflected by relative frequency within the 
COCA corpus. This was log-adjusted to 
account for the Zipfian distribution of verb 
frequencies, as illustrated in Figure 1. 

 
Figure 1: Corpus frequency of help-complement verb 
lemmas. For regression modeling, frequencies are log-
adjusted to produce a nearer to linear fit. 

judged that 76 of these represented help (to) constructions. 
Our subsequent tree search query selected 58 of these valid 
tokens and one non-help (to) token, yielding precision = 
58/59 (0.983), recall = 58/76 (0.763). F1 is the harmonic 
mean of precision and recall, 2pr/(p+r) = 0.859. 
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• Predictability of complement verb lemma in 
context—context here being its likelihood of 
following help (to)—reflected by its relative 
frequency within the COCA help (to) data, 
once again log-adjusted. 

• Intra-token distances, as derived from the 
constituency parse, including from head noun 
of subject NP to complement verb, and from 
head noun of object NP (if present) to 
complement verb. Head nouns within NP 
syntactic constituents were identified via the 
CoreNLP dependency parser (Chen and 
Manning, 2014). 

• Phonological environment of (optional) to 
site. Where complement verb is preceded by 
optional to, we classified the initial segment 
of whatever word follows to (which may be 
negation, an intervening adverb, or the 
complement verb itself) into one of four 
categories: vowels, sibilants, sonorants, or 
other.5 We similarly classify the final segment 
of whatever word precedes to. For tokens 
omitting optional to, we classified the initial 
segment of the complement verb and the final 
segment of whatever word precedes it. We 
then annotated each example for whether the 
given environment was expected, a priori, to 
favor or disfavor optional to. Since to is stop-
initial, its insertion was expected to be 
promoted by OCP when preceded and 
followed by a pair of vowels, sibilants, or 
sonorants, but disfavored between pairs of 
“other” segments (i.e., stops, affricates). 

• Stress pattern (i.e., prosody), encoded as 
clash, lapse, or other. As with phonological 
environment above, we considered the words 
following and preceding optional to if 
present, or the complement verb and word 
preceding it where to is omitted. Clash was 
coded if the preceding word has final stress 
and the following word has initial stress. 
Lapse was coded if these are both unstressed.6  

                                                             
5 Assuming phonetic transcriptions extracted from the 
Carnegie Mellon Pronouncing Dictionary (CMUdict), 
version 0.7b (2014), for each word. 
6 Drawing once again on information from CMUdict, in this 
case syllabic stress for each word. 
7 We follow the programmatic animacy-annotation scheme 
of Melnick 2017, expanding on a technique from Theijssen 
2012. As previously noted, a dependency parse identifies the 
head noun within each subject NP. This is then lemmatized 

 No to before VP to 
 

 no to before help to 
 

 no yes 
 

 help -ed -ing -s 
 

 no effect – + 
 

 no effect clash lapse 

 

Figure 2: Distribution of categorical variables: (i) 
presence of infinitival to before VP complement; (ii) 
presence of infinitival to before help; (iii) presence of 
direct object NP following help; (iv) form of verb help; 
(v) to-favoring or disfavoring phonological environment 
surrounding to-site; and (vi) lexical stress environment 
surrounding to-site. X-axis represents number of tokens. 

 

• Surface form of help (help, helps, helped, or 
helping). 

• Spoken vs. written portion of the corpus. 

To these we added measures not modeled in the 
prior work on the do-be (to) construction: 

• Animacy of subject.7 

• Whether or not help is negated. 

• Whether or not help is preceded by a modal 
auxiliary. 

Finally, we encoded an element representing a key 
difference between help (to) and do-be (to): 

• Presence of a direct object following help.  

While the do-be (to) construction does not present 
this option, an object NP following help changes 
the construction’s syntactic interpretation. In help 
(to) constructions, help is a “control verb”, so-
called because when followed by a complement 
verb, help functions to control what is understood 

(via NLTK; Bird et al., 2009) and compared to a static list of 
animates built from WordNet (Princeton University, 2010) 
person and animal terms, a Wikipedia list of notable U.S. 
companies, and an additional whitelist to capture reflexive 
pronouns, personal pronouns other than it and them, and 
certain impersonal pronouns (someone, everybody, and so 
on). Subject head nouns of length greater than two letters in 
all caps are also marked ANIMATE. 
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to be the subject of the subordinate VP, but just 
what that subject is understood to be in any given 
token depends on whether or not help has an object 
NP. Without an object NP, the subject of the 
complement verb is understood to be the same as 
the subject of help. For example: 

Sunshine helps (to) grow flowers.  (6) 

In (6), “sunshine” is understood to be the subject of 
both main verb help and complement verb grow. In 
(7), on the other hand, while “sunshine” is again 
the subject of help, object NP “gardeners” is now 
understood to be the subject of grow: 

Sunshine helps gardeners (to) grow flowers.  (7) 

Following annotation, we peformed additional 
clean-up of the data to improve accuracy. These 
steps included: 

• For the spoken (i.e., transcribed) portion of 
the corpus only, we excluded tokens where 
help is preceded by want to, have to, or going 
to, as we suspect that these transcriptions 
could represent tokens actually spoken closer 

to a one-word [wɑnə] (“wanna”), [hæftə] 
(“hafta”), or [gənə] (“gonna”), that is, without 
a distinct to ([tu]), the potential contributor to 
an interference effect. 

• Limiting analysis to tokens with complement 
verb lemmas appearing 50 or more times 
within our sample, in order to improve 
reliability of relative frequency estimates. 

After all adjustments, the final data set for analysis 
totals 63,593 tokens. Figure 2 shows univariate 
distributions for several factors laid out above. 

2.3 Modeling Variation 

To assess the effect of infinitival to before help 
(i.e., on the inclusion of infinitival to before a 
following complement verb) while simultaneously 
controlling for other expected influences, we fit our 
data with a mixed-effects binary logistic regression 
model (Pinheiro and Bates, 2000; Bresnan et al., 
2007; Baayen et al., 2008), predicting infinitival 
complement VP from fixed effects for the several 
factors described above, with a random effect for 
complement verb lemma. 

 
 

Est. β Std Err z value Pr(>|z|) 
 

Fixed effects 
     

Form of help: 
     

help -0.608 0.071 -8.614 < 0.0001 *** 
helped -0.722 0.082 -8.787 < 0.0001 *** 
helping 0.418 0.081 5.179 < 0.0001 *** 
helps -0.048 0.083 -0.584 0.5590 

 

Infinitive help -2.072 0.062 -33.436 < 0.0001 *** 

Object NP present (“object control”) -1.691 0.042 -40.741 < 0.0001 *** 
Written corpus -0.212 0.034 -6.256 < 0.0001 *** 
Modal before help 0.265 0.044 5.962 < 0.0001 *** 
Negated help 0.413 0.108 3.825 0.0001 *** 
Subject animacy -0.300 0.032 -9.417 < 0.0001 *** 
Phon.: (–) condition -0.465 0.045 -10.298 < 0.0001 *** 
Phon.: (+) condition 0.149 0.052 2.881 0.0040 ** 
Stress: clash -0.213 0.039 -5.482 < 0.0001 *** 
Stress: lapse 0.402 0.052 7.707 < 0.0001 *** 
Distance, controller↔to  0.089 0.016 5.488 < 0.0001 *** 
Verb availaility 0.255 0.044 5.851 < 0.0001 *** 
Verb predictability -0.265 0.036 -7.434 < 0.0001 *** 

Interactions 

     

Object NP × Sbj animacy 0.218 0.052 4.181 < 0.0001 *** 
Object NP × Controller distance 0.085 0.022 3.943 0.0001 *** 
Object NP × Verb preditability 0.250 0.041 6.081 < 0.0001 *** 

Table 1: Logistic regression model of help (to) construction, fixed effects and interactions, predicting optional to 
before complement verb. Positive beta coefficients promote optional to. The outlined row highlights the effect of 
to before help, with negative coefficient suggesting inhibition (i.e., interference). 
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 Since the presence or absence of an NP direct 
object following the main verb help affects both a 
given token’s projected syntactic structure and its 
inter-constituent dependencies (e.g., whether the 
subject of the complement verb is controlled by the 
subject or object of help), we explored interactions 
of object NP presence with a handful of other 
predictors, including subject animacy, distance to 
complement verb from controller (subject or object 
of help), and both availability and predictability of 
the complement verb. Stepwise reduction based on 
significant contribution to model fit retained all 
main effects and eliminated only the interaction of 
object presence with complement verb availability. 
Table 1 presents the resulting model, with pseudo-
R2 = 0.382. 

The primary observation is that the interference 
effect of infinitival help—i.e., disfavoring optional 
to before a following complement verb—is 
confirmed here under multivariate control 
(β = -2.072, z = -33.4, p < 0.0001). 

While other factors were included chiefly to 
maximize accuracy of our interference effect 
estimate, we briefly review their results. Most of 
the several factors with analogs in Wasow et al.’s 
model of the do-be construction appear to have 
similar effects here. Written language produces 
less optional to than spoken, presumed to reflect 
less pressure from online processing demands. 
Increased distance—in this case, to the 
complement verb from the subject of help or from 
its direct object, if present—promotes optional to, 
as increased dependency length generates 
additional processing load (Hawkins, 2004). 
Increased predictability of a particular complement 
verb in context (i.e., prior probability of 
encountering it following help) disfavors optional 
to, which we take as an example of the principle of 

Uniform Information Density (UID; Levy and 
Jaeger, 2007; Jaeger; 2010). Here, UID would 
predict that to would be more likely to be included 
where it would serve to spread out the arrival of 
new information, or surprisal, in those cases where 
the complement verb is less predictable in context 
(i.e., the inverse of predictability). Surprisingly, 
increased overall corpus frequency of the 
complement verb—as opposed to its frequency just 
in the context of the help (to) construction—
appears to promote optional to, counter to its effect 
in Wasow et al.’s do-be results, though exploring 
this further falls beyond our present scope. 

We also find a few significant interactions. The 
main effect of an animate help subject—and thus 
an animate subject for the complement verb, as 
well, when help has no direct object—appears to 
disfavor optional to, but this effect was largely 
neutralized in the presence of a direct object. This 
follows from noting that in such cases, it is the help 
direct object that is interpreted as the subject of the 
complement verb. The significant distance effect, 
conversely, was only further enhanced in such 
“object control” cases. In the context of the shorter 
dependency length between direct object and 
following complement verb in these examples, 
small increases in length had a larger effect. 
Finally, like the subject animacy effect, the UID 
effect (predictability of complement verb in 
context) appears to be largely neutralized in the 
presence of a direct object. 

Figure 3(a) illustrates the relative contribution 
to model fit for each fixed effect. The presence of 
an NP object following help—with its critical 
syntactic role, when present, in determining the 
subject of the complement verb—makes the single 
largest contribution to model fit, followed by our 
primary object of study, the interference effect (i.e., 

 
 (a) (b) 

  

Figure 3: Fixed-effect contributions to fit, as measured by Akaike Information Criterion, log-adjusted in 3(b). 
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infinitive to before help). Figure 3(b) presents the 
same data on a logarithmic scale to better visualize 
the relative sizes of the smaller contributors. 

3 Two Hypotheses 

Our model thus confirms under multivariate 
control the observation that preceding infinitival to 
disfavors optional to before a following 
complement verb, in contrast with the do-be (to) 
construction, where Wasow et al. (2015) had found 
preceding infinitival to favoring optional following 
to—that is, interference in help (to) vs. priming in 
do-be (to). Why do the constructions behave so 
differently in this respect? 

3.1 The Locality Hypothesis  

A first hypothesis is that the preceding to in the 
help construction tends to be closer to the site of 
optional to than in the do-be construction. When no 
object NP intervenes between infinitival help and a 
VP complement, the site of optional to is most 
often separated from the preceding to by just one 
monosyllabic word. In the do-be construction, by 
contrast, there must be a minimum of two words 
(do and some form of be) between infinitival do 
and the site of optional to.  

Most examples in the linguistics literature of 
what Walter (2007) calls “repetition avoidance” are 
very local: avoidance of identical or similar 
segments, tones, inflections, or words that are 
adjacent. Hence, it is perhaps natural to conjecture 
that interference is necessarily a very short-lived 
effect, and to look for a solution to our puzzle in 
terms of locality. But the psycholinguistics 
literature also contains examples of less local 
interference effects, for example, Ferreira and 
Firato (2002). 

Both our corpus study and that of Wasow et al. 
found significant effects of the distance to the 
optional to site from an obligatory preceding verb 
(do or help). But locality cannot be the full 
explanation of the difference in the behavior of 
optional to in the two constructions. The 
interference effect of to immediately preceding 
help persists even when an object NP intervenes 
between help and its VP complement. This is 
confirmed by separately refitting our model to just 
those tokens with an object NP. The negative 
influence of preceding to on following to remains 
highly significant (β = -1.41, z = -17.6, p < 0.0001). 
In this environment, the optional to site following 

help is as far from a preceding to as in the do-be 
construction, a minimum of two words in each 
construction and often more, as in (8). Hence, 
something else must be involved.  

Professionals learn how [to help] families of young 
children with visual impairments [promote] emergent 
literacy skills  (8) 

3.2 The Function Hypothesis 

The second hypothesis was first suggested to us 
by Emily Bender (p.c.). She noted that the verb do 
that is an obligatory part of the do-be construction 
functions essentially as an elliptical replacement 
for the post-copula VP. For example, in (1) part 
of what is predicated of the referent of they is that 
they report gloomy things, and do stands in for the 
VP report gloomy things. 
 Elliptical constructions generally exhibit some 
structural parallelism between the ellipsis site and 
the antecedent. The exact nature of the parallelism 
constraints in such constructions has been the 
subject of a great deal of linguistic literature over 
the past half century; see, for example, Hankamer 
and Sag (1976) and van Craenenbroeck and 
Merchant (2013). These parallelism constraints 
presumably assist the listener (or reader) in 
identifying the antecedent and thus determining 
the intended interpretation of elliptical 
expressions. The priming of to in the do-be 
construction, then, can be viewed as one 
component of the expected parallelism in ellipsis.  
 In contrast, there is no elliptical relationship 
between the verb help and its complement VP. 
However, when both help and its complement are 
full infinitives (with to), it is an instance of self-
embedding (also known as recursion)—that is, a 
construction (in this case, an infinitival VP) 
directly embedded within another construction of 
the same type.  
 It has been known for over half a century (see 
Miller and Chomsky, 1963:286) that center self-
embedding creates severe processing difficulty. 
Although less attention has been paid to the effect 
of self-embedding on the edge of a constituent, 
there is some literature (e.g., Christiansen and 
MacDonald, 2009) showing that right-branching 
recursive structures also cause processing 
difficulty, albeit less than center self-embedding. 
Without the second occurrence of to, to help VP 
is not an instance of self-embedding. Hence, it 
should not be surprising that we observe 
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interference when to help takes a full infinitival 
complement.  

3.3 A Prediction 

If the interference effect that we observe in the help 
(to) construction is due to avoidance of self-
embedding, then it should show up with other 
verbs that take infinitival complements. Even 
though help is exceptional in allowing the word to 
to be omitted, most other verbs that can take 
infinitival complements can also occur in other 
environments. For example, expect, need, try, and 
want all can take simple NP objects; appear, ask, 
and try can all take a prepositional complement; 
and seem can take an adjectival complement. If 
speakers avoid embedding infinitival VPs directly 
under another infinitival VP, the effect should be 
observable with these other verbs as well. With the 
other verbs avoiding self-embedding it is not so 
simple as merely replacing the full infinitival VP 
with a VP lacking to. But other paraphrases that 
avoid recursion are always possible. Hence, we 
predict that the rate of occurrence of infinitival VP 
complements in these other verbs should be lower 
when the verbs themselves are infinitival (i.e. 
immediately preceded by to) than in other 
environments.  

3.4 Testing the Prediction 

To test this prediction, we turn once again to 
COCA, identifying all verb lemmas ever observed 
to take an infinitval complement. This yields 
10,931 types in the corpus. Further restricting 
analysis to those verb lemmas appearing more than 
1,000 times overall and at least 10 times with an 
infinitival complement yields 1,019 types. We 
examined all 70.1M occurances of these verbs, 
classifying each token into one of four categories: 
(a) non-infinitival verb, V1; (b) verb with infinitval 
complement, V1 to V2; (c) infinitival verb, to V1; or 
(d) infinitival verb with infinitval complement, 
to V1 to V2.8 

Our prediction can be restated as in (9), the 
expectation that the conditional probability of the 
appearance of a complement verb given infinitival 
main verb should be much less than the conditional 
probability of complement verb given non-
infinitival main verb. 

                                                             
8  Without resorting to parsing the entire 520M-word corpus, 

we limited extractions here, unlike our full help study, to 
tokens without intervening material. 

 𝑝(𝑉$|	𝑡𝑜	𝑉)) ≪ 𝑝(𝑉$|𝑉))  (9) 

This is formulated in (10) in terms of our four-way 
classification above. 

 (,)
(-)

≪ (.)
(/)

 (10) 

In a single metric, we expect the ratio in (11) to be 
much less than 1. 

 (,)/(-)
(.)/(/)

≪ 1 (11) 

We found this measure to be less than 1 for 837 of 
our 1,019 verbs (82.1%), representing 53.4M of 
70.1M tokens (76.2%). Across the entire set of 
verbs, we calculate an aggregate ratio of 0.292. 
Table 2 presents individual results for ten common 
verbs that take an infinitival complement, 
including help, in ascending order by ratio value. 
 

Verb (d/c) / (b/a) 
help  0.083 
hope  0.104 
like  0.131 
expect  0.133 
appear  0.134 
seem  0.154 
demand  0.232 
need  0.386 
ask  0.417 
try  0.817 

Table 2: Values << 1 suggest an infinitival main verb 
disfavors appearance with an infinitival complement. 
 
To consider the statistical significance of these 
findings, we employ McNemar’s Chi-Squared test, 
which corrects for lack of independence of 
observations, required here as each verb provides 
tokens in multiple conditions (i.e., in each of our 
four token classification categories). Of the 837 
verbs noted above as disfavoring infinitival 
recursion (ratio < 1), 824 (98.4%) show a 
significant result under McNemar’s χ2 (p < 0.05). 
Finally, an aggregate test of the full data set finds 
χ2 = 110.04, df = 1, p < 0.0001. 

Infinitival verb self-embedding indeed appears 
to be strongly disfavored in this large corpus of 
modern American English, in turn supporting the 
function hypothesis for the apparent interference 
effect on optional to before a complement verb 
following infinitival help. 
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4  Conclusions 

Our corpus investigations of optional to have 
shown that both priming and interference occur in 
the use of the same optional function word. Which 
one occurs in a given environment is not arbitrary. 
Rather, it depends on more general properties of 
those environments: we find priming where 
repetition can facilitate processing, as it does in 
elliptical constructions; and we find interference 
where repetition creates processing difficulty, as it 
does in self-embedding. 
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Abstract

Multilingual speakers are able to switch from
one language to the other (“code-switch”) be-
tween or within sentences. Because the under-
lying cognitive mechanisms are not well un-
derstood, in this study we use computational
cognitive modeling to shed light on the pro-
cess of code-switching. We employed the
Bilingual Dual-path model, a Recurrent Neu-
ral Network of bilingual sentence production
(Tsoukala et al., 2017) and simulated sentence
production in simultaneous Spanish-English
bilinguals. Our first goal was to investigate
whether the model would code-switch with-
out being exposed to code-switched training
input. The model indeed produced code-
switches even without any exposure to such
input and the patterns of code-switches are
in line with earlier linguistic work (Poplack,
1980). The second goal of this study was to
investigate an auxiliary phrase asymmetry that
exists in Spanish-English code-switched pro-
duction. Using this cognitive model, we ex-
amined a possible cause for this asymmetry.
To our knowledge, this is the first computa-
tional cognitive model that aims to simulate
code-switched sentence production.

1 Introduction

People who speak several languages are able
to switch from one language to the other, be-
tween or within sentences, a process called code-
switching. Code-switching has been studied for
decades by theoretical linguists and sociolinguists
(e.g., Poplack 1980; Muysken 2000) and more
recently by psycholinguists (e.g., Bullock and
Toribio 2009). In the past few years it has started
being studied with a computational methodology,
and it has garnered attention among the natu-

ral language processing (NLP) research commu-
nity. Several NLP applications have emerged, e.g.,
to detect code-switches (Solorio and Liu, 2008;
Guzmán et al., 2017), or to automatically recog-
nize code-switched speech (Yılmaz et al., 2016;
Gonen and Goldberg, 2018). Moreover, there are
a small number of cognitive computational mod-
els relevant to code-switching: Filippi et al. (2014)
developed a model of code-switched word pro-
duction and Janciauskas and Chang (2018), while
simulating age of acquisition effects on native Ko-
rean speakers of English, reported that the mod-
els that had been exposed to English later pro-
duced code-switches, i.e., occasionally used Ko-
rean words in their predominantly English produc-
tion.

The underlying mechanisms of code-switching,
however, are still not well understood. Therefore,
we suggest using computational cognitive model-
ing to simulate code-switching behavior in multi-
linguals with the goal of gaining more insight into
the process of code-switching. In this work, we
have employed a model of bilingual sentence pro-
duction (Tsoukala et al., 2017) and tested whether
it can produce spontaneous code-switches without
being trained on code-switched sentences (Exper-
iment 1, Section 3). We wanted to test whether
code-switching can be (partially) attributed to in-
ternal factors and explained by the distributions
of the two languages involved, or whether it is
strictly a community-based practice that can only
be explained by exposure to code-switches. To
test the former, we hypothesized that a model that
receives training input in two languages but no
code-switched sentences, will nevertheless be able
to produce code-switched sentences by combin-
ing patterns from the two languages it has been
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trained on. We then employed this model to in-
vestigate a specific production phenomenon that
occurs in Spanish-English code-switching (Exper-
iment 2). As explained in Section 4, we wanted to
test whether the phenomenon of interest is caused
by the distributional properties of the two lan-
guages. This is something that can be explicitly
tested with this model because it is not trained on
code-switched input.

To our knowledge, this is the first computa-
tional cognitive model that aims to simulate code-
switched sentence production.

2 Model

To simulate code-switched sentence production,
we first needed to simulate bilingual production.
For that purpose, we employed the Bilingual Dual-
path model (Tsoukala et al., 2017) and trained it to
simulate simultaneous Spanish-English bilinguals,
i.e., speakers who acquired both Spanish and En-
glish from infancy.

The Bilingual Dual-path model is a modified
version of Dual-path (Chang, 2002). We chose
to work with, and extend, the Dual-path model
because it is one of the most successful and em-
pirically validated cognitive models of sentence
production. It has been used to explain a wide
range of phenomena in various languages; for an
overview see Frank et al. (in press).

2.1 Bilingual Dual-path Model

The Bilingual Dual-path model (Figure 1) is a Re-
current Neural Network (RNN) based on the Sim-
ple Recurrent Network (SRN; Elman 1990) archi-
tecture. It learns to convert a message into a sen-
tence by predicting the sentence word by word.
Dual-path got its name because of its two path-
ways that influence the production of each word:
i) the meaning, or semantic, system that learns to
map words onto concepts (and their realization,
see below and Section 2.2.1), thematic roles, event
semantics and the intended language (“target lan-
guage”), and ii) the sequencing, or syntactic, sys-
tem that is an SRN that learns to abstract syntactic
patterns. Both paths influence the next word pre-
diction (the “output” layer).

To express a new message (see Section 2.2.4
for examples of messages), the following items
are fixed and influence the production of the first
word: the to-be-expressed semantic roles have
fixed connections with their concepts and realiza-

tions, and the relevant “event semantics” and “tar-
get language” units are activated. Additionally, the
hidden layer’s context units are reset to a default
value (0.5 in our simulations).

The output word is determined as the word with
the highest activation in the output layer. Once an
output word has been produced, it is fed back as
input (to the “input” layer). During the training
phase, the target word is given as input instead of
the (potentially different) output word.

The sequencing system is a regular SRN that
has one recurrent hidden layer (of 110 units in
our simulations) and two 70-unit “compress” lay-
ers that are placed between the input word and the
hidden layer, and between the hidden layer and the
output word.

The meaning system learns to map the input
word onto a concept and, whenever relevant, the
realization of that concept (PRON for pronoun,
INDEF for an indefinite article and DEF for def-
inite articles; see Section 2.2.1 (“Message”) for
concrete examples).

A difference between this architecture and other
RNNs is that whenever a new message needs to
be expressed, the network receives fixed connec-
tions between concepts and roles; this allows their
separation (instead of having a single unit for,
e.g., ‘AGENT-WOMAN’) and, in turn, enables the
model to generalize and to produce words in novel
roles. For instance, if the concept ‘WOMAN’ has
only been seen as an AGENT in the training set,
it can still be correctly expressed in novel roles
(PATIENT, RECIPIENT) during the test phase
(Chang, 2002).

All layers use the tanh activation function, ex-
cept the output and predicted role layers that
use softmax. The model is built in Python
and can be found at https://github.com/
xtsoukala/CMCL19.

2.2 Input Languages

In order to simulate Spanish-English bilingual
sentence production, we generated input with rel-
evant properties of the two languages. The sen-
tences (and their messages, see Section 2.2.1) are
generated before the training starts, and they are
based on the allowed structures (Section 2.2.2).
For each part of speech (POS) a randomly selected
lexical item (from that POS and target language) is
sampled from the lexicon (Section 2.2.3). The ad-
vantage of using artificial (miniature) languages is
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input (194)

book
the
he
she
ella
libro

mujer
woman

compress (70)

hidden (110)

role (6)

AGENT
PATIENT

event sem (11)

PRESENT
SIMPLE

role (6)

AGENT
PATIENT

target lang (2)

ENGLISH
SPANISH

output (194)

book
the
he
she
ella
libro

mujer
woman

concept (45)

WOMAN
BOOK

compress (70)

realization(3)
(IN)DEF, PRON

concept (45)

WOMAN
BOOK

realization(3)
(IN)DEF, PRON

Figure 1: Bilingual Dual-path, the model used in these simulations, is a next-word prediction model that converts
messages into sentences. It is based on an SRN (the lower path, via the ‘compress’ layers) that is augmented with
a semantic stream (upper path) that contains information about concepts, thematic roles, event semantics, and the
target language.

that we can manipulate the frequency and gram-
mar of the input and isolate (and thereby study)
the phenomenon of interest.

2.2.1 Message
The model is trained using generated sentences (as
described above) paired with their message that
consists of semantics and their realization, event-
semantics, and target language, which will be ex-
plained in turn below.

In these simulations, the semantics contains in-
formation regarding 45 unique concepts and 6 the-
matic roles: AGENT, AGENT-MODIFIER, PA-
TIENT, ACTION-LINKING, RECIPIENT, and
ATTRIBUTE.

ACTION-LINKING is a combined thematic
role that can be used for all verb types: action (e.g.,
‘throws’), linking (‘is’) and possession (‘has’).
ATTRIBUTE is an attribute expressed with a link-
ing verb concept (‘BE’). AGENT and RECIPI-
ENT can be expressed only with animate nouns.

A concept (e.g., WOMAN for the English
word ‘woman’ or Spanish word ‘mujer’) is as-
signed to each thematic role (during the sentence
generation process) along with a realization at-
tribute (PRON for pronoun, DEF for definite ar-
ticle, and INDEF for indefinite article) accord-
ing to the meaning that needs to be expressed.
For instance, in the sentence “the woman runs”
the message would include “AGENT=WOMAN,
DEF”, whereas “a woman” would be encoded
as “AGENT=WOMAN, INDEF”, and “she” as
“AGENT=WOMAN, PRON”.

Furthermore, the message contains event se-
mantic information (denoted as EVENT-SEM),
which gives information regarding the tense
(PRESENT, PAST) and aspect (SIMPLE, PER-
FECT or PROGRESSIVE). The EVENT-SEM
layer also contains information regarding the roles
needed for that particular message; the model
needs to keep track of the roles expressed and
make sure that if, e.g., the role of RECIPIENT
is activated then the recipient has also been ex-
pressed.

Additionally, the message contains information
about the target language so that the model knows
whether it is learning to produce an English or
Spanish sentence.

2.2.2 Structures
The allowed structures for both languages are the
following in our simulations:

• SV: Subject - Verb, e.g., “a happy dog runs”;
“un perro feliz corre”

• SVO: Subject - Verb - Object, e.g., “the boy
is carrying a book”; “el niño está llevando un
libro”

• SVDOPP: Subject - Verb - Direct Object -
Prepositional Phrase, e.g., “she shows a book
to the girl”; “ella muestra un libro a la niña”

• SVIODO: Subject - Verb - Indirect Object
- Direct Object: e.g., “she shows the girl a
book” (Structure occurs only in English)
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• SVPPDO: Subject - Verb - Prepositional
Phrase - Direct Object: e.g., “ella muestra a la
niña un libro” (“she shows to a girl a book”).
Structure only used in Spanish.

The roles can be expressed using either a Noun
Phrase (NP) with definite (DEF) or indefinite (IN-
DEF) article (e.g., ‘the woman’, ‘a woman’). Ad-
ditionally, AGENT can be expressed with a pro-
noun (PRON, e.g. ‘she’). NPs optionally contain
a modifier (an adjective, e.g., ‘a tall woman’).

The verbs are either intransitive (e.g., ‘sleep’),
transitive (‘carry’), double transitive (‘show’),
linking (‘is’) or possession verb (‘has’). The tense
is present or past and the aspect is simple, progres-
sive, or perfect. Only the simple past was used
whereas the present tense is used with all three as-
pects:

• simple present: “the man cooks”; “el hombre
cocina”

• present progressive: “the man is cooking”;
“el hombre está cocinando”

• present perfect: “the man has cooked”; “el
hombre ha cocinado”

2.2.3 Bilingual Lexicon
The lexicon consists of 194 words (Table 1): 88
English words, 105 Spanish words, and the shared
period (‘.’) that marks the end of the sentence. The
Spanish lexicon is bigger because this language is
gendered: for instance, ‘tired’ is either ‘cansado’,
if it modifies a masculine noun, or ‘cansada’ for
a feminine noun. Syntactic category information
(such as ‘adjective’, ‘participle’) is not given ex-
plicitly; the model learns it through the syntactic
path during training.

2.2.4 Input Examples
To illustrate the input, here is an example of the
message (excluding the target language):

AGENT=WOMAN, INDEF

AGENT-MOD=TALL

ACTION-LINKING=GIVE

PATIENT=BOOK, DEF

RECIPIENT=GIRL, DEF

EVENT-SEM=SIMPLE,PRESENT,AGENT,
AGENT-MOD, PATIENT, RECIPIENT

POS n Examples
Verbs 64

auxiliary 4 is, has, está, ha
intransitive 32 walked, swims, nada
transitive 12 carries, push, lleva
double transitive 12 gives, throws, da
possession 4 has, had, tiene, tenı́a
linking 1 4 is, was, está, estaba

Participles 2 57 eating, eaten, comido
Nouns 46

animate 10 uncle, aunt, tı́o, tı́a
inanimate 36 pen, book, libro

Adjectives 22 busy, ocupado
Determiners 6 a, the, un, una, el, la
Prepositions 2 to, a
Pronouns 4 he, she, él, ella
1 Three of these overlap with the auxiliary verbs.
2 Nine of these have the same form as a verb; e.g.,

‘walked’ is either a perfect participle or a verb.

Table 1: POS in bilingual lexicon (Spanish in italics)

This message would be expressed linguistically
in the following manner in English and Spanish:

• a tall woman gives the girl a book .

• una mujer alta da a la niña un libro . (word-
by-word translation: “a woman tall gives to
the girl a book”)

If the aspect was PROGRESSIVE instead of
SIMPLE, on the other hand, the corresponding
sentences would be “a tall woman is giving the girl
a book”; “una mujer alta está dando a la niña un
libro”.

The linking verb messages were encoded in the
following manner:

AGENT=WOMAN, DEF

ACTION-LINKING=BE

ATTRIBUTE=TIRED

EVENT-SEM=SIMPLE,PRESENT,
AGENT, ATTRIBUTE

and expressed as “the woman is tired”; “la mu-
jer está cansada”.

2.3 Training

The model was trained on a total of 3040 randomly
generated sentence-message pairs in English and
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Spanish (training set; 50% [1520 pairs] per lan-
guage). Recall that no code-switched sentences
were given as input.

We ran 60 simulations using different input and
different random initial weights per simulation,
as the input and the weights are the only non-
deterministic parts of the model. The models were
trained for 30 epochs, where 1 epoch corresponds
to a full iteration of the training set (3040 sen-
tences). At the beginning of each epoch, the train-
ing set was shuffled.

The “realization–role” and “role–realization”
connection weights were set to 10, and the
“concept–role” and “role–concept” to 30. The ini-
tial learning rate was 0.10 and linearly decreased
over 10 epochs until it reached 0.02; the momen-
tum was set to 0.9. None of the hyper-parameters
was optimized for the task, and they do not play
a crucial role in the results. We selected the val-
ues from Tsoukala et al. (2017) and increased the
“concept–role” connections because this resulted
in slightly better performance (the current experi-
ments use more concepts).

2.4 Evaluation and Performance Threshold

The correctness of a sentence is determined
by whether the correct (and complete) semantic
meaning has been expressed in a grammatical sen-
tence but not necessarily in the target syntactic
structure. For instance, if the target sentence is
“a sad grandfather is showing the book to a girl”
and the produced sentence is “a sad grandfather
is showing the pen to a girl” it is counted as in-
correct, whereas if the produced sentence is “a
sad grandfather is showing the girl the book” it
is counted as correct even though it was expressed
with a different syntactic structure than the target
one. If it is expressed with a different aspect (e.g.,
perfect instead of progressive) or realization (e.g.,
pronoun instead of an NP with an indefinite ar-
ticle) it is also marked as incorrect. If the sen-
tence contains code-switches it is marked as cor-
rect as long as it expresses the correct meaning,
is expressed in one of the allowed structures (Sec-
tion 2.2.2) and the POS sequence of each phrase
(NP, Verb Phase [VP], Prepositional Phrase [PP])
is valid in either language.

For all the experiments, we excluded from the
analysis simulations that did not learn to produce
at least 75% of the messages correctly according
to the criteria above.

3 Experiment 1: Code-Switching

In this study, we investigate whether the Bilin-
gual Dual-path would produce code-switched sen-
tences if trained on Spanish and English (but not
code-switched) sentences. We investigate the oc-
currence of different patterns of code-switching
that have been observed in the language use of hu-
man bilingual speakers.

3.1 Background
Muysken (2000) proposed the following typology
of code-switching:

1. Insertional switching
Insertions of single words/fixed expressions:

• lexical (e.g., noun): “I read a libro” (I
read a book)

• fixed expressions/ interjections/ id-
iomatic expressions: “Oh my god,
estamos sin palabras” (we are speech-
less)

2. Alternational switching
Alternation between the two languages, in-
volving multi-word sequences, either be-
tween or within sentences:

• Inter-sentential switching: “I heard you
had an accident. ¿Qué pasó?” (What
happened?)

• Intra-sentential switching: “I had a
hard time finding tu casa esta mañana.”
(your house this morning)

3. Congruent lexicalization
In cases where the languages share syntactic
structures and are highly cognate, it is pos-
sible to use the shared syntax and insert lex-
ical items from either language, thus seem-
ingly switching back and forth: e.g., “Bueno,
in other words, el flight que sale de Chicago
around three o’clock” (‘Fine, ... the flight
which leaves from ...’) (Pfaff, 1979)

3.1.1 Code-Switching by Syntactic Category
In a seminal study, Poplack (1980) observed the
Puerto-Rican community in the US. She found
that balanced bilinguals produced mostly complex
code-switches, such as intra-sentential ones, and
few insertions. Switches at the NP were more fre-
quent than switches at the VP and PP, and noun
insertions were the most frequent lexical insertion
whereas determiner insertions occurred rarely.
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Figure 2: Percentage of correctly produced sentences
and of code-switches among those sentences. The
shaded area shows the Standard Error of the Mean
(SEM) computed over 56 simulations

3.2 Method

To simulate code-switching, we trained the model
as described in Section 2.3 and tested it on 760 un-
seen sentences (test set) that were randomly gen-
erated in the same manner as the training set.

During the test (“production”) phase we manip-
ulated the model’s language control by activating
a target language only at the beginning, before the
production of the first word, so as to indicate the
conversational setting (intended language). Af-
ter the first word had been produced, we acti-
vated both target language nodes, thus allowing
the model to produce the sentence in either lan-
guage or to code-switch.

We excluded from the analysis four models that
did not pass the 75% performance threshold (as
explained in Section 2.4). The reported results are
from the remaining 56 simulations.

3.3 Results

As hypothesized, the model produced code-
switches even though it had not been exposed to
code-switched input. The model code-switched in
18.09% of the correctly produced sentences (at the
last epoch, see Figure 2).

3.3.1 Typology of Code-Switching in the
Model’s Output

Figure 3 shows the insertions per POS and the al-
ternational code-switched types (per POS at which
the first language switch occurred) that were pro-
duced by the model at the end of the training
(30th epoch). The model produced alternational

switches more frequently than insertional switches
(13.57% vs 4.52%).

3.3.2 Examples of Code-Switched Sentences
Insertional code-switches of different syntactic
categories are illustrated below:

• Noun insertion:
Target: un anfitrión feliz ha pateado un
bolı́grafo . (English: a happy host has kicked
a pen)
Output: un anfitrión feliz ha pateado un pen .

• Verb insertion:
Target: un camarero llevó la llave . (English:
a waiter carried the key)
Output: un camarero carried la llave .

• Determiner insertion:
Target: he is showing the book to the father .
Output: he is showing el book to the father .

• Adjective insertion:
Target: a man is sad . Output: a man is triste .

Examples of alternational switches are provided
below:

• Alternation at the determiner (Noun Phrase):
Target: the uncle has shown a father the toy .
Output: the uncle has shown un padre the
toy .

• Alternation at the noun:
Target: the short boy shows a brother a book .
Output: the short boy shows a libro a un her-
mano .

• Alternation at the preposition (Prepositional
Phrase):
Target: the tall waiter has given a brother a
book .
Output: the tall waiter has given a un her-
mano un libro .

• Alternation at the auxiliary verb (Auxiliary
Phrase):
Target: the short waiter is showing a dog a
toy .
Output: the short waiter está mostrando a un
perro un juguete .

Note that in the third example (Prepositional
Phrase) the model inserted a preposition when
switching, thus adhering to Spanish grammar: The
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Figure 3: Types of insertional switching (left) and alternational switching (right). For alternational switches, the
POS indicates the first point of switch. All values designate the percentage of correctly produced sentences. The
error bars show the SEM computed over 56 simulations.

double dative does not exist with the double noun
phrase form in Spanish. This cross-linguistic dif-
ference is even more relevant in the fourth exam-
ple (Auxiliary Phrase switch) because the verb is
in Spanish and the sentence would have been en-
tirely ungrammatical if the model had not inserted
a preposition (“a un perro”).

3.4 Discussion
The model produced spontaneous code-switches
through the manipulation of the target language,
without being exposed to code-switched input.
This supports the hypothesis that code-switches
can occur due to internal and distributional fac-
tors, and not only because of exposure to code-
switching.

Simulating a balanced bilingual speaker, the
model produced mostly alternational switches as
opposed to insertional ones. This is in line with
Poplack’s (1980) observation. Furthermore, al-
ternations at the NP (alternational switch at the
determiner) were more likely than alternations at
the VP (alternational switch at the verb) or PP
(alternational switch at the preposition), which is
also in line with the patterns observed by Poplack.
However, the model also produced code-switching
patterns that are not attested in humans. For in-
stance, the model inserted determiners (1.11% of
the correctly produced sentences), especially En-
glish determiners in an otherwise Spanish sen-
tence (0.68% of correctly produced sentences).
We hypothesize that the model has this preference
because determiners in English are not gendered.
This means both that the model does not need to
select a gendered article and that it prefers to use

the English determiner which has twice the fre-
quency of the Spanish ones (as, e.g., ‘the’ is the
translation of both ‘el’ and ‘la’ that are the Span-
ish definite determiners for masculine and femi-
nine nouns respectively).

In bilingual environments where both languages
are used, bilingual speakers start with an intended
language that is defined by the conversational en-
vironment, but they are capable of communicat-
ing using either of their languages, or by code-
switching (Grosjean, 2001). The top-down lan-
guage control manipulation in the model (i.e., ac-
tivating both target languages) is analogous to ma-
nipulating the conversational setting in which a
speaker is interacting. Spontaneous code-switches
occur when there is no target language preference.
We only activate a target language right before the
production of the first word so as to set the conver-
sational environment.

4 Experiment 2: Auxiliary Phrase
Asymmetry

Our second experiment applies the model to a
specific code-switching phenomenon: a produc-
tion asymmetry that has been observed among
Spanish-English communities in the US.

4.1 Background
Spanish-English bilinguals are moderately likely
to code-switch in the progressive structure be-
tween the Spanish auxiliary “estar” (“to be” ) and
the participle. For instance:

1. Las personas están protesting (The people
are protesting)
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Figure 4: Percentage of Spanish-to-English participle switches for the correctly produced sentences per aspect in
the “haber-model” (left) and the “tener-model” (right). Shaded areas show the SEM computed over 47 simulations.

is valid, whereas a switch at the perfect structure
is rarely produced between the Spanish auxiliary
“haber” (“to have”) and the participle:

2. * Las personas han protested (The people
have protested)

Furthermore, a switch at the auxiliary is likely
for both structures: “Las personas are protesting”,
“Las personas have protested”.

This phenomenon is known as the “auxiliary
phrase asymmetry” (Guzzardo Tamargo et al.,
2016; Poplack, 1980; Pfaff, 1979), and it has
been confirmed both in production through corpus
analysis and in comprehension through an eye-
tracking-while-reading study (Guzzardo Tamargo
et al.).

According to the “grammaticalization account”,
the source of this asymmetry is that “estar” has
more semantic weight and is syntactically more
independent as it also functions as a linking verb
(e.g., “el enfermero está cansado”; “the nurse is
tired”), whereas “haber” is highly grammatical-
ized as it is almost exclusively used as an auxiliary.
The verb of possession in Spanish is “tener” (“el
enfermero tiene un libro”; “the nurse has a book”),
and “haber” is only used as an auxiliary verb or
in archaic formulations (Guzzardo Tamargo et al.,
2016). An alternative hypothesis suggested, but
not attested, by Guzzardo Tamargo et al. is that the
asymmetry emerges from community-supported
practice (“exposure-based account”), i.e., speakers
must be exposed to the production asymmetry.

4.2 Method
To investigate if the model provides support for
the grammaticalization account, we first tested

whether the asymmetry would emerge in the
model described in Section 2.3; this would imply
that the asymmetry can emerge even only from the
distributional patterns of the two languages and
that the exposure-based account is not necessary to
explain the phenomenon, as the asymmetry is not
present in the input. Second, we took advantage
of the fact that the model input is generated and
can therefore be manipulated, and we tested ex-
plicitly the grammaticalization hypothesis by re-
placing all instances of “haber” with “tener”, the
Spanish main verb “to have”, thereby adding se-
mantic weight to the Spanish auxiliary verb.

Specifically, for the first research question we
employed again the model described in Section 2.3
(“haber-model”), and we tested it on 1000 novel
messages: 500 progressive sentences (e.g., “the
boy is kicking a ball”) and 500 that were the
perfect-tense equivalent of those sentences (“the
boy has kicked a ball”). As in the previous ex-
periment (Section 3), we activated both languages
after the first word of each sentence had been pro-
duced.

For the second model (“tener-model”), we re-
placed all the instances of “haber” with “tener”
in the training set (e.g., “el niño ha comido”;
“the boy has eaten” became “el niño tiene co-
mido”). We kept everything else the same (1000
test messages, initialized weights, lexicon size
even though “haber” was no longer used, and all
the layer sizes), and we ran 60 simulations using
the modified input. Because “tener” is also used as
an independent main verb with semantic content,
we hypothesized that this model will not show the
asymmetry.
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In order to have a fair comparison between the
two models, we only analyzed the simulations that
had successfully learned to produce at least 75%
of the sentences for both models.1 Five simula-
tions failed in the “haber-model” model and eight
in the “tener-model”, thus leading to a total of 47
simulations to be analyzed.

4.3 Results
Even without any manipulations, the “haber-
model” showed a strong preference for progres-
sive participle switches: 4.16% vs 2.18% for the
perfect participle switches. Figure 4 (left) shows
the average percentage of Spanish-to-English par-
ticiple switches over 47 simulations per aspect
(progressive and perfect).

Figure 5 shows the percentage of code-switches
at the auxiliary verb and participle for the progres-
sive and perfect structure, after 30 training epochs.
In the progressive aspect, the simulations did not
show a preference for a switch at the auxiliary; it is
equally likely compared to a switch at the partici-
ple, thus reflecting prior experimental and corpus-
based results (Guzzardo Tamargo et al., 2016). In
the perfect structures, on the other hand, a switch
at the participle is much less likely than a switch
at the auxiliary position.

When tested on the same 1000 messages, the
“tener-model” (that substituted the original Span-
ish auxiliary verb from the “haber-model” for one
with more semantic weight) did not show a prefer-
ence for progressive participle switches (2.91% vs
2.63%; Figure 4, right).

Figure 5: Percentages of code-switches at the auxiliary
and participle for the progressive and perfect aspect,
after 30 epochs. Error bars show the SEM computed
over 47 simulations.

1The “sameness” of the simulations is judged by the sim-
ulation number which indicates the seed for the initialized
weights and the generated input.

4.4 Discussion

We tested whether the auxiliary phrase asymmetry
in Spanish-English code-switching could be de-
rived from the properties of the two languages.
The “haber-model” simulated the attested asym-
metry and the “tener-model” tested whether the
cause could be attributed to the Spanish auxiliary
“haber” that only has a limited, dependent syntac-
tic function (i.e., is more grammaticalized) and is
not used as frequently as the English equivalent
(“have”). The two simulations confirm that the
grammaticalization account could be responsible
for the asymmetry.

5 Conclusion

We have presented a novel method to test hypothe-
ses in code-switched sentence production. This
computational cognitive model can easily be mod-
ified to simulate code-switched production of a
different language pair. Additionally, the gen-
erated input allows for manipulations that help
test other hypotheses about code-switching, for
instance the idea that cognates can trigger code-
switched speech (Clyne, 1980).
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Abstract

Based on the Production-Distribution-
Comprehension (PDC) account of language
processing, we formulate two distinct hy-
potheses about case marking, word order
choices and processing in Hindi. Our first
hypothesis is that Hindi tends to optimize
for processing efficiency at both lexical and
syntactic levels. We quantify the role of
case markers in this process. For the task of
predicting the reference sentence occurring in
a corpus (amidst meaning-equivalent gram-
matical variants) using a machine learning
model, surprisal estimates from an artificial
version of the language (i.e., Hindi without
any case markers) result in lower prediction
accuracy compared to natural Hindi. Our
second hypothesis is that Hindi tends to
minimize interference due to case markers
while ordering preverbal constituents. We
show that Hindi tends to avoid placing next
to each other constituents whose heads are
marked by identical case inflections. Our
findings adhere to PDC assumptions and
we discuss their implications for language
production, learning and universals.

1 Introduction

Language universals encode distributional regular-
ities across languages of the world. This study
is motivated by the well known correlation be-
tween case marking and increased word order
flexibility (Sapir, 1921; Blake, 2001), often ex-
pressed as an implicational universal1. The ori-
gin of such universals has been the topic of a
long-standing debate in linguistics and cognitive
science (Fedzechkina et al., 2012). As the cited
work expounds, one view is that language uni-
versals emerged due to constraints specific to the

1“Given X in a particular language, we always find Y”
where X and Y are characteristics of the language (Green-
berg, 1963).

system of language and not related to the other
cognitive faculties (Chomsky, 1965; Fodor, 2001).
Another view is that languages evolved over time
as a consequence of cognitive mechanisms and
pressures linked with language use. Thus, cogni-
tive biases related to processing (Hawkins, 2004),
learnability (Christiansen and Chater, 2008) and
communicative efficiency (Jaeger and Tily, 2011)
have been proposed as underlying the systematic
similarities and divergences between natural lan-
guages.

The Production-Distribution-Comprehension
(PDC) account of language processing proposed
by MacDonald (2013) is an integrated theory
of language production and comprehension
that seeks to connect language production with
typology and comprehension. It is broadly in
the spirit of the second view regarding linguistic
universals described above and posits production
difficulty as the sole factor influencing linguistic
form. Hence it is an unconventional approach,
contrasting radically with alternative accounts
of language use in which language forms are
shaped by constraints on language acquisition
processes or considerations of facilitating lan-
guage comprehension for the listeners. Based on
PDC assumptions, we formulated two hypotheses
linking processing efficiency, case marking, and
word order choices at the level of individual
speakers (as opposed to the population level) in
Hindi, a language having predominantly SOV
word order. Hindi has a rich system of case
markers along with a relatively flexible word
order (Agnihotri, 2007; Kachru, 2006) and thus
adheres to the implicational universal stated at the
outset.

The PDC principle Easy First stipulates that
more accessible words are ordered before less ac-
cessible words. Accessibility of a word is influ-
enced by its ease of retrievability from memory.
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Inspired by the stated PDC principle, our first hy-
pothesis is that Hindi tends to optimize for pro-
cessing efficiency at both lexical and syntactic lev-
els. We investigate the role of case markers in this
process by comparing the processing efficiency of
natural Hindi and an artificial version of Hindi
without case markers. Based on the PDC principle
of Reduce Interference, our second hypothesis is
that Hindi orders constituents such that phonolog-
ical interference caused by case marker repetition
is minimized. Interference is the idea that entities
with similar properties (like form, meaning, ani-
macy, concreteness and so forth) cause process-
ing difficulties when they occur in proximity. A
long line of research attests the role of interfer-
ence in both production (Bock, 1987; Jaeger et al.,
2012) and comprehension (Van Dyke and McEl-
ree, 2006; Van Dyke, 2007).

In order to test the stated hypotheses, we de-
ploy a machine learning model to predict the ref-
erence sentence occurring in the Hindi-Urdu Tree-
Bank (HUTB) corpus (Bhatt et al., 2009) of writ-
ten text2 (Example 1a below), amidst a set of artifi-
cially created grammatical variants expressing the
same proposition (Examples 1b-1c). Case markers
are shown in bold for illustration purposes.

(1) a. isse
this

pehle
before

jila
district

upabhokta
consumer

adalat
court

ne
ERG

28 April 1998
28 April 1998

ko
ON

apne
own

faisle
decision

mẽ
LOC

company
company

ko
DAT

nirdesh
direction

diyaa thaa
gave

ki...
COMPL

Earlier, the District Consumer Court had di-
rected the company in its decision on April 28,
1998 that ...

b. isse pehle jila upabhokta adalat ne apne faisle
mẽ 28 April 1998 ko company ko nirdesh
diyaa thaa ki...

c. jila upabhokta adalat ne isse pehle apne faisle
mẽ 28 April 1998 ko company ko nirdesh
diyaa thaa ki...

The variants above have two adjacent ko-
marked constituents, potentially causing interfer-
ence during production. So the PDC account
would not prefer these sentences on account of
production difficulty and instead prefer the refer-
ence sentence above. The possibility that speak-
ers chose the reference sentence above so that it
would facilitate comprehension for listeners (com-
pared to variant sentences which might be harder
to interpret) is not considered by the PDC account.

2We concede that the use of written data (due to the lack of
a publicly available Hindi speech corpus) is a major limitation
of our study.

We quantified processing efficiency using sur-
prisal, originally proposed as a measure of lan-
guage comprehension difficulty by Surprisal The-
ory (Hale, 2001; Levy, 2008). Consequently, we
introduced surprisal estimated from n-gram and
dependency parsing models into a logistic regres-
sion model for the task of predicting the refer-
ence sentence. Our choice of surprisal is inspired
by Levy and Gibson (2013), who point out that the
desiderata for PDC to become a theory of power-
ful empirical import is that it should make quan-
titative and localized predictions about incremen-
tal processing difficulty at each word. They high-
light the fact that such a theory already exists, viz.
the Surprisal Theory of language comprehension
mentioned above. A perusal of the literature on
information density in language production sug-
gests that surprisal is a reasonable choice to model
production difficulty as well.

Information density and surprisal are mathemat-
ically equivalent and both quantify the contex-
tual predictability of a linguistic unit. But sur-
prisal is based on different theoretical assumptions
about resource allocation in comprehension. Re-
cent research has demonstrated that reduction phe-
nomena at both lexical (Frank and Jaeger, 2008,
verb contraction) and syntactic (Jaeger, 2010, that-
complementizer choice) levels exhibit the drive to
minimize variation in information density across
the linguistic signal. Moreover, instances of the
same word which have greater predictability tend
to be spoken faster and with less emphasis on
acoustic details (Bell et al., 2009; Pluymaekers
et al., 2005). The work cited above uses lex-
ical frequencies or n-gram models over words
to estimate contextual predictability. More re-
cently, Demberg et al. (2012) showed that syntac-
tic surprisal estimated from a top-down incremen-
tal parser is positively correlated with the duration
of words in spontaneous speech, even in the pres-
ence of controls including word frequencies and
trigram lexical surprisal estimates. Crucial to our
study, words which are predictable in context have
been interpreted to be more accessible in recent
research (Arnold, 2011).

The results of our experiments show that ref-
erence sentences tend to minimize both trigram
and dependency parser surprisal in comparison to
their variants. Further, we show that the predic-
tion accuracies of surprisal estimates derived from
an artificially created version of Hindi without
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any case markers are significantly worse than the
corresponding surprisal estimates based on nat-
ural Hindi. This experiment demonstrates the
crucial contribution of case markers towards the
predictive ability of surprisal and confirms our
first hypothesis. Subsequently, we demonstrate
that Hindi tends to avoid placing together con-
stituents whose heads are marked by the same case
marker. Moreover, incorporating predictors based
on adjacent case marker sequences in a statisti-
cal model significantly improves model prediction
accuracy over an extremely competitive baseline
provided by n-gram and dependency parser sur-
prisal. Phonological interference is a plausible
explanation for this phenomenon and lends cre-
dence to our second hypothesis. The Hindi sen-
tence comprehension literature provides only lim-
ited support for interference involving case marker
sequences (Vasishth, 2003). Hence, it is plausible
that this effect is a factor confined to the produc-
tion system and not related to considerations of
language comprehension. Further research using
spoken corpora and spontaneous production ex-
periments need to be performed in order to val-
idate the psychological reality of our findings.
Given that symbols used in the Hindi orthography
have a direct correspondence with the sounds of
the language (Vaid and Gupta, 2002), we expect
speech to behave similarly.

Our main contribution is that we broaden the
typological base of the PDC account of language
processing, leveraging its connection with the well
established surprisal theory of language compre-
hension. Levy and Gibson (2013) state that sur-
prisal would enable PDC to be implemented com-
putationally, thus facilitating hypothesis testing
on a wide range of linguistic phenomena cross-
linguistically. To this end, we set up a compu-
tational framework consisting of standard tools
and techniques from the field of Natural Lan-
guage Generation (NLG). Methodologically, the
task of referent sentence prediction is a relatively
novel way of studying word order and is inspired
from the surface realization component of NLG.
Recently, using a similar setup, Rajkumar et al.
(2016) showed the impact of dependency length
on English word order choices.

In this paper, Section 2 provides necessary
background and Section 3 provides details of our
data sets and models. Section 4 presents our exper-
iments and their results. Finally, Section 5 summa-

Marker Case (Gloss) Grammatical
Function

φ nominative (NOM) subject/object
ne ergative (ERG) subject
ko accusative (ACC) object

dative (DAT) subject/indirect object
se instrumental (INS) subject/oblique/adjunct

ka/ki/ke genitive (GEN) subject (infinitives)
specifier

mẽ/par/tak locative (LOC) oblique/adjunct

Table 1: Hindi case markers (Butt and King, 1996).

rizes the conclusions of our study and discusses
the implications of our results for language pro-
duction and learning.

2 Background

This section offers a brief background on Hindi
word order and case marking, surprisal and core
assumptions of the PDC account.

2.1 Hindi Word Order and Case Marking

A long line of work (Butt and King, 1996; Kid-
wai, 2000) has shown that scrambling in Hindi is
influenced by factors like discourse considerations
(topic, focus, background, and completive infor-
mation), semantics (definiteness and animacy),
and prosody (Patil et al., 2008). Hindi follows
the head-marking strategy where case markers are
postpositions which attach to noun phrases and en-
code a range of grammatical functions like subject
and object (see Table 1 and case markers in bold
in Examples 1a and 2a).

2.2 Surprisal Theory

The Surprisal Theory of language comprehension
posits that fine-grained probabilistic knowledge
(attained from prior linguistic experience) helps
comprehenders form expectations about interpre-
tations of the previously encountered structure as
well as upcoming material (Hale, 2001; Levy,
2008). The theory defines surprisal as a measure
of comprehension difficulty. In this work, we used
the following definitions of surprisal:

1. n-gram surprisal: Mathematically, n-gram
surprisal of the (i+1)th word, wi+1, based
on a traditional n-gram model is given by
Si+1 = − logP (wi+1|wi−n+2, ..., wi−1, wi),
as defined by Hale (2001). We estimated n-gram sur-
prisal via trigram models (n=3) over words trained on
1 million sentences from the EMILLE corpus (Baker
et al., 2002) using the SRILM toolkit (Stolcke, 2002)
with Good-Turing discounting.

2. Dependency parser surprisal was computed using
the probabilistic incremental dependency parser devel-
oped by Agrawal et al. (2017), based on the parallel-
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processing variant of the arc-eager parsing strat-
egy (Nivre, 2008) proposed by Boston et al. (2011).
This parser maintains a set of the k most probable
parses at each word as it proceeds through the sentence.
The probability of a parser state is taken to be the prod-
uct of the probabilities of all transitions made to reach
that state. This parser can thus be used to define a mea-
sure of dependency parser surprisal: for the ith word
in a sentence, we first define the prefix probability αi

as the sum of probabilities of the k maintained parser
states at word i:

αi =
∑

top k derivations d leading to word i

Prob(d) (1)

The dependency parser surprisal at word i+1 is then
computed as:

Ssyn
i+1 = − log(αi+1/αi) (2)

The dependency parser surprisal of the (i+1)th word is
computed as the negative log-ratio of the sum of prob-
abilities of maintained parser states at word i+1 to the
same sum at word i. We estimated it using a corpus of
12,000 HUTB projective trees.

2.3 Production-Distribution-Comprehension
(PDC) Account

The Production component of the PDC account
posits three factors of production ease. 1. Easy
First: Relatively more accessible (ease of memory
retrieval and conceptual salience) or available ele-
ments are produced earlier in the structure. 2. Plan
Reuse: Speakers tend to repeat previously used
or mentioned structures due to syntactic priming.
3. Reduce Interference: Speakers tend to choose
words which do not interfere with other words in
the utterance plan. These factors compete with
each other during the production process to mould
language forms.

The Distribution component states that the dis-
tribution of structures in natural languages reflects
a bias towards having a greater number of struc-
tures which are easier to produce. Thus PDC at-
tributes the greater frequency of subject relative
clauses compared to object relatives across lan-
guages to production ease. Finally, the Com-
prehension part of the PDC approach proposes
that language comprehension reflects the statis-
tics of the input (i.e., production patterns) per-
ceived by language users. Thus, according to
PDC, the greater difficulty involved in compre-
hending object relative clauses compared to sub-
ject relatives (Gibson, 2000) is because of the
lower exposure to object relatives by virtue of their
lower frequency in the linguistic input to compre-
henders. Levy and Gibson (2013) puts forth the

idea that surprisal (estimated from corpora) is nat-
urally very compatible with the PDC assumption
described above. Maryellen MacDonald and col-
leagues validate PDC predictions using a series
of experiments related to relative clause produc-
tion and comprehension in many languages (Gen-
nari and MacDonald, 2008, 2009; Gennari et al.,
2012).

3 Data and Models

Our data set consists of 8736 reference sentences
corresponding to labeled, projective dependency
trees in the Hindi-Urdu TreeBank (HUTB) corpus
of written Hindi (Bhatt et al., 2009). We gener-
ated variants for each reference sentence by ran-
domly permuting the preverbal constituents of the
root node of its dependency tree. We selected
trees whose roots were verbs. For example, in
the tree depicted in Figure 1 (corresponding to Ex-
ample 1a), we reordered the preverbal constituents
immediately dominated by the verb diyaa and ob-
tained the variants shown in Examples 1b and 1c.
In order to eliminate ungrammatical variants, we
excluded variants containing dependency relation
sequences of the root word not present in the cor-
pus of HUTB gold standard trees. Dependency
relation sequences like k7t-k1, k1-k7t, k7t-k7 and
k7-k4 in Figure 1 simulate grammar rules used in
grammar-based surface realization systems. We
obtained 175801 variants after filtering.

In order to mitigate the imbalance between the
number of reference and variant sentences, we
transformed the data set using a technique de-
scribed in Joachims (2002). As per this technique,
a binary classification problem can be converted
into a pairwise ranking problem by training a clas-
sifier on the difference between the feature vectors
of a reference sentence and its syntactic choice
variants:

w · φ(Reference) > w · φ(V ariant) (3)

w · (φ(Reference)− φ(V ariant)) > 0 (4)

In Equation 3 above, the Reference data point
is predicted to outrank the V ariant data point
when the dot product of the feature vector of
the reference with w (learned feature weights) is
greater than the corresponding product of the vari-
ant. The same can be written (Equation 4) as
the dot product of w with the feature vector dif-
ference being positive. We created ordered pairs
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ROOT

diyaa

 main

isse

 k7t

adaalat

 k1

1998

 k7t

faesle

 k7

company

 k4

nirdesh

 pof

tha

 lwg__vaux

ki

 k2

.

 rsym

pahle

 lwg__psp

jila

 pof__cn

upbhoktaa

 pof__cn

ne

 lwg__psp

28

 pof__cn

april

 pof__cn

ko

 lwg__psp

apne

 r6

me

 lwg__psp

ko

 lwg__psp

...

 ccof

Figure 1: Example HUTB dependency tree (Table 8 in the Appendix provides a glossary of dependency relations)

consisting of the feature vectors of reference and
variant sentences. Every reference sentence in the
data set was paired with each of its variants (Ex-
amples 1a-1b and Examples 1c-1a constitute two
such pairs). Then the feature values of the first
member of the pair were subtracted from the cor-
responding values of the second member. Pairs al-
ternate between reference-variant (coded as “1”)
and variant-reference (coded as “0”), resulting in
a data set consisting of an equal number of clas-
sification labels of each kind (see Appendix for a
detailed illustration).

4 Experiments

In this section, we describe three experiments to
test our hypotheses on the transformed version of
our data set consisting of 175801 data points us-
ing a logistic regression model. The goal is to
predict “1” and “0” labels (as described in the
previous section) using a set of cognitively mo-
tivated features. We calculated lexical and de-
pendency parser surprisal feature values over en-
tire sentences by summing the log probabilities of
the surprisal values of individual words. We car-
ried out 27-fold cross-validation; for each run, a
model trained on 26 folds (consisting of 1 fold for
hyperparameter tuning) was used to generate pre-
dictions about the remaining fold (100 training it-
erations using lbfgs solver in python scikit-learn
toolkit-v0.16.1).

4.1 Processing Efficiency Experiments

Here, we test the hypothesis that word order
choices in language are optimized for process-
ing efficiency by incorporating trigram and depen-
dency parser surprisal as predictors in a logistic re-
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Figure 2: Mean trigram surprisal per sentence of ref-
erence and variant sentences (95% confidence intervals
indicated)

gression model. A negative regression coefficient
for these predictors would imply that corpus sen-
tences have lower surprisal than variants. For the
entire corpus, Figure 2 indicates this trend, where
the mean trigram surprisal per sentence of the cor-
pus of reference sentences is lower than the corre-
sponding value of all their variants (Figure 4 in the
Appendix depicts the same trend for syntactic sur-
prisal). For the task of predicting HUTB reference
sentences, both our surprisal measures have a neg-
ative regression coefficient, individually as well as
in combination (first three rows of Table 2). This
confirms our hypothesis that word order choices
optimize for processing efficiency. Given our in-
terpretation of low surprisal as denoting ease of
accessibility, our first experiment shows that Hindi
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Predictor(s) Accuracy% Weight(s)
Hindi
Parser surprisal 62.10 -0.43
Trigram surprisal 89.96 -0.81
Trigram + parser surprisal 90.14 -0.98, -0.43
Caseless Hindi
Caseless parser surprisal 55.03 -0.29
Caseless trigram surprisal 87.73 -0.83
Caseless trigram + parser surprisal 87.81 -0.93, -0.27

Table 2: Classification accuracies of surprisal for natural and
caseless Hindi (175801 data points)

speakers tend to produce sentences by ordering
preverbal constituents such that more accessible
elements are realized first compared to other com-
peting grammatical variants. This is in line with
the PDC Easy First principle. Further, the classi-
fication accuracies indicate that trigram surprisal
estimated from the EMILLE corpus is very effec-
tive in modelling syntactic choice (89.96% accu-
racy). For the same task, Ranjan (2015) reported
that trigram surprisal estimated from the HUTB it-
self (smaller quantity of in-domain data) resulted
in a lower accuracy of around 85%. In this context,
our results show that a bigger n-gram training set
can overcome the limitation of being from a dif-
ferent domain. A qualitative exploration revealed
that n-gram model surprisal was particularly ef-
fective in reference-variant pairs as shown below
(case markers shown in bold):

(2) a. Paakistan ne
Pakistan ERG

brihaspativaar ko
Thursday at

kathit taur par
allegedly

apne yahaan nirmit
indigenous

paramanu
nuclear

hathiyaar
weapons

dhone me
capable LOC

saksam
carrying

krooj
cruise

missile ka
missile GEN

pareekshan kiyaa hai.
tested

Pakistan has allegedly tested an indigenous
cruise missile capable of carrying nuclear
weapons on Thursday.

b. brihaspativaar ko Pakistan ne kathit taur par
apne ...

The reference sentence (Example 2a with tri-
gram surprisal of 45.60 hartleys) has the ergative-
accusative (ne-ko) ordering of case-marked nouns
compared to the variant (Example 2b with higher
trigram surprisal 47.12) having the opposite or-
dering of nouns. Overall, 6% of a total of 175
HUTB sentences having ergative and accusative
case markers exhibit a non-canonical accusative-
ergative order (Agrawal et al., 2017). In both
sentences above, the case markers in questions
are separated by a single word and hence form
part of a single trigram. Thus trigram surprisal
is able to model the dominant order successfully

while dispreferring the opposite order seen in Ex-
ample 2b. Moreover, dependency parser surprisal
has much lower classification accuracy compared
to trigram surprisal and has a very negligible im-
pact on performance on top of trigram surprisal.
Thus, surprisal estimates from an incremental de-
pendency parser are not effective in modelling
constituent order choices. This is slightly unex-
pected as Agrawal et al. (2017) showed that sur-
prisal estimates derived via the dependency parser
deployed in our work accounts for per-word read-
ing times for the Potsdam-Allahabad corpus over
and above bigram frequencies. Using a similar
setup, Rajkumar et al. (2016) showed that for the
task of predicting English syntactic choice alterna-
tions, PCFG surprisal performed significantly bet-
ter than n-gram model surprisal and the impact
of dependency length is over and above both the
aforementioned surprisal predictors. We are in the
process of creating a constituency structure tree-
bank for Hindi and plan to experiment with sur-
prisal derived from a constituent-structure parser
very soon. In recently completed work, Ranjan
et al. (In Preparation) show that for Hindi, de-
pendency length exhibits a weak effect over and
above surprisal for predicting corpus sentences
amidst artificial variants. Finally, we examined
1022 reference-variant pairs in our dataset where
none of our features was able to predict the ref-
erence sentence correctly. We isolated cases in-
volving other factors like given-new orders (30%
cases), focus or topic considerations (marked by
hi or to markers constituting 10% of cases) and
null subjects (7.5%). Such discourse considera-
tions are not encoded in our surprisal estimates
(confined to single sentences) and further research
can incorporate information about sentences from
the preceding context into surprisal estimates.

Note that when considering the relationship
between communicative efficiency and word or-
der choices, there is a potential ‘levels’ prob-
lem (Levy, 2018). At the level of evolutionary
timescales and entire populations, one might ex-
pect the grammar or distributional properties of
the language to be adapted for efficiency. But
at the level of an individual speaker’s produc-
tion choices, certain measures of efficiency will in
turn depend on the extant distribution of linguistic
forms. So there is a potential circularity in trying
to assess the validity of such measures. Here we
seek to model only the lower of these levels, i.e.,
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individual choices over a human lifetime. Hence,
all the non-corpus variants we consider are gram-
matical. We assume that the grammar of the lan-
guage is held fixed, and within the set of possible
word order variants of a sentence licensed by that
extant grammar, seek to model why speakers may
have a greater propensity to produce some variants
over others.

4.2 Case Markers and Processing Efficiency

In order to quantify the exact contribution of
Hindi case markers towards the predictive accu-
racy of syntactic and trigram surprisal, we per-
formed similar experiments using an artificial ver-
sion of the language (i.e., Hindi without case
markers). The sentence comprehension literature
demonstrates the vital role of case markers in pre-
dicting the final verb in verb-final constructions of
languages like German (Levy and Keller, 2013)
and Japanese (Grissom II et al., 2016). Moreover,
in recent years, deploying artificial languages to
test hypotheses about language processing and
learning has been in vogue in both connection-
ist modelling (Lupyan and Christiansen, 2002;
Everbroeck, 2003) as well as behavioural exper-
iments (Kurumada and Jaeger, 2015; Fedzechkina
et al., 2017). Inspired by the cited works, we cre-
ated a caseless version of Hindi by removing case
markers (those listed in Table 1) from both refer-
ence and variant sentences. The caseless equiva-
lents of Examples 2a and 2b discussed in the pre-
vious section are given below:

(3) a. Pakistan brihaspativaar kathit taur apne ya-
haan nirmit paramanu hathiyaar dhone mein
saksam krooj missile pareekshan kiyaa hai.

b. brihaspativaar Pakistan kathit taur apne ...

Then we estimated surprisal by stripping off case
markers from the EMILLE corpus (trigram sur-
prisal) as well as HUTB trees (dependency parser
surprisal) so that our surprisal estimates mirrored
the patterns in the caseless version of the language
faithfully. Both surprisal measures derived from
the caseless version of Hindi perform significantly
worse than natural Hindi (last three rows of Ta-
ble 2). Caseless trigram surprisal does 2% worse,
while there is a 7% dip in the performance of case-
less dependency parser surprisal (McNemar’s two-
tailed significance p < 0.001 for both measures).
Thus the caseless language model is not able to
predict the reference sentence shown in Exam-
ple 3a as it awards higher trigram surprisal (45.21),

in comparison to the variant sentence in Exam-
ple 3b, which has a lower surprisal value (43.74).
Figure 3 in the Appendix depicts the lexical sur-
prisal profiles for the examples discussed above
(both regular Hindi and caseless equivalents). De-
pendency parser surprisal also exhibited the same
predictions.

Removing any kinds of words (especially func-
tion words) will result in a decrease in prediction
accuracy. So we compared the prediction accu-
racy of caseless surprisal with another baseline
obtained by removing case markers and all other
postpositions (e.g. ke liye, ke dwara) from both
training and test data. Surprisal estimates derived
from the case marker and postposition stripped
version of Hindi resulted in an extra dip of 0.3%
in the accuracy of trigram surprisal and 2.5% for
dependency parser surprisal compared to surprisal
obtained by stripping just the case markers. Thus
even within the set of postpositions, case markers
play a significant role in lexical and syntactic pre-
dictability and hence processing efficiency. Lack
of case markers reduces the overall information
content of a sentence for both speaker and hearer.
Spontaneous production experiments showed that
Japanese speakers tend to omit the optional marker
-o when the meaning of the sentence is probable
in a given context (Kurumada and Jaeger, 2015).
However, in cases where the meaning is not plau-
sible, speakers tend to mention the case marker, in
spite of entailing greater production effort.

The work of Lupyan and Christiansen (2002)
showed that for artificial SOV languages with no
case marking, a sequential learning device (Sim-
ple Recurrent Network) failed to achieve high ac-
curacy for the task of mapping words to grammati-
cal roles. Their simulations suggest that verb-final
languages need a case system for optimal learning
as word order is not a reliable cue for grammati-
cal function assignment. Using the miniature ar-
tificial language learning paradigm, Fedzechkina
et al. (2017) conducted a study where two groups
of adult learners were exposed to artificial lan-
guages with optional case marking (one fixed or-
der and one flexible order). Learners of the flexi-
ble constituent order language produced more case
markers than learners of the fixed order language,
mirroring typological patterns.

4.2.1 Interference Experiments
In the light of the PDC principle of Minimize
Interference, we investigate whether interference
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Predictor Sequence Distance
name
φ-ne 1 3
ne-ko 1 3
ko-mẽ 1 2
mẽ-ko 1 1
same-seq 0
diff-seq 4

Table 3: Values of case
features extracted from tree
in Figure 1.

Case marker Weight
sequence
φ-φ -0.002
ke-ke -0.025
ko-ko -0.291
mẽ-mẽ -0.061
tak-tak 0.008
par-par 0.231
se-se 0.055
same-seq -0.009
diff-seq 0.009

Table 4: Learned weights
of some case-sequence pre-
dictors.

between NPs whose heads are marked by the
same case marker influence preverbal constituent
ordering choices in Hindi. Since PDC seeks
to link production and comprehension, our ex-
periments are also motivated by prior work on
case marker interference in sentence compre-
hension in SOV languages like Japanese (Lewis
and Nakayama, 2001), Korean (Lee et al., 2005)
and Hindi (Vasishth, 2003). Our work is di-
rectly related to the experiments on identical
case marking described in Chapter 3 of Vasishth
(2003). In the case of Hindi center-embeddings,
this work examined whether NPs having nominal
heads marked by identical case markers induce
similarity-based interference effects at the subse-
quent verb as predicted by the Retrieval Interfer-
ence Theory (Lewis, 1998; Lewis and Nakayama,
2001). The study shows limited support for in-
terference emanating from phonologically similar
case markers.

In order to investigate interference caused by
case markers in syntactic choice, we designed fea-
tures based on case markers and incorporated them
into our logistic regression model. For each de-
pendency tree, we introduced two types of features
associated with preverbal constituents of the root
verb. 1. Case-sequence features: Counts of case
marker sequences associated with the heads of a
pair of adjacent constituents. We also introduced
generic case-sequence features same-seq and diff-
seq to model the overall trend. For each tree, these
features denote the total number of identical and
different case markers sequences associated with
pairs of adjacent constituents. 2. Case-distance
features: Number of intervening words between
heads of the constituents of root verbs. Here, the
feature name is obtained by combining the case
markers associated with the constituent heads in
question. Constituents which do not have case
marked heads are marked as φ in order to model

Predictor(s) Classification Ranking
accuracy% accuracy%

Case distance features 70.79
Case sequence features 74.94
Random Classifier 21.25
Baseline (trigram+parser surprisal) 90.16 55.04
Baseline+Case distance features 90.85*** 55.68***
Baseline+Case sequence features 91.13*** 56.03***
Baseline+Case distance + sequence features 91.60*** 56.16***

Table 5: Pairwise classification and ranking accuracy (***
denotes McNemar’s two-tailed significance p < 0.001 over
the baseline model).

the fact that languages often use adverbial ele-
ments or other non-case marked arguments to sep-
arate case marked constituents. Table 3 illustrates
our case features based on the dependency tree in
Figure 1 corresponding to Example 1a.

In isolation, the case-sequence and case-
distance features exhibit accuracies around 70%
(second column of Table 5). The case sequence
and distance features together induce a significant
accuracy increase of 1.5% (McNemar’s two-tailed
significance p < 0.001) over a baseline model
consisting of lexical and dependency parser sur-
prisal as features. Though this might be a small
increase when considered in isolation, we would
like to note that our baseline model is extremely
competitive (90.16% accuracy). Even dependency
parser surprisal did not confer considerable per-
formance gains over and above trigram surprisal
as discussed earlier. So in this context, the contri-
bution of case features is noteworthy.

Subsequently, we examined the learned weights
of our case sequence features (Table 4) in our
best model containing surprisal and all the case
marker features. A negative weight is associated
with four of the seven identical case marker se-
quences as well as the same-seq feature encoding
the overall pattern across all case markers. These
negative weights lend support to our hypothesis
that Hindi shows a dispreference for placing to-
gether constituents whose heads are marked us-
ing the same case inflection. Interference due to
repetition of phonologically identical case mark-
ers may be a plausible explanation for this phe-
nomenon. However, three other case marker se-
quences have a positive weight and hence indicate
a tendency towards adjacency. These three case
markers are much lower in frequency in the HUTB
compared to the other four and might not represent
the dominant tendency. However, future inquiries
need to explore the role of case-based facilita-
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tion (Logačev and Vasishth, 2012). Since our fea-
tures are not sensitive to clause boundaries, con-
clusive evidence for phonological interference will
emerge only after controlling for clause bound-
aries.

The best model (baseline + case marker fea-
tures) picked the reference sentence (Example 1a)
while the baseline model erroneously selected
the artificially generated variants (Examples 1b
and 1c). The reference sentence has two ko-
marked constituents separated by intervening con-
stituents. In contrast, the variant sentences have
two adjacent ko-marked constituents, potentially
causing interference. These examples also high-
light the ambiguous nature of the ko-marker in
denoting several functions in Hindi. As noted
by Ahmed (2006), ko marks both accusative and
dative case on objects (company in the cited ex-
amples) as well as dative subjects. In addition, it
also occurs on spatial and temporal adjuncts (as
in 28 April 1998). In these examples, since ko
marks both dative case and temporality, interfer-
ence might be purely phonological in nature and
not related to the actual grammatical function be-
ing marked. Further, we calculated the ranking ac-
curacy of our main models, i.e., the percentage of
times a model ranked the reference sentence com-
pared to all its variants. Table 5 (column 3) in-
dicates that introducing case marker features into
the baseline model induced significant ranking ac-
curacy gains (McNemar’s two-tailed significance
p < 0.001). So our best model ranked Example 1a
as the best sentence among all the other variants.
Our classification and ranking results suggest that
the PDC Reduce Interference principle of produc-
tion ease is a valid constraint in constituent order-
ing.

In Hindi sentence comprehension, Vasishth
(2003) explored the idea of Positional similar-
ity (Lewis and Nakayama, 2001), whereby the po-
sition of otherwise syntactically indiscriminable
NPs in the structure contribute to interference at
the subsequent verb. So he compared reading
times at the innermost verb in the sequences of
constituents with heads marked by ne-se-ko-ko
and ne-ko-se-ko inflections. However, there was
no significant difference in reading times between
these sequences, thus offering no support for po-
sitional similarity during comprehension. This is
the experimental condition which is most closely
linked to our work. Interpreted in conjunction with

our findings, case marker interference in Hindi ap-
pears to be a constraint on production rather than
comprehension.

5 Discussion

Our main findings are broadly in line with two of
the production ease principles of the PDC account.
Our first experiment shows that the Hindi lan-
guage orders words to optimize production ease
(quantified using surprisal) at both lexical and syn-
tactic levels, consistent with the PDC Easy First
principle. Our second experiment shows that case
markers make a significant contribution towards
the predictive accuracy of both syntactic and tri-
gram surprisal in choosing the reference sentence
amongst grammatical variants denoting the same
meaning. The role of surprisal and case mark-
ers in conferring accessibility needs to be inves-
tigated more thoroughly in future work. Finally,
our third experiment shows that Hindi tends to
disprefer constituent sequences with heads case
marked by identical case markers, as predicted by
the PDC principle of Reduce Interference. How-
ever, the lack of case marker interference in Hindi
comprehension necessitates further inquiries into
the PDC account, which conceives the lexico-
syntactic statistics of production data (result of
biases in utterance planning) as guiding compre-
hension processes. Thus, overall, we would like
to conclude that certain aspects of PDC are vali-
dated by our experimental results. Further com-
putational inquiries will be facilitated by formu-
lating an algorithmic sketch of a process model
outlining the causes of mismatches between pro-
duction and comprehension. Finally, the PDC ac-
count conceives word order variation in languages
of the world as emerging from an interplay of the
three PDC production principles. Crucially, PDC
conceives learning biases to be production biases,
i.e., speakers learn forms which are easier to pro-
duce (MacDonald, 2013). Future inquiries can ex-
plore whether learning outcomes are indeed con-
sistent with typological patterns described by lan-
guage universals.
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Figure 3: Lexical surprisal profiles of normal and the
caseless artificial version of Hindi

Sentence Label Lexical Syntactic
type surprisal surprisal

Reference 1 97.45 156.64
Variant1 0 97.69 160.77
Variant2 0 98.25 156.91
Variant3 0 97.97 159.50
Variant4 0 98.16 161.94

Table 6: Original dataset

A Appendix

A.1 Joachims Transformation

Consider the first example in the following Hindi
sentences as reference corresponding to ‘Jay-
alalitha has written a letter to the prime minister
on this issue’ and remaining as grammatical vari-
ants expressing the same idea. Assuming this as a
toy dataset, Table 6 denotes their lexical and syn-
tactic surprisal feature values whereas Table 7 rep-
resents its Joachims transformation.

Reference [jayalalitha-ne]1 [is mazle par]2 [pradhanmantri-ko]3 [ek patr]4 V ...

Variant1 [is mazle par]2 [jayalalitha-ne]1 [pradhanmantri-ko]3 [ek patr]4 V ...

Variant2 [jayalalitha-ne]1 [pradhanmantri-ko]3 [is mazle par]2 [ek patr]4 V ...

Variant3 [pradhanmantri-ko]3 [is mazle par]2 [jayalalitha-ne]1 [ek patr]4 V ...

Variant4 [is mazle par]2 [pradhanmantri-ko]3 [jayalalitha-ne]1 [ek patr]4 V ...
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Figure 4: Mean syntactic surprisal per sentence of ref-
erence and variant sentences (95% confidence intervals
indicated)

New Label δ Lexical δ Syntactic
surprisal surprisal

Variant1-Reference 0 0.25 4.13
Reference-Variant2 1 -0.81 -0.28
Variant3-Reference 0 0.53 2.87
Reference-Variant4 1 -0.72 -5.30

Table 7: Transformed dataset

Here are the steps to transform the data set using
the Joachims transformation technique.

1. Equal number of ordered pairs of type (Reference, Vari-
ant) and (Variant, Reference) were created.

2. Differences between the feature values of the elements
of these ordered pairs were taken (see Table 7).

3. <Reference-Variant> pairs were labelled as 1 and
<Variant-Reference> pairs were labelled as 0. Here,
1 stands for the correct choice and 0 denotes the incor-
rect choice.

Label Dependency
relation

Invariant syntactic relations
k1 subject/agent
k2 object/patient
k4 recipient
k7 location

(elsewhere)
k7t location

(in time)
r6 genitive/possessive
Local word group (lwg)
lwg psp postposition
lwg vaux auxilliary verb
Symbols
rsym symbol relation
Indirect dependency relations
ccof co-ordination and sub-ordination
pof part of units such as conjunct verbs
pof cn part of units such as compound noun

Table 8: Glossary of dependency relations
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Abstract

Sentences are represented as hierarchical syn-
tactic structures, which have been successfully
modeled in sentence processing. In contrast,
despite the theoretical agreement on hierarchi-
cal syntactic structures within words, words
have been argued to be computationally less
complex than sentences and implemented by
finite-state models as linear strings of mor-
phemes, and even the psychological reality of
morphemes has been denied. In this paper, ex-
tending the computational models employed
in sentence processing to morphological pro-
cessing, we performed a computational sim-
ulation experiment where, given incremental
surprisal as a linking hypothesis, five com-
putational models with different representa-
tional assumptions were evaluated against hu-
man reaction times in visual lexical decision
experiments available from the English Lexi-
con Project (ELP), a “shared task” in the mor-
phological processing literature. The simula-
tion experiment demonstrated that (i) “amor-
phous” models without morpheme units un-
derperformed relative to “morphous” mod-
els, (ii) a computational model with hierarchi-
cal syntactic structures, Probabilistic Context-
Free Grammar (PCFG), most accurately ex-
plained human reaction times, and (iii) this
performance was achieved on top of surface
frequency effects. These results strongly sug-
gest that morphological processing tracks mor-
phemes incrementally from left to right and
parses them into hierarchical syntactic struc-
tures, contrary to “amorphous” and finite-state
models of morphological processing.

1 Introduction

Sentences are represented as hierarchical struc-
tures, not linear strings of words (Chomsky, 1957;
Everaert et al., 2015). The hierarchical represen-
tations of sentences have been successfully mod-
eled in sentence processing (Hale 2001; Levy

2008; Boston et al. 2008; Demberg and Keller
2008; Roark et al. 2009; Fossum and Levy 2012;
cf. Frank and Bod 2011; Frank et al. 2012). In
contrast, despite the theoretical agreement on hi-
erarchical syntactic structures within words, es-
pecially derivational morphology, among various
linguistic theories (Lieber, 1992; Anderson, 1992;
Halle and Marantz, 1993; Aronoff, 1994), words
have been argued to be computationally less com-
plex than sentences (Langendoen 1981; Heinz and
Idsardi 2011; cf. Carden 1983) and implemented
by finite-state models as linear strings of mor-
phemes (Beesley and Karttunen, 2003; Roark and
Sproat, 2007; Virpioja et al., 2017), and even the
psychological reality of morphemes has been de-
nied by connectionist models (Baayen et al. 2011;
Milin et al. 2017; cf. Anderson 1992). Conse-
quently, the hierarchical representations of words
have not been sufficiently considered in morpho-
logical processing, with a few exceptions (Libben,
2003, 2006; de Almeida and Libben, 2005; Pollat-
sek et al., 2010; Song et al., 2019).

In this paper, extending the computational mod-
els employed in sentence processing to morpho-
logical processing, we perform a computational
simulation experiment where, given cumulative
surprisal as a linking hypothesis (Hale, 2001;
Levy, 2008), several computational models with
different representational assumptions are evalu-
ated against human reaction times (RTs) in vi-
sual lexical decision experiments available from
the English Lexicon Project (ELP; Balota et al.,
2007), a “shared task” in the morphological pro-
cessing literature, with special focus on deriva-
tional morphology. The goal of this paper is
to investigate whether morphological processing
tracks morphemes and parses them into hierarchi-
cal syntactic structures.

Specifically, we employ five computational
models with different representational assump-
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tions from sentence processing: two “amor-
phous” models, Letter Markov Model and Sylla-
ble Markov Model, with transition probabilities
among letters and syllables, respectively, with-
out reference to morpheme units and three “mor-
phous” models, Markov Model, Hidden Markov
Model, and Probabilistic Context-Free Grammars
(PCFG), with conditional probabilities among
morphemes, part-of-speech (POS) tags, and non-
terminal nodes of hierarchical structures, respec-
tively. Importantly, in the sentence processing lit-
erature, Markov Models and PCFGs have been ex-
clusively compared (Frank and Bod, 2011; Fos-
sum and Levy, 2012), but these computational
models differ not only in the presence of hierar-
chical structures but also POS tags. Thus, we in-
cluded HMM as an important “midpoint” model
with POS tags but no hierarchical structures (cf.
Lau et al., 2016). The prediction is that, if mor-
phological processing tracks hierarchical syntac-
tic structures, PCFG should outperform the al-
ternative non-hierarchical models. Moreover, if
morphological processing tracks morphemes, the
“morphous” models should outperform the “amor-
phous” models.

2 Methods

2.1 Simulation Data
The simulation data was created by intersect-
ing two corpora: CELEX (Baayen et al., 1995)
and English Lexicon Project (ELP; Balota et al.,
2007). These two corpora were selected because
CELEX annotates morphological tree structures
on which PCFG can be trained supervisedly, while
ELP provides human reaction times (RTs) of vi-
sual lexical decision experiments against which
computational models can be evaluated. First,
every word except structurally ambiguous du-
plicates was extracted from the revised CELEX
(O’Donnell, 2015) that only includes morpho-
logically complex derived and monomorphemic
words, hence 22,969 CELEX words.1 Second, ev-
ery word except those missing RTs or any control
predictors to be included in the baseline model was
extracted from the restricted ELP, hence 35,493
ELP words.2 Finally, those sets of CELEX and

1The revised CELEX cleaned and expanded the origi-
nal CELEX via hand annotation and heuristic parsing. See
O’Donnell (2015, §7.2.2) for details.

2The restricted ELP only includes the words for which RT
is available and computes paradigmatic lexical statistics like
neighborhood density only among them. See Balota et al.

ELP words were intersected, resulting in the sim-
ulation data of 13,244 morphologically complex
derived and monomorphemic words.3

In order to make sure that model performance
does not depend on the particular training/testing
split, we adopted Monte Carlo cross-validation
(MCCV), also known as repeated random sub-
sampling, that repeatedly and randomly samples
a subset of the full simulation data as the test-
ing data and assigns the remaining data as the
training data.4 We only sampled bimorphemic
words as the testing data, either suffixed (e.g.
teach+er) or prefixed (e.g. un+lock), for the fol-
lowing two reasons. First, among morphologi-
cally complex words (n = 9,336), bimorphemic
words account for more than 70% (n = 6,551),
while trimorphemic, tetramorphemic, and super-
tetramorphemic words amount to only 24% (n =
2,277), 5% (n = 461), and 1% (n = 47), respec-
tively. In other words, super-bimorphemic words
can be nothing but outliers in the testing data. Sec-
ond, given that computational models are multi-
plicative in nature (Yang, 2017), it is not fair to
simultaneously test the words with different num-
bers of morphemes. That is, shorter words are ex-
ponentially more probable than longer ones, but
shorter expressions are not necessarily more ac-
ceptable or easier to process (Lau et al., 2016;
Sprouse et al., 2018). Given these two reasons,
for each MCCV iteration, 10% of the bimor-
phemic words (n = 655) was randomly held out
as the testing data and the remaining 90% (n =
13,244 – 655 = 12,589) was assigned as the train-

(2007) for details.
3Another possibility would be that, like Virpioja et al.

(2017), CELEX and ELP are independently used as train-
ing and testing data, respectively. While it is crucial in our
computational simulation for morphemes to be consistent in
training and testing data, however, morphological segmen-
tations are not comparable across the two corpora, causing
some morphemes to be unknown to computational models
during testing, hence poor performance. Therefore, the inter-
section of the two corpora was necessary to ensure that mor-
phemes are maximally identical in training and testing data.

4Another approach would be k-fold cross-validation
(kFCV), that splits the full simulation data into k mutually
exclusive and equally sized subsets and selects one subset for
testing and k–1 subsets for training. kFCV is unbiased in that
each word is guaranteed to get tested exactly once, but more
variable because the number of iterations is restricted to k,
the number of subsets. In contrast, MCCV is more robust
than kFCV in that the number of iterations is not limited to
the number of pre-split subsets (though biased because each
word may be tested different times). That is, there is a gen-
eral trade-off between variances and biases. Since the pur-
pose here is just to ensure that model performance is robust
among different training/testing splits, we adopted MCCV.

44



ing data. On the assumption that morphologi-
cally complex words are decomposed into com-
ponent morphemes before morphological parsing,
the testing words were represented as morpheme
sequences (e.g. [‘compute’, ‘ion’, ‘al’]).5 The
number of iterations was set to 100 and the results
presented below are all averaged across those 100
iterations, where the unparsed testing words were
excluded (11 words per iteration on average).

2.2 Computational Models
The computational models were implemented
with Natural Language Tool Kit (NLTK; Bird
et al., 2009) in Python. The architectures of three
types of computational models are summarized
below: Markov Model, Hidden Markov Model,
and Probabilistic Context-Free Grammar.

Markov Model: A Markov Model (also called
n-gram model) was implemented with the model
module. The Markov Model can be defined by an
n-order Markov process that computes the transi-
tion probabilities of morphemes at position i given
the i–n context, e.g. P (mi|mi−n,mi−1). When
i = 1, the 1st-order Markov Model (i.e. bigram
model) computes the transition probabilities of
morphemes at position i given the i–1 context, e.g.
P (mi|mi−1). When n = 2, the 2nd-order Markov
Model (i.e. trigram model) computes the transi-
tion probabilities of morphemes at position i given
the i–2 context, e.g. P (mi|mi−1,mi−2). Given
the Markov assumption, the local probabilities of
component morphemes in morphologically com-
plex words are merely their transition probabili-
ties.6

The transition probabilities are the model pa-
rameters empirically estimated from morpheme
sequences in the training data via Maximum Like-
lihood Estimation with token weighting and Lid-
stone smoothing at α = 0.1. The Markov Model
is linear and string-oriented in that the transition
probabilities merely track morphemes from left to
right, which should effectively capture lexically
specific dependencies among morphemes.

5This is an empirical question whether morphological de-
composition and morphological parsing are the same or dif-
ferent morphological computation(s). One possibility would
be that top-down morphological parsing generates hierarchi-
cal structures while “emitting” morphemes as terminal nodes
that provide cues to morphological decomposition.

6Bigram Markov Models append one word initial sym-
bol <w> as the necessary context to estimate the probability
of the first morpheme. Trigram Markov Models append two
word initial symbols <w>, <w> to provide the context for
the first morpheme, and so on.

Hidden Markov Model (HMM): A HMM was
implemented with the hmm module. A HMM gen-
eralizes the Markov Model by hypothesizing “hid-
den” structures behind visible strings. The HMM
computes the transition probabilities of POS tags
at position i given the i–1 context, e.g. P (ti|ti−1),
and the emission probabilities of morphemes at
position i given POS tags at the same position
i, e.g. P (mi|ti). Although the HMM, like the
Markov Model, can be defined by an n-order
Markov process over POS tags, only the Bigram
HMM is investigated in this paper. The local prob-
abilities of component morphemes in morpholog-
ically complex words are the ratio of prefix prob-
abilities at position k to position k–1, where pre-
fix probabilities are the sum of path probabilities
compatible with morphemes until position k (Ra-
binar, 1989).7

While the local probabilities of component mor-
phemes in structurally ambiguous words can be
computed via a forward algorithm (sum of all
paths) or a Viterbi algorithm (max of all paths),
given that most probability mass was allocated
to the best path and thus there were no sub-
stantial differences between forward and Viterbi
algorithms, we adopted the forward algorithm.
Both transition and emission probabilities are
the model parameters empirically estimated from
tagged morpheme sequences in the training data
via Maximum Likelihood Estimation with token
weighting and Lidstone smoothing at α = 0.1. The
HMM is structure-oriented in that hidden struc-
tures of POS tags are hypothesized behind visible
strings, but still linear because the transition prob-
abilities track POS tags from left to right.

Probabilistic Context-Free Grammar
(PCFG): A PCFG was implemented with the
grammar module. A PCFG is most represen-
tationally sophisticated among three types of
computational models investigated in this paper
and, crucially, can model hierarchical structures.
The PCFG computes nonterminal production
probabilities of right-hand sides given left-hand
side nonterminals, e.g. P (rhs|lhs), and termi-
nal production probabilities of right-hand side
terminals given left-hand side nonterminals, e.g.
P (mi|ti), corresponding to HMM emission prob-

7The term “prefix” as in prefix probabilities should not be
confused with the term “prefix” in morphology (i.e. a type
of affix linearly attached to the left of the base). The term
“prefix” here means morpheme sequences that the incremen-
tal algorithm has encountered up to the current position.
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abilities. The local probabilities of component
morphemes in morphologically complex words
are the ratio of prefix probabilities at position k
to position k–1, where prefix probabilities are
the sum of tree probabilities compatible with
morphemes until position k (Earley, 1970; Stol-
cke, 1995). Note that HMMs and PCFGs make
different predictions even for bimorphemic words
because derivational affixes are head-lexicalized
in PCFGs (e.g. N→ V er), while “emitted” from
POS tags in HMMs.

Just like HMMs, while the local probabilities of
component morphemes in structurally ambiguous
words can be computed via an Earley algorithm
(sum of all trees) or a Viterbi algorithm (max of all
trees), we employed the Earley algorithm which
may have interesting consequences for the incre-
mental nature of morphological processing. Both
nonterminal and terminal production probabilities
are the model parameters empirically estimated
from morphological tree structures in the training
data via Maximum Likelihood Estimation with to-
ken weighting and Lidstone smoothing at α = 0.1.
The PCFG is hierarchical and structure-oriented in
that the probabilities are defined over hierarchical
structures permitted by the grammar.

2.3 Linking Hypothesis
The information-theoretic complexity metric, sur-
prisal (i.e. self-information), was employed as a
linking hypothesis that bridges between represen-
tation and processing (Hale, 2001; Levy, 2008).
The surprisal of morpheme m, I(m), is defined as
Equation (1):

I(m) = log2
1

P (m)
= − log2 P (m) (1)

The surprisal estimated by computational mod-
els has been demonstrated to explain self-paced
reading times or eye-fixation durations in sen-
tence processing (Boston et al., 2008; Demberg
and Keller, 2008; Roark et al., 2009; Frank and
Bod, 2011; Fossum and Levy, 2012) and remains
to be extended to morphological processing (cf.
Virpioja et al., 2017). Surprisal is a theory-neutral
complexity metric in that computational models
with different representational assumptions can be
compared on the same probabilistic ground, unlike
node counting (Miller and Chomsky, 1963) which
only applies to the models with hierarchical struc-
tures. Thus, despite different representational as-

sumptions, Markov Model, HMM, and PCFG can
be equally evaluated through a lens of surprisal.
Interestingly, Levy (2008) and Smith and Levy
(2013) dubbed surprisal as a causal bottleneck:
“surprisal serves as a causal bottleneck between
the linguistic representations constructed during
sentence comprehension and the processing diffi-
culty incurred at a given word within a sentence”
(Levy, 2008, p.1128). That is, various representa-
tional hypotheses assumed by different computa-
tional models can be evaluated via only one com-
plexity metric (“the bottleneck”). See Hale (2016)
for a review of information-theoretic complexity
metrics.

On the assumption that morphological process-
ing proceeds incrementally from left to right, we
propose that processing costs of morphologically
complex words are proportional to cumulative sur-
prisal of their component morphemes. The cumu-
lative surprisal of word w, CI(w), is defined as
Equation (2):8

CI(w) = CI(m1, ...,mn) =
n∑

i=1

I(mi) (2)

where I(m) is the surprisal of morpheme m de-
fined as Equation (1). In fact, the mathematical
equivalence of the cumulative surprisal of word w,
CI(w), and the vanilla surprisal of word w, I(w)
can be proved simply via the combination of the
chain rule and the Markov assumption.

2.4 Statistical Analyses
Ordinary linear regression models were fitted with
the lm function in R.9 The baseline regression
model was first fitted with log-transformed by-
item average RTs as the dependent variable and
control predictors as independent variables. For
each computational model, the target regression
model was then fitted with cumulative surprisal as
the independent variable of interest on top of con-
trol predictors in the baseline regression model.

8In sentence processing, the processing costs of words
within sentences can be easily measured with self-paced
reading or eye-tracking experiments, but the processing costs
of morphemes within words cannot, so that cumulative sur-
prisal should be computed to transform processing costs from
morphemes to words.

9Another approach would be linear mixed-effects regres-
sion (Baayen et al., 2008) with by-iteration random effects
without averaging across 100 MCCV iterations. However,
because of methodological uncertainties and convergence
failures, we followed the standard practice of cross-validation
and averaged the results across 100 MCCV iterations.
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That is, the target and baseline regression models
minimally differ only in the presence of cumula-
tive surprisal. Therefore, the cumulative surprisal
estimated by computational models was evaluated
with nested model comparisons via log-likelihood
ratio tests based on the χ2-distribution with df
= 1, the difference in the number of parameters
between two nested regression models. Further-
more, the control predictors were evaluated via
one-sample t-tests on beta regression coefficients
based on the z-distribution, given that t-statistics
approximately follow the z-distribution with 500
> observations.

Following Lignos and Gorman (2012), four
control predictors were included in the baseline re-
gression model relative to which cumulative sur-
prisal was evaluated: squared length, number of
syllables, orthographic neighborhood density, and
surface frequency. All control predictors were ob-
tained from the ELP.

Squared length: Length (i.e. number of letters)
has inhibitory effects on visual word recognition:
longer words are recognized more slowly. Since
New et al. (2006) found that the quadratic term of
length (i.e. number of letters squared) was closely
correlated with RTs in the ELP (i.e. “U-shaped
curve” of RTs as a function of length), we adopted
squared length.

Number of syllables: New et al. (2006) also
observed that number of syllables had “robust lin-
ear inhibitory effects” on visual word recogni-
tion independent of squared length and thus we
adopted number of syllables.

Orthographic neighborhood density: Ortho-
graphic neighborhood density has been recog-
nized to have inhibitory effects on visual word
recognition: words in denser neighborhood are
recognized more slowly. Yarkoni et al. (2008)
proposed a new measure of orthographic neigh-
borhood density called Orthographic Levenshtein
Distance (OLD) which was shown to predict RTs
in the ELP better than the classic measure known
as Coltheart’s N (Coltheart et al., 1977). Thus, we
included a version of OLD computed based on 20
closest orthographic neighbors (OLD20).

Surface frequency: Frequency has facilitatory
effects on visual word recognition and probably
is the most important predictor in the psycholin-
guistics literature: more frequent words are rec-
ognized more quickly. In morphologically com-
plex visual word recognition, theoretical interpre-

tations of frequency crucially depend on the lin-
guistic units over which frequency is computed.
For example, surface frequency has been inter-
preted as an index of storage of morphologically
complex words as unanalyzed wholes, whereas
base frequency as a “litmus paper” of computa-
tion of morphologically complex words from com-
ponent morphemes. Among various frequency
norms such as the Brown Corpus (Kucera and
Francis, 1967), the CELEX (Baayen et al., 1995),
and the HAL (Burgess and Livesay, 1998), we
used the SUBTLEX frequency norm (Brysbaert
and New, 2009) which was demonstrated to pre-
dict RTs in the ELP better than the previous fre-
quency norms. Specifically, we log-transformed a
version of SUBTLEX frequency scaled per mil-
lion, because frequency is known to follow the
nonlinear Zipfian distribution (Zipf, 1949). Note
that surface frequency is proportional to unigram
probability estimated by “word unigram model”,
the model of storage discussed by Virpioja et al.
(2017), simply because unigram probabilities are
computed by dividing surface frequencies by the
corpus size.

2.5 Evaluation Metrics

Two evaluation metrics are derived from surprisal:
linguistic accuracy and psychological accuracy
(Frank and Bod, 2011; Fossum and Levy, 2012).10

The linguistic accuracy of model M, LA(M), is
defined as Equation (3):

LA(M) = − 1

n

n∑

i=1

I(mi) (3)

where I(m) is the surprisal of morpheme m de-
fined as Equation (1). That is, the linguistic ac-
curacy is the negative average surprisal over mor-
phemes of morphologically complex words in the
testing data. Note also that the linguistic accuracy
is just the negative of the NLP evaluation met-
ric cross-entropy. The linguistic accuracy may be
cognitively interpreted as offline grammaticality
judgment (Keller, 2000; Lau et al., 2016; Sprouse
et al., 2018): the higher the linguistic accuracy is,
the more grammatical the model “judges” the test-
ing data never seen before. Note that the linguistic
accuracy is completely independent of human be-

10Virpioja et al. (2017) call variants of linguistic and psy-
chological accuracies as text prediction and cognitive predic-
tion accuracies, respectively.
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havior (i.e. human RTs), in contrast with the psy-
chological accuracy introduced below.

The psychological accuracy of model M,
PA(M), is defined as Equation (4):

PA(M) = ∆DB −∆DM (4)

where ∆D is the delta deviance defined as –2
times log-likelihood and B is the baseline model
without cumulative surprisal included. That is, the
psychological accuracy is the decrease in delta de-
viance between the baseline model and the target
model fitted to the testing data. The psychological
accuracy may be cognitively interpreted as online
morphological processing: the higher psycholog-
ical accuracy is, the less costly the model “pro-
cesses” the testing data never seen before. For
example, suppose that the grammatical sentence
Colorless green ideas sleep furiously (Chomsky,
1957) empirically turned out to be less costly. The
most “human-like” model must assign the high
probability, hence the less surprisal, to this sen-
tence. Interestingly, Frank and Bod (2011) and
Fossum and Levy (2012) inductively observed that
linguistic and psychological accuracies are posi-
tively correlated (cf. Virpioja et al., 2017), sug-
gesting that the relationship between represen-
tation and processing is transparent (Chomsky,
1965; Hale, 2001).

3 Results

3.1 Linguistic and Psychological Accuracies
Linguistic and psychological accuracies of com-
putational models are summarized in Figure 1,
where the x-axis is linguistic accuracy (negative
average surprisal) and the y-axis is psychological
accuracy (decrease in delta deviance). The accu-
racies are averaged across 100 MCCV iterations.
Points represent computational models and verti-
cal bars on the points are 95% confidence intervals
of the psychological accuracy.11 The horizontal
dashed line is χ2 = 3.84, the critical χ2-statistic at
p = 0.05 with df = 1.

First, “morphous” models were psychologically
more accurate than “amorphous” models. Nested
model comparisons via log-likelihood ratio tests
revealed that all “morphous” models were statisti-
cally significant (p < 0.01), but one of two “amor-

11Thanks to the central limit theorem, while the test statis-
tic itself is χ2-statistic, the samples of χ2-statistic follow the
Gaussian distribution, based on which 95% confidence inter-
vals can be computed.

phous” models (i.e. Letter Markov Model) did not
reached statistical significance. Second, the PCFG
was psychologically most accurate among the five
computational models: PCFG (χ2 = 14.57) >
HMM (χ2 = 13.83) > Morpheme Markov Model
(χ2 = 13.65) > Syllable Markov Model (χ2 =
12.84)< Letter Markov Model (χ2 = 3.52). Third,
the PCFG was also linguistically most accurate,
where the correlation between linguistic and psy-
chological accuracies among five computational
models was high (r = 0.81).

3.2 Control Predictors

Effects of control predictors are summarized in
Figure 2, where the x-axis is t-statistic and the y-
axis is control predictors. The t-statistics are av-
eraged across 100 MCCV iterations. Points rep-
resent computational models and horizontal bars
on the points are 95% confidence intervals of the
t-statistic. Vertical dashed lines are t = ±1.96, the
critical t-statistic at p = 0.05 with df =∞.

All control predictors except visual predictors
like squared length and number of syllables were
statistically significant (p < 0.05). The surface
frequency effects were most robustly observed
among the four control predictors: Letter Markov
Model (t = – 17.34), Syllable Markov Model (t =
– 16.71), Morpheme Markov Model (t = – 16.19),
HMM (t = – 16.49), and PCFG (t = – 16.58). Note
that surface frequency was most pronounced in
combination with the PCFG among three “mor-
phous” models, suggesting that cumulative sur-
prisal estimated by the PCFG explains unique
variances not covered by surface frequency.

4 Discussion

In summary, the results of the simulation ex-
periment demonstrated that “morphous” models
were more psychologically accurate than “amor-
phous” models, contrary to “amorphous” mod-
els of morphological processing (Baayen et al.,
2011; Milin et al., 2017). Among three compu-
tational models with morpheme units, the PCFG
was most accurate both linguistically and psycho-
logically, suggesting that morphological process-
ing tracks hierarchical syntactic structures, con-
trary to finite-state models of morphological pro-
cessing (Beesley and Karttunen, 2003; Roark and
Sproat, 2007; Virpioja et al., 2017). Interestingly,
syntactic granularity was transparently mapped to
psychological accuracy: PCFG with hierarchical
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Figure 1: Linguistic and psychological accuracies of computational models, averaged across 100 MCCV iterations.
The x-axis is linguistic accuracy (negative average surprisal), while the y-axis is psychological accuracy (decrease
in delta deviance). Points represent computational models. Vertical bars on the points are 95% confidence intervals
of the psychological accuracy. The horizontal dashed line is χ2 = 3.84, the critical χ2-statistic at p = 0.05 with df
= 1. All computational models except Letter Markov Model were statistically significant (p < 0.01).

structures was more accurate than HMM with POS
tags but no hierarchical structures, which in turn
was more accurate than Markov Model with nei-
ther hierarchical structures nor POS tags, meaning
that hierarchical structures and POS tags made in-
dependent contributions for predicting human RTs
in visual word recognition. In addition, given
that the cumulative surprisal was computed by
the PCFG via a probabilistic Earley parser (Ear-
ley, 1970; Stolcke, 1995), a top-down parser that
incrementally computes probabilities morpheme
by morpheme in morphologically complex words,
this result may also indicate that morphological
processing proceeds incrementally from left to
right, despite the inherently non-incremental na-
ture of visual word recognition.12

Moreover, the effects of surface frequency
and cumulative surprisal were simultaneously ob-
served, theoretically reflecting storage and com-
putation, respectively. The simultaneous effects of
surface frequency and cumulative surprisal were
not surprising under either the single-route de-
composition model of morphological processing
(Taft, 1979, 2004; Taft and Forster, 1975), where

12An anonymous reviewer insightfully pointed out that the
Cohort Model (Marslen-Wilson, 1987) may harmonize with
the present idea that a probabilistic parser applied to morpho-
logical processing incrementally contracts the mental lexicon
from left to right, which remained to be investigated in future.

storage and computation are indexed at function-
ally different stages of morphological processing
(cf. Solomyak and Marantz, 2010; Fruchter and
Marantz, 2015) or the dual-route model of mor-
phological processing (Pinker and Prince, 1988;
Pinker and Ullman, 2002), where storage and
computation “routes” work in parallel. While Vir-
pioja et al. (2017) interpreted the simultaneous
effects of storage and computation as evidence
in favor of the dual-route model of morphologi-
cal processing, however, since RTs are an “end-
point” measure of morphological processing, the
two competing models cannot be conclusively dis-
sociated. In fact, Virpioja et al. (2017, p.29) ad-
mits that “As the present study used simple RTs
which provide an end-point measure of the entire
recognition process, either or both of these alter-
natives about the word recognition process could
be correct”. Remember that surface frequency
was most pronounced with the PCFG among three
“morphous” models, indicating that the PCFG can
explain unique uncorrelated variances not covered
by surface frequency. Additionally, the recent con-
clusion reached by Virpioja et al. (2017) that de-
rived words are primarily stored in the mental lex-
icon, not computed from their component mor-
phemes, does not harmonize with the simultane-
ous effects of surface frequency and cumulative
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Figure 2: Effects of control predictors, averaged across 100 MCCV iterations. The x-axis is t-statistic, while
the y-axis is control predictors. Points represent computational models. Horizontal bars on the points are 95%
confidence intervals of the t-statistic. Vertical dashed lines are t = ±1.96, the critical t-statistic at p = 0.05 with df
=∞. All control predictors except visual predictors were statistically significant (p < 0.05).

surprisal, either.
Nevertheless, remember that we only sampled

bimorphemic words as the testing data. However,
as Libben (2003, 2006) pointed out, bimorphemic
words are not sufficient to distinguish hierarchi-
cal structures and linear strings, and trimorphemic
words are minimally required. In future, the com-
putational models must be evaluated against tri-
morphemic words to make sure that the results will
generalize beyond bimorphemic words.

5 Conclusion

In this paper, we performed a computational sim-
ulation experiment with human RTs in visual lex-
ical decision experiments available from the ELP
(Balota et al., 2007), a “shared task” in the mor-
phological processing literature, and evaluated
computational models with different representa-
tional assumptions via cumulative surprisal as a
linking hypothesis (Hale, 2001; Levy, 2008), in
order to investigate whether morphological pro-
cessing tracks morphemes and parses them into
hierarchical syntactic structures. Consequently,
the results of the simulation experiment demon-
strated that “morphous” models were psycholog-
ically more accurate than “amorphous” models
and, importantly, a computational model with hi-
erarchical syntactic structures, PCFG, was most
psychologically accurate among five computa-

tional models, contrary to “amorphous” (Baayen
et al., 2011) and finite-state (Beesley and Kart-
tunen, 2003) models of morphological processing.
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Abstract

Processing difficulty in online language com-
prehension has been explained in terms of sur-
prisal and entropy reduction. Although both
hypotheses have been supported by experi-
mental data, we do not fully understand their
relative contributions on processing difficulty.
To develop a better understanding, we propose
a mechanistic model of perceptual decision
making that interacts with a simulated task
environment with temporal dynamics. The
proposed model collects noisy bottom-up ev-
idence over multiple timesteps, integrates it
with its top-down expectation, and makes per-
ceptual decisions, producing processing time
data directly without relying on any linking
hypothesis. Temporal dynamics in the task en-
vironment was determined by a simple finite-
state grammar, which was designed to cre-
ate the situations where the surprisal and en-
tropy reduction hypotheses predict different
patterns. After the model was trained to max-
imize rewards, the model developed an adap-
tive policy and both surprisal and entropy ef-
fects were observed especially in a measure re-
flecting earlier processing.

1 Introduction

Over the past decades, computational models of
sentence comprehension have improved our un-
derstanding of processing difficulty arising in on-
line language comprehension. It has been discov-
ered that information-theoretic complexity metrics
can predict processing difficulty (for review, see
Hale, 2016).

The surprisal hypothesis (Hale, 2001; Levy,
2008) proposes processing difficulty of a word wk

in a context w1:k−1 is proportional to its surprisal,
− log p(wk|w1:k−1). Levy (2008) proved that sur-
prisal is equivalent to Kullback-Leibler divergence
between the probability distributions over parse

trees T before and after observing the word wk,
DKL(P (T |w1:k)‖P (T |w1:k−1)).

On the other hand, the entropy reduction hy-
pothesis (Hale, 2003) claims that processing dif-
ficulty is proportional to a non-negative amount
of entropy reduced after observing a word wk:
max(H(S|w1:k−1) −H(S|w1:k), 0) where S is a
random variable of sentences. It is not clear why
the language processing system works insensitive
to negative entropy changes.

Both hypotheses have been supported by ex-
perimental data (for surprisal, see Demberg and
Keller, 2008; Smith and Levy, 2013; for entropy
reduction, see Frank, 2013; Linzen and Jaeger,
2016). Some behavioral studies reported both ef-
fects of surprisal and entropy reduction (Linzen
and Jaeger, 2016; Lowder et al., 2018) and in such
cases, the surprisal effect was much stronger than
the entropy reduction effect.

However, we do not have comprehensive under-
standing of their relative contribution to process-
ing load. Empirically, the estimation of surprisal
and entropy values requires a language model, the
quality of which depends on many factors (e.g.,
the corpus size, the model type) (c.f., Goodkind
and Bicknell, 2018 argued the effect of surprisal
was robust when the measures were estimated us-
ing a wide range of language models with different
qualities). Also surprisal and entropy values tend
to be highly correlated in natural languages, which
makes it difficult to tease apart their relative roles
in online language processing.

To avoid these empirical problems, we intro-
duce a simple experimental paradigm, which com-
bines two well-established paradigms: saccade
target selection (OReilly et al., 2013) and artificial
language paradigm (Harrison et al., 2006), both
of which have been used to answer related ques-
tions. In the artificial language paradigm, we de-
sign a language such that it has some distributional
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properties of interest. For example, we can de-
sign a grammar in which the surprisal and the en-
tropy reduction hypotheses make different predic-
tions. For example, Linzen and Jaeger (2014) used
a simple finite-state grammar to create such sit-
uation and discussed alternative accounts of pro-
cessing difficulty. In the present study, we used a
variant of their grammar (see Figure 3). Due to the
simplicity of the grammar, entropy and entropy re-
duction measures are perfectly correlated. When
we discuss the effect of those measures, we will
refer to it as the entropy effect but we are neutral
in whether it should be interpreted as the effect of
entropy or the effect of entropy reduction; we re-
serve the question for future work.

Perception module (HMM; Section 3)
(equipped with a perfect language model)

Task environment (Section 2)

Decision making module (A2C; Section 4)

Agent

Action 
(eye-movement)

Figure 1: Model architecture. The model consists of
two modules: perception module and decision making
module. Equipped with a perfect language model, the
perception module (implemented as a Hidden Markov
Model) integrates noisy inputs from environment with
its top-down expectation. The decision making module
(implemented as a neural network with the Actor Critic
architecture) makes an action based on the output of the
perception module.

To develop a better understanding, we propose
a mechanistic model of perceptual decision mak-
ing and investigate its behavior in a simulated task
environment with temporal dynamics, focusing on
the effects of surprisal and/or entropy. Figure 1
presents the architecture of the model and how
it interacts with the task environment. It con-
sists of two components: the perception module
at the bottom collects noisy bottom-up evidence
from the task environment and updates its state
(expressed in [posterior] probability distributions).
The decision making module at the top monitors
the state of the perception module and makes an
action (i.e., decision), which will update the state
of the task environment. The design of the percep-
tion module was inspired by Bicknell and Levy
(2010) that investigated a related research ques-
tion. Unlike their model, we used reinforcement

learning to let the agent develop an optimal policy.
The main contribution of the present study is

that we propose a full cognitive architecture that
performs perceptual decision making, which we
argue shares a core computational problem of un-
certainty management with online language com-
prehension tasks (e.g., self-paced reading) and in-
vestigate the optimal behavior by exploring an un-
restricted decision policy space.

In the following sections, we will present each
component in Figure 1 in detail. In Discussion, we
conclude.

2 Task Environment

+ + + + +40+ +

warning
(400ms)

warning
(400ms)

feedback
(1000ms)

target
(350ms)

target
(350ms)

wait until 
return

wait until 
return

score

trial score = C - TrialRT (ms)

visual feedback (explosion animation) 
when a mole is fixated

Figure 2: Task environment. The events occurring at
two sample trials are shown. The agent is asked to
“look at” the target (color dot) as quickly and accu-
rately as possible.

We created a simulated saccade target selection
task environment (e.g., OReilly et al., 2013) (see
Figure 2). In each trial, a target appears at one
of 7 positions and the agent is asked to “look at”
the target as quickly and accurately as possible and
look back at the center. The returning fixation ter-
minates the trial and initiates the next trial.

In the simulated task environment, each of 7
locations was represented as an angle (in radian)
in a circular space [0, 2π) and associated with a
symbol. The center location was associated with
an empty symbol ε, representing the absence of
a target. A selection of a symbol was treated as
the fixation on its associated location.1 Following
OReilly et al. (2013), we measured the number of
timesteps that the agent took to select the target
(target arrival) and the number of timesteps that
the agent took to make the first “meaningful” de-
cision, by which we mean the first selection of a
non-center location which may or may not be cor-
rect (first saccade onset).2

The locations of the targets changed follow-
ing a simple finite-state grammar (see Figure 3 so

1For modeling convenience, we ignored eye-movement
details (e.g., the minimal duration of a saccade).

2The proposed model selects a symbol at every timestep.
When the model selects the symbol that it previously se-
lected, we treat it as a continuation of the previous fixation.
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Sample space Description
V = {a, b, c, d, e, f, g} the set of input symbols
U = {ε} the set of the empty symbol
W = [0, 2π) a circular space of angles
S = (V × U) ∪ (U × V) the set of states
X = V ∪ U the set of input symbols
Y =W ∪ U the set of observations

Table 1: Sample spaces

were partially predictable. We were interested in
whether the onset and arrival measures are depen-
dent on the amount of uncertainty.

3 Agent: Perception Module

For discussion, we introduce some notational con-
ventions. We use the uppercase (e.g., X), low-
ercase (e.g., x), and calligraphic font (e.g., X ) to
denote a random variable, a particular sample, and
its sample space. We use the superscript to denote
the position of a symbol in a sequence of symbols
and the subscript to denote a particular element in
a sample space.

Let S, X , and Y be a discrete random variable
of states, a discrete random variable of input sym-
bols, and a mixed random variable of observations.
A probability distribution over states P (S) will be
referred to as a “parser state”, which should be dis-
tinguished from simple states. The sample spaces
of those variables are S, X , and Y , respectively
(see Table 1).

The perception module was implemented as a
Hidden Markov Model (HMM), where the hidden
variable S(k) represents states after processing the
k-th symbol x∗(k) in a sequence of symbols, as-
suming the agent is equipped with a perfect lan-
guage model. X(k) representing symbol identities
is conditioned on S(k). Y (k) represents the obser-
vations of the input symbol (i.e., a particular loca-
tion in the task environment [see Figure 4]).

3.1 Language Model

Let us begin with the agent’s language model. We
used a Markov chain (See Figure 3) to implement
a language model but other types of models can
be used if they can emulate the environmental dy-
namics. For convenience, unique bigrams were
used as states: s(k) = x(k)x(k+1). In this sim-
ple language, each state s(k) uniquely specifies
the present input symbol x(k); p(xj |si) = 1 if
si = xjxk and 0 otherwise. An example sequence
of two sentences is c ε f ε | a ε d εwhere | indicates
a hidden sentence boundary; the underlying state

εa

1/3 εb

1/3

εc
1/3

aε

bε

cε

εd

1/4

εe
1/4

εf

1/4

1/4

3/4

εg

1/4

3/4

1/4

dε

eε

fε

gε

Figure 3: Grammar G specifies probabilistic transitions
from a state si to another state sj between symbols.
The transition probability p(sj |si) is shown on an edge
from node i to node j. The edges with no labels have
the transition probability of 1.

change is as follows: cε-εf -fε-εa-aε-εd-dε-εb.
Some distributional information of the language

is given in Table 2. In the present study, we will
focus on three conditions where f is presented in
different contexts aε, bε, and cε at which surprisal
and entropy reduction hypotheses predict different
patterns.3 We will refer to the three conditions as
HiE/HiS (HighEntropy/HighSurprisal), LoE/HiS,
and LoE/LoS. Let RT(·) be a decision making
time (in onset or arrival) at a certain condition.
The surprisal hypothesis predicts: RT(LoE/LoS)
< RT(LoE/HiS) = RT(HiE/HiS). The entropy
reduction hypothesis predicts: RT(LoE/LoS) =
RT(LoE/HiS) < RT(HiE/HiS). If both surprisal
and entropy (reduction) have unique contributions
to processing load, assuming the surprisal effect
is stronger than the entropy effect, we expect:
RT(LoE/LoS) < RT(LoE/HiS) < RT(HiE/HiS).

3.2 Mapping between Symbols and
Observations

Figure 4 presents the mapping of symbols to the
locations on the task environment. The empty
symbol, representing the absence of target, is
mapped to the center location. The other symbols

3The target g in the same three contexts was designed to
be a mirror case of f and introduced (1) for counterbalancing
and (2) to increase the number of data points in the planned
human experiment. However, due to the difference in their
closest neighbors, processing f and g in the same three con-
texts can be different.
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context target ptarg surprisal entropy
aε d, e 0.083 1.386 1.386
aε f , g 0.417 1.386 1.386
bε f 0.417 1.386 0.562
bε g 0.417 0.288 0.562
cε f 0.417 0.288 0.562
cε g 0.417 1.386 0.562

Table 2: Distributional information for unique
context-target combinations. ptarg represents the
unigram target probability. Entropy measures
the amount of uncertainty after processing context
but before receiving target: H(P (X|context)) =
−∑x p(x|context) log p(x|context). Surprisal and en-
tropy were calculated with e as base.

ε

a

b

c
d

e

f

g

Figure 4: Screen configuration. Each of 7 symbols (a
- g) is mapped to a unique location on the ring. At the
center, there is a fixation cross, corresponding to a null
symbol ε.

in V are mapped to 7 equally-distributed real num-
bers inW via a bijective function A; the image of
V is {(2π)(i/7) + j|i ∈ {0, · · · , 6}} where j can
take any arbitrary number in [0, 2π). In the fol-
lowing example, we consider a simple mapping:
A(b) = 0, A(c) = (2π)(1/7), A(d) = (2π)(2/7),
A(e) = (2π)(3/7), A(f) = (2π)(4/7), A(g) =
(2π)(5/7), A(a) = (2π)(6/7).

3.3 Noisy Input Channel

Let y∗ be the noise-free observation of the target
symbol x∗. Note that x∗ is chosen by the task envi-
ronment dynamics. We assume that the perception
module samples an observation y via a noisy input
channel at every timestep. The conditional proba-
bility of y given x, p(y|x), is presented in Table 3.
Observations y’s over multiple timesteps are as-
sumed to be independent from each other given
target x∗.4 We will use the same conditional prob-

4The likelihood of observation y is also conditioned on
the present fixation location, which is modeled as the sym-
bol chosen by the decision making module at the previous
timestep (see Section 4). The likelihood function in the target
present condition (see Table 3) assumes that the present fix-
ation is on the center, which is true at the beginning of each
target-present trial; the measure of first saccade onset is accu-

ability distribution when the module updates the
posterior probability of symbol x given noisy ob-
servation y. Parameters α and β are false positive
and false negative rates, respectively. In the false
positive case, we assume every value in the circu-
lar space W is equally likely. In the true positive
case (i.e., x∗ ∈ V , we assume p(y|x∗) is higher as
y is closer to y∗ = A(x∗). This intuition is im-
plemented by introducing a von Mises distribution
(with parameters µ and κ), which is a Gaussian-
like distribution applied to a circular space.

sample a location sample
on the ring the center
y ∈ W y ∈ U

target present
(x ∈ V) (1− β)F (y;µ = A(x), κ) β

target absent
(x ∈ U ) α/(2π) 1− α

Table 3: p(y|x), a conditional probability of a noisy
sample y given a symbol x where α and β are the rates
of false positive and false negative, F is the probabil-
ity density function of the von Mises distribution with
location and scale parameters µ and κ. As κ increases,
larger probability mass is placed near the mean µ

3.4 Noisy Memory

In addition to noisy input, we consider noise in
memory. More specifically, we assume the mem-
ory of the parser state is noisy such that a state
s can be replaced with another state s′. Noisy
memory is implemented by applying the confu-
sion matrix to the parser state P (S): P (S′) =
P (S) · P′S→S′ where P (S) is a row vector of
probabilities over possible states and P′S→S′ is the
transition probability matrix in which the (i, j)-th
component represents p(s′j |si).

We consider three types of confusion: (1: rand)
purely random noise which allows every transition
si → sj for all pairs of i and j, (2) similarity-
based interference allows transitions between two
states similar to each other. Two types of simi-
larities were considered. (2a: sim1) symbol-type
similarity; e.g., a, b, c are similar because they oc-
cur at the same position in a sequence (i.e., as the
first word of a two-word sentence) so aε can be
recalled as aε, bε, or cε. (2b: sim2) transposition

rate. However, the likelihood function would not be ideal for
modeling the belief update from noisy observations after the
first saccade to a non-target location. Although not accurate,
the measure of target arrival can still be informative because
it contains information about whether the target was chosen
at the first try or not.
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+ symbol-type similarity; for example, aε can be
confused as εa, εb, and εc.

More specifically, we consider p(sj |si) =
(1 − ηnoise)δij + ηnoise{ηrand prand(sj |si) +
(1 − ηrand)((1 − ηtrans) psim1(sj |si) +
ηtranspsim2(sj |si))}; ptype(sj |si) (where type
∈ {rand, sim1, sim2}) was set to the reciprocal
of the number of transitions corresponding to
the type of confusion if si → sj is allowed
and 0 otherwise. We aggregate the conditional
probabilities into a transition probability matrix
P′S→S′ such that pi,j = p(sj |si). In the present
study, ηnoise = 0.001, ηrand = 0.1, ηtrans = 0.1.

3.5 Belief Update

The module updates posterior probabilities of tar-
get locations over multiple timesteps by accumu-
lating bottom-up noisy evidence (likelihood) and
integrating it with top-down expectation (prior
probabilities) p(x(k)|s(k−1,Tk−1)) where Tk is the
last timestep at the previous trial k − 1. More de-
tailed processes are presented in the below.

Step 1: Each trial begins with the instan-
taneous update of input symbol from x∗(k−1)

to x∗(k). The model uses the last parser state
P (S(k−1,Tk−1)) to set log priors forX(k) and S(k).
LPS(k) = log{P (S(k−1,Tk−1)) ·P′S→S′ ·PS→S}
(P′S→S′ adds noise to the past parser state and
PS→S [from the language model] uses the noisy
past parser state to predict the following parser
state); LPX(k) = log{P (Sk) ·PS→X}.

Step 2: At every timestep t, the mod-
ule collects a noisy observation y(k,t)

and updates log-likelihoods of X(k) and
S(k): the i-th component of a row vec-
tor LLX(k, t) is

∑t
t′=1 log p(y

(k,t′)|xi);
LLS(k, t) = PS→X exp{LLX(k, t)}>.

Step 3. Posteriors of Xk and Sk given y
(1:t)
k

are as follows: P (X(k)|y(k,1:t)) = σ(LLX(k, t) +
LPX(k)); P (Sk|y(k,1:t)) = σ(LLS(k, t)+LPS(k))
where σ is the standard softmax function.

Step 2 and Step 3 are iterated until (1) the deci-
sion making module (see the next section) selects
the target symbol x∗ correctly or (2) the maximum
number of timesteps (= 100) has passed.

3.6 The Module Behavior

We created multiple instances of the perception
module by setting some module parameters to dif-
ferent values (see Table 4) and investigated how
the posterior probabilities changed in the three

conditions of our interest. Each of 3 modules pro-
cessed 200 blocks of 8 different sentence types. In
each block, the presentation order of the sentences
was randomized. For each sentence, the model
processed each symbol over 50 timesteps.

Module memory noise ηnoise perception noise (1/κ)
M1 0.001 1
M2 0.001 1/3
M3 0.2 1

Table 4: Different module settings. ηnoise determines
the amount of memory noise while 1/κ determines the
amount of input noise. We fixed α (false negative rate)
and β (false positive rate) to 0.05 in this study.
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Figure 5: Plots of target posterior probabilities in dif-
ferent conditions. Each ribbon presents mean ± one
standard error calculated from 200 trials.

Figure 5 presents the target posterior probability
change as the modules processed f in three dif-
ferent contexts aε (HiE/HiS), bε (LoE/HiS), and
cε (LoE/LoS). The effect of surprisal is clear in
all three modules. This is expected from our be-
lief update process. When a new symbol (i.e., f )
is presented, the perception module uses the last
parser state to reset log priors, which determine
different starting points before evidence integra-
tion. When the race begins, the symbol candidate
with a low surprisal value is many steps ahead of
its competitors with high surprisal values.

On the other hand, the effect of entropy (re-
duction) was weakly suggested only in Module 1
(see panel A in Figure 5). The target posterior
probability increased slightly faster in context bε
(LoE/HiS) than in context cε (HiE/HiS).

Based on the observed patterns, we chose Mod-
ule1 as the perception module of the agent.

4 Agent: Decision Making Module

Instead of searching a restricted policy space (e.g.,
static decision boundary such as maxx p(x) > .9,
or as in Bicknell and Levy, 2010), we use rein-
forcement learning to search a huge policy space
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with no restriction to discover a (near-)optimal de-
cision policy in the task environment.

4.1 Advantageous Actor-Critic

Observation (14)
(P(S), P(X))

Shared representation (20)
(ReLU)

Value (1)
(linear)

Actions (8)
(softmax)

Figure 6: Actor-critic architecture of the decision mak-
ing module. The number in parentheses indicates the
number of units in each layer.

The decision making module has an Advanta-
geous Actor-Critic (A2C) architecture (c.f., for the
asynchronous version A3C, see Mnih et al., 2016)
(see Figure 6) in which each of 8 actions was
mapped to a unique location in the task environ-
ment. Let st be the state of the perception module
at timestep t. Let V (st) and π(ai|st) be the value
output and the probability of choosing an action ai
given input st. For the input, an action at is sam-
pled from the action probability distribution. The
advantage of the action is defined as follows:

Adv(st, at; θ) =
k−1∑

i=0

γirt+i+γ
kV (st+k; θ)−V (st; θ)

where γ(= 0.99) is the discount factor for future
rewards, rt is the acquired reward at timestep t
by making an action at, and θ is the vector of the
model parameters. The module makes actions un-
der the current policy over k(= 5) steps and uses
the rewards collected over k steps to improve the
value estimate.

4.2 Reward in the Task
We constructed 4 instances of the task environ-
ment in which the perception module (Module1,
see Table 4) was exposed to different sequences of
symbols (that were generated by the same gram-
mar). The decision making module interacted with
all four environments simultaneously to collect tu-
ples (state, action, reward, next state). This is
motivated to collect relatively independent train-
ing samples. At every step, the perception mod-

ule collects a new observation and updates its pos-
terior probabilities over symbols and over states.
The decision making module takes both distribu-
tions as input and outputs its value and an ac-
tion sampled from the action probability distri-
bution. When the action chosen at timestep t(≤
100) corresponds to the target symbol, it termi-
nates the present trial and the new target sym-
bol is presented in the task environment. In this
case, the module receives a reward (100− t)/100;
faster responses are rewarded more than slower re-
sponses. If the module selects a non-target sym-
bol (which is different from its previous selection),
the model receives a penalty (= -1). If the model
selects the same wrong symbol as in the previ-
ous timestep (i.e., at = at−1), the model is not
penalized; the reward is 0 in this case. For ex-
ample, let us suppose the decision making mod-
ule made a sequence of choices ε, ε, a, a, ε, b, ε, c
when the target symbol was c, assuming the previ-
ous trial ended at the selection of the previous tar-
get ε. Then, the module would receive a sequence
of rewards 0, 0,−1, 0,−1, 0, (100 − 8)/100. If
the model fails to choose the target symbol for
100 timesteps, the task environment is updated to
present a new target symbol. Thus, the decision
making module has an option not to select any new
symbol; technically, the model can keep choos-
ing the previous target symbol over 100 timesteps.
This suboptimal policy is better than choosing a
non-target symbol; while the maximum reward per
trial is 0.99 (if the model chooses the correct tar-
get at the first timestep after the task environment
update), the model is given -1 for a single wrong
selection.

4.3 Training
Over the course of training, the model parameters
are updated to minimize the following loss func-
tion:

L(st, at; θ) =− log π(at|st, θ)Adv(st, at; θ)

− λHH(st)

+ λCAdv(st, at; θ)
2

where H(st) is the entropy of action probabili-
ties π(a|st). Hyperparameter λH determines the
strength of entropy regularization, which is in-
tended to encourage the module to explore the pol-
icy space without converging to a suboptimal pol-
icy too early. In our case, the model developed
suboptimal policies when λH was fixed at a small
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value from the beginning; the model never chose
target symbols d and e that have lower unigram
frequencies than f and g. When d and e were pre-
sented in context aε, the module waited until the
trial ended after the deadline (100 timesteps) with-
out choosing any non-center location.

We used the ADAM optimizer (Kingma and Ba,
2014) (learning rate = 0.0003) to update the de-
cision making module’s parameters. The coeffi-
cient of value prediction cost (λC) was fixed at 0.5
but the coefficient of entropy regularization (λH )
started at 0.01 and reduced to 0.001 after 400, 000
timesteps and 0.0001 after 1, 000, 000 timesteps.
We stopped training after 1, 200, 000 timesteps af-
ter observing the performance did not improve.
Figure 7 presents the average reward acquired on
a randomly generated grammatical sequence of 10
symbols during test.5
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Figure 7: Trajectory of average reward acquired during
model evaluation.

4.4 The Model Behaviors
The model consisted of the perception module
(Module 1) and the trained decision making mod-
ule. It was given a long sequence of symbols,
a concatenation of 200 blocks of 12 sentences
(of 8 sentence types); bεgε and cεfε were three
times more frequent than other sentence types (see
Figure 3). We focus on the model’s behaviors
when f was presented in three different contexts
aε (HiE/HiS), bε (LoE/HiS), and cε (LoE/LoS).

Figure 8 presents the distributions of log(onset)
and log(arrival) as well as their means, standard
errors (thick lines), and standard deviations (thin
lines), suggesting the effects of both surprisal and
entropy. The entropy effect was more salient in
log(onset), which reflects the perception module’s
states earlier in processing.

5We trained three instances of the model with different
random seeds. Their behaviors were not identical but sim-
ilar. In the text, we report the behavior of the best model
that achieved the highest reward over 2400 four-symbol sen-
tences because we are interested in the optimal agent’s be-
havior. When the trials with a trivial target ε were excluded,
the best model achieved average reward of 0.591. Other two
models acquired average rewards of 0.566 and 0.485.
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Figure 8: Histograms of (a) log onset time and (b) log
arrival time in timesteps. The mean ± one standard
error (thick line) or one standard deviation (thin line)
in each condition was presented at the top.
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Figure 9: Timecourses of target selection proportions.

Figure 9 presents the proportion of target selec-
tion as a function of timesteps and contexts.6 Both
surprisal and entropy effects are clear.
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Figure 10: Histograms of entropy values of posterior
probability distributions at (a) onset and (b) arrival. The
mean ± one standard error (thick line) or one standard
deviation (thin line) is presented for each condition at
the top.

Figure 10 presents the distribution of the en-
tropy values of X in the perception module when
the decision making module chose the first non-
center location (onset) and the target location (ar-

6Different trials ended at different timesteps, typically
much earlier than the maximum timesteps (= 100). For the
purpose of calculating the proportion, we extended the final
choice to the maximum timestep; for example, if the last ac-
tion (i.e., selection of symbol f ) was made at timestep 30 in
a trial, we treated the module chose the same symbol for the
next 70 timesteps.
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rival). Distributions in the conditions HiE/HiS and
LoE/HiS are largely overlapped but can be distin-
guished. Note that in all three conditions, the ideal
target posterior probability is 1 and the entropy is
0. However, the decision making module made
decisions before the perception module developed
its belief on the target to the ideal level. This was
true especially in HiE/HiS and LoE/HiS condi-
tions. This is because the target posterior probabil-
ity increased slowly either because the target has
many competitors (HiE/HiS) or because the target
has a very strong competitor (LoE/HiS). Instead
of waiting until the target posterior probability in-
creased enough, the module seemed to take a more
risky approach (i.e., making a choice in a more un-
certain situation) to obtain more rewards. It makes
sense that the model took a safer approach for the
target f in the LoS context cε given that symbol f
in the LoS context was three times more frequent
than f in each HiS context. Developing a risky
policy for such case will be harmful.

5 Discussion

In this study, we introduced a simple task that
combines the saccade target selection task (e.g.,
OReilly et al., 2013) with the artificial language
paradigm (e.g., Harrison et al., 2006), both of
which have been used to investigate how the hu-
man cognitive system deals with uncertainty. In-
spired by Linzen and Jaeger (2014), we designed
a simple artificial language in which the surprisal
hypothesis and the entropy reduction hypothesis
predict different patterns. When a perceptual de-
cision making model was trained to maximize re-
wards in the simulated task environment, both sur-
prisal and entropy effects were observed in the
model’s behavior; consistent with the literature
(Linzen and Jaeger, 2016; Lowder et al., 2018),
the surprisal effect was stronger than the entropy
effect.

The model developed a flexible decision pol-
icy such that it made more risky decisions in
the HiE/HiS and LoE/HiS conditions than in the
LoE/LoS condition. It was interpreted as the
model pursuing a good balance between speed and
accuracy because the model could obtain higher
rewards from faster responses. The investigation
of decision policy reveals the adaptive nature of
the system which is not clear from pure rational
models.

Our modeling study was intended to explore

design-related issues and predict results in human
eye-tracking experiments that we plan to run. In
human experiments, participants need to learn the
grammar hidden in a sequence of symbols. To
make learning easier, we chose a simple gram-
mar which made it hard to interpret the effect of
entropy; it could be the effect of entropy or the
effect of entropy reduction. However, the pro-
posed model is general enough to cover more com-
plex grammars and diverse situations (e.g., self-
paced reading). We chose the Hidden Markov
Model and the A2C architecture for the perception
the decision making modules mainly for model-
ing convenience. The HMM can be replaced with
a more elaborated neural language model when
dealing with more complex grammars. The em-
phasis should be given to our architectual choice.
The addition of the decision making module that
has the ability to develop a policy on its own pro-
vides the system to control the amount of uncer-
tainty flexibly in response to the task situations.

Bicknell and Levy (2010) took the same ap-
proach similar to explain reading eye movement
patterns, which influenced our work. Our work
is different from theirs in that (1) we considered
noisy memory more directly and (2) we used re-
inforcement learning to let the model discover a
good decision policy; we believe both additions
can lead us to interesting research questions.
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Abstract

Cues to linguistic categories are distributed
across the speech signal. Optimal categoriza-
tion thus requires that listeners maintain gradi-
ent representations of incoming input in order
to integrate that information with later cues.
There is now evidence that listeners can and
do integrate cues that occur far apart in time.
Computational models of this integration have
however been lacking. We take a first step at
addressing this gap by mathematically formal-
izing four models of how listeners may main-
tain and use cue information during spoken
language understanding and test them on two
perception experiments. In one experiment,
we find support for rational integration of cues
at long distances. In a second, more memory
and attention-taxing experiment, we find evi-
dence in favor of a switching model that avoids
maintaining detailed representations of cues in
memory. These results are a first step in under-
standing what kinds of mechanisms listeners
use for cue integration under different memory
and attentional constraints.

1 Introduction

Language is a fast, temporally unfolding signal.
Humans must quickly compress large amounts
of information into abstract linguistic representa-
tions and meanings that contain more manageable
amounts of information. However, cues to linguis-
tic categories often do not temporallly co-occur,
but are distributed quite broadly across the sig-
nal. Rational information integration thus requires
maintenance of gradient subcategorical informa-
tion so as to integrate cues that occur at differ-
ent points in time. For example, one of the pri-
mary cues to the voicing of a syllable-final stop
consonant in English is the duration of the preced-
ing vowel (Klatt, 1976). Thus, in order to obtain
a good estimate of the voicing of a syllable-final
stop, listeners must retain some subcategorical

information about the preceding vowel in mem-
ory. This is typical across languages and occurs
at multiple timescales: cues to sound categories
can come not only from proximate acoustic prop-
erties, but also from, e.g., later semantic context
that could potentially occur an unlimited distance
away from the target. This poses a memory chal-
lenge for language comprehenders: how can one
possibly maintain subcategorical information for
later use when such maintenance should overload
working memory?

This challenge has motivated theories of lan-
guage processing that contend that listeners com-
press input into abstract representations as quickly
as possible and discard all gradient information
after a categorical perceptual decision has been
reached (Just and Carpenter, 1980; Christiansen
and Chater, 2016). According to these accounts,
listeners cannot maintain gradient sub-categorical
information for cue integration at any significant
timescale, at certainly not beyond word bound-
aries. However, a growing body of literature has
suggested that listeners are in principle capable of
maintaining subcategorical representations (Mc-
Murray et al., 2009), including at timescales be-
yond the word boundary (Connine et al., 1991;
Brown-Schmidt and Toscano, 2017; Gwilliams
et al., 2018). For example, Connine et al. (1991)
exposed participants to sentences that contained
two cues about a target word, “tent” or “dent” in
the sentence. The first cue was the voice-onset
time (VOT) of the first sound in the word, which
was varied to form a continuum from more /t/-like
to more /d/-like. The second cue was a subse-
quent word that contextually biased toward either
the “tent” interpretation (e.g., “campground”) or
the “dent” interpretation (e.g., “teapot”). Partici-
pants heard sentences like “When the ?ent Sue had
found in the [campground/teapot]...”, and were
asked to categorize whether they heard the word
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“tent” or “dent” in the sentence. They found that
participants’ categorizations were influenced both
by the VOT of the sound and by subsequent con-
text, suggesting that listeners maintained a gradi-
ent representation of the initial sound for later use
in cue integration and categorization. Subsequent
studies have confirmed that listeners can maintain
subcategorical representations well beyond word
boundaries (Szostak and Pitt, 2013; Bushong and
Jaeger, 2017).

Despite recent interest in this phenomenon,
to date there has been no comprehensive effort
to spell out and quantitatively compare different
models of long-distance cue integration under dif-
ferent memory/information constraints. This pa-
per is a first attempt to explore this space, driven
largely by previous conceptual proposals. We con-
sider four different models that vary in the extent
to which they maintain sub-categorical informa-
tion and utilize multiple time-distant cues. Two
of the models maintain subcategorical information
about cues over time, and two do not.

These four models make distinct quantitative
and qualitative predictions about how human cat-
egorization judgments should be affected by two
cues. We first present the mathematical models
along with their predictions. We then evaluate
the models against human data from two behav-
ioral experiments. In these experiments, partici-
pants hear sentences like those in Connine et al.
paradigm. We manipulated the same two types of
cues as in the Connine et al. paradigm (i.e., VOT
and subsequent semantic context).

2 Models

We first describe how an ideal observer would cat-
egorize stimuli based on the first cue alone (VOT).
Then we describe the four potential models of cue
integration, along with their predictions. Figures 2
and 3 illustrate these predictions. Predictions are
shown with regard to log-odds (of a “t”-response),
since the predictions of all four models look (mis-
leadingly) similar in proportion space. The predic-
tion plots are meant as qualitative demonstrations.
For example, the predicted slope of the VOT ef-
fect depends on listeners’ beliefs about the means
and variances of the /t/ and /d/ categories along
the VOT continuum. Similarly, the specific mag-
nitude of the context effect depends on the bias (or
information) provided by context and the percep-
tual uncertainty about the VOT cue. Regardless
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Figure 1: Linear (A) vs. quadratic (B) effect of VOT
on log-odds of “t”-responses.

20 40 60 80
VOT

P
re

di
ct

ed
 /t

/ r
es

po
ns

e
(lo
g-
od
ds
)

A

20 40 60 80

Subsequent Context
Tent-biasing
Dent-biasing

B

20 40 60 80

C

20 40 60 80

D

Figure 2: Qualitative predictions of each model in
log-odds of “t”-responses (for a context bias of 0.95).
(A): ideal integration model, (B): categorize-&-discard
model, (C): ambiguity-only model, (D): categorize-
discard-&-switch model. Shown predictions assume a
quadratic effect of VOT (but predicted context effects
are identical even if VOT has a linear effect).

of these details, however, some qualitative differ-
ences in the context effect emerge across the four
different models (see Figure 3). It is these pre-
dicted shapes of the context effect that we later
compare against human responses from perception
experiments.

For all predictions, we assume Luce’s choice
rule for the link between models’ posterior prob-
ability of /t/ and the predicted decision to re-
spond “t” or “d”—i.e., pmodel(respond “t”) =
pmodel(/t/|context, V OT )

2.1 Ideal Observers: Predicting VOT Effects

Before we introduce our models of cue integra-
tion, we first spell out an ideal observer’s predic-
tions for the effect of VOT in the absence of any

63



Figure 3: Predicted context effect (difference be-
tween blue and red line in Figure 3) for different pos-
sible context biases. (A): ideal integration model,
(B): categorize-&-discard model, (C): ambiguity-
only model, (D): categorize-discard-&-switch model.
Dashed line represents 0.

second cue. If two Gaussian categories (/t/ and /d/)
along VOT have equal variance, an ideal observer
will exhibit linear effects of VOT on the log-odds
of “t”-responses (Figure 1). However, it is well
established that voicing contrasts (including /t/ vs.
/d/) exhibit unequal variances along the VOT con-
tinuum (Lisker and Abramson, 1967). A stan-
dard ideal-observer model thus predicts quadratic
effects of VOT on the log-odds of “t”-responses.
We thus will visualize all of our model predictions
with an assumed quadratic effect of VOT. Next,
we turn to the four models of cue integration. We
emphasize, however, that the predicted effect of
context—the effect we test below—does not de-
pend on this assumption.

2.2 Ideal Integration
The ideal integration model holds that listen-
ers maintain subcategorical information about the
temporally first cue (here, VOT) in memory for
subsequent integration with a later cue (here, con-
text). Note that we use the term ’ideal’ in the sense
of rational cue integration frameworks proposed
across the literature (Ernst and Banks, 2002).
These normative models, like the ideal integra-
tion model, provide an optimal baseline against
which to compare human behavior. The ideal
integration model always maintains subcategor-
ical (gradient) information about VOT because
optimal categorization requires access to at least
P (category|V OT ) (or richer information about

VOT) during integration with context. Specifi-
cally, ideal integration predicts additive effects of
the two cues on the log-odds of categorization
(Bicknell et al., under review).

If humans have no memory constraints and per-
fectly integrate all cues available to them, their
behavior should resemble predictions of the ideal
observer; that is, “t”-responses should be condi-
tioned on both VOT and context:

pideal(respond “t”) = p(/t/|V OT, context) (1)

We can apply Bayes’ Theorem to arrive at the
following:

p(/t/|V OT, context) =
p(V OT |context, /t/)p(context, /t/)

p(V OT, context)
=

p(V OT |context, /t/)p(/t/|context)
p(V OT |context) (2)

Under the plausible assumption that VOT and
context are conditionally independent (as in Bick-
nell et al., under review)1:

pideal(respond “t”) ∝ p(V OT |/t/)p(/t/|context)
(3)

As shown in Figure 2A and 3A, the ideal inte-
gration model predicts additive effects of VOT and
subsequent context in log-odds space.

2.3 Ambiguity-Only
In contrast to the ideal integration model, the
ambiguity-only model stores information about
VOT to the extent to which VOT is perceptually
ambiguous: the more ambiguous VOT is, the more
likely listeners should be to maintain information
about VOT for subsequent integration with con-
text. The ambiguity-only hypothesis—first pro-
posed by Connine et al. (1991)—thus sees main-
tenance of subcategorical information as a special
case: if the signal is relatively clear then listen-
ers immediately categorize and discard low-level
information; only when the perceptual input is
ambiguous is information about it maintained in
memory so as to facilitate robust integration with

1In our descriptions of the remaining models, we will use
p(/t/|V OT, context) and p(/t/|V OT ) as shorthand rather
than fully expanding them using Bayes’ Theorem as in this
initial example.

64



subsequent cues. This can be seen as serving
memory economy (for related proposals, see also
Dahan, 2010).

There are several ways of operationalizing the
idea that information about VOT is only main-
tained if VOT is perceptually ambiguous. Here,
we evaluate a gradient version of this hypothesis:
with increasingly unambiguous VOT evidence—
i.e., for p(/t/|V OT ) closer to 0 or 1—, listen-
ers are assumed to be less likely to maintain gra-
dient representations of VOT to integrate with
later context, instead categorizing on the basis of
VOT alone. As VOT becomes more ambiguous—
p(/t/|V OT ) closer to 0.5—, listeners are as-
sumed to be more likely to maintain gradient rep-
resentations for later integration. We can quantify
the degree of perceptual ambiguity as:

λ = 2|p(/t/|V OT )− 0.5| (4)
We note that λ is determined by the perceptual

ambiguity of the stimulus and does not constitute
a free parameter for this model. We can then use λ
as a weight in a mixture model that describes the
relative probability of using VOT only or integrat-
ing VOT and context:

pambiguity(respond “t”) = λp(/t/|V OT )+
(1− λ)p(/t/|V OT, context) (5)

Intuitively, we can think of this as listeners not
maintaining gradient representations of VOT on λ
proportion of trials, and maintaining gradient rep-
resentations on the remaining proportion.

2.4 Categorize-&-Discard
The other two models we consider do not main-
tain information about VOT in memory, but rather
immediately categorize based on the first cue
and then discard all subcategorical information
about that cue. These categorize-&-discard mod-
els maximize memory economy at the cost of
integration accuracy. Categorize-discard mod-
els thus capture the influential view that pro-
longed maintenance of subcategorical information
about the speech signal is not feasible given the
bounds of the relevant memory systems (see, e.g.,
Christiansen and Chater, 2016). The most sim-
ple categorize-&-discard model categorizes based
on VOT, discards all subcategorical information
about VOT, and then never revisits the categoriza-
tion decision. As this model never considers the

second source of information (VOT), its catego-
rization accuracy will necessarily be suboptimal.
We formalize this model as simply making deci-
sions on the basis of VOT alone:

pcat discard(respond “t”) = p(/t/|V OT ) (6)

2.5 Categorize-Discard-&-Switch

The final model we consider also discards all sub-
categorical information about VOT immediately
after having used it to categorize. However, un-
like the category-discard model, the categorize-
discard-&-switch model has a mechanism to take
into account context: if context conflicts with
the initial categorization decision, the model will
change its categorization response in proportion
to the evidence from context. Concretely, if the
model initially categorizes a segment as /d/, but
later evidence from context is more consistent
with /t/, the model will switch to /t/ in propor-
tion (over trials) to how strongly context points to-
ward the alternative categorization. While the cat-
egorization accuracy achieved by the categorize-
discard-&-switch model is better than that of the
simpler categorize-&-discard model, it is still sub-
optimal (i.e., underperforms compared to the ideal
integration model).

pcat switch(respond “t”) ∝ p(/t/|V OT )+
(1− p(/t/|V OT ))p(/t/|context) (7)

Like the ambiguity-only model, w can think of
this as a cross-trial description of the outcomes
of categorization. On some proportion of trials
p(/t/|V OT ), listeners would have categorized a
stimulus as /t/ based on VOT alone. On the re-
maining trials where listeners would have made a
/d/ categorization based on VOT alone, they some-
times switch, proportional to the evidence from
context.

The categorize-discard-&-switch model is of
particular relevance in light of the recent findings
of Bicknell et al. (under review). In their com-
parison of the ideal integration model with the
ambiguity-only model, Bicknell et al. (under re-
view) found no evidence that perceptually less am-
biguous VOTs were associated with smaller ef-
fects of subsequent context. Rather, the human
data seemed to support a constant effect of subse-
quent context across the entire VOT spectrum. If

65



anything, some of the behavioral data considered
by Bicknell et al. (under review) contained numer-
ical trends towards larger effects of subsequent
context for perceptually less ambiguous VOTs. As
can be seen in Figures 2D and 3D, such a pat-
tern would be predicted by the categorize-discard-
&-switch model. In order to put the hypothesis
of ideal integration to a stronger test, it is thus
necessary to compare the ideal integration model
also against the new plausible competitor we have
identified, the categorize-discard-&-switch model.
Next, we describe the two perception experiments
that we use to model human responses.

3 Behavioral Experiments

The human data we analyze here stem from two
experiments originally reported in Bushong and
Jaeger (under review). In both experiments, partic-
ipants are exposed to sentences and have to make
categorization judgments about a target word in
the sentence. We varied a critical word in the
sentence to vary acoustically between “tent” and
“dent”, and a subsequent word in the sentence pro-
vides a contextual bias relevant to the critical tar-
get word (e.g., “campgrounds” biases towards a
“tent” interpretation over a “dent” interpretation).
The critical difference between the two experi-
ments is which words participants needed to cate-
gorize. In Experiment 1, participants always were
asked to make categorization decisions about our
critical target words, “tent” and “dent”. In Exper-
iment 2, this was only their task on half of the
trials; on the other half, they were asked to cat-
egorize a different word in the sentence that was
neither our critical target word nor the subsequent
contextually biasing word (see Figure 4). The ba-
sic conceptual difference here is that in Experi-
ment 1, it is relatively easy for participants to ide-
ally integrate cues: they always know which cue
they need to maintain a gradient representation of
(i.e., the initial sound of the target word). Experi-
ment 2 increases the memory and attentional bur-
den of maintaining gradient representations, how-
ever: now participants have several possible words
they could be asked about and thus cannot per-
fectly predict which parts of the signal will be rel-
evant for the task. We hypothesized that structure
of Experiment 2 might bias participants towards
discarding subcategorical information about the
speech input (like the categorize-&-discard and
categorize-discard-&-switch models).

 
 

“After the ?ent Sue 
had found in the 

campgrounds 
collapsed, we went 

to a hotel.” 

Press X for “tent” 
Press M for “dent” 

(48 trials) 

Press X for “tent” 
Press M for “dent” 

(24 trials) 
OR 

Press X for “hotel” 
Press M for “motel” 

(24 trials)  

Experiment 1 

Experiment 2 

Figure 4: Visualization of an example trial.

3.1 Participants
We recruited 128 native English-speaking partici-
pants from Amazon Mechanical Turk for each ex-
periment who were rewarded $3.00 for their par-
ticipation in the experiment. No participants com-
pleted both Experiment 1 and Experiment 2.

3.2 Materials
We take the paradigm from Bushong and Jaeger
(2017) as a starting point for our experiments. We
constructed 12 sentence pairs like the following:

(1) After the ?ent Sue had found in the camp-
grounds collapsed, we went to a hotel. (tent-
biasing context)

(2) After the ?ent Sue had found in the teapot was
noticed, we threw it away. (dent-biasing con-
text)

We manipulated two aspects of the sentence
stimuli. First, we acoustically manipulated the “?”
to range between /d/ and /t/ by changing the value
of its voice-onset time (VOT), the primary cue
distinguishing voiced from voiceless consonants.
Based on norming and previous experiments, we
chose to test VOT values of 10, 40, 50, 60, 70, and
85ms to cover a perceptual range from unambigu-
ous /d/ to unambiguous /t/ with ambiguous points
in between. Second, we manipulated whether
later context biased toward a /t/-interpretation, /d/-
interpretation, or neither. The onset of informative
context words were between 6-9 syllables after tar-
get word offset.

3.3 Procedure
Both experiments were split into two phases: Ex-
posure (72 trials) and Test (48 trials). The orig-
inal purpose of these experiments was to test a
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Experiment 1 Likelihood Ratio Test Bayesian Analysis
Comparison χ2 p Bayes Factor Posterior Probability
Analysis 2 vs. Analysis 1 38.78 < 0.001 3.5× 106 > 0.999

Analysis 3 vs. Analysis 2 3.76 0.15 0.001 0.001

Experiment 2 Likelihood Ratio Test Bayesian Analysis
Comparison χ2 p Bayes Factor Posterior Probability
Analysis 2 vs. Analysis 1 71.23 < 0.001 5.66× 1013 > 0.999

Analysis 3 vs. Analysis 2 40.07 < 0.001 1.9× 105 > 0.999

Analysis 3 vs. Analysis 3 control 39.27 < 0.001 6.5× 106 > 0.999

Table 1: Model comparisons for Experiments 1 and 2, both in terms of likelihood ratio tests and Bayes Factor.
Best-fitting model is bolded for each experiment.

particular relationship between exposure and test
in a between-subjects manipulation (see Bushong
and Jaeger, under review). The difference be-
tween the experimental groups is that one group
of subjects heard sentences with no subsequent
biasing context in the exposure phase, while the
other group always heard sentences with subse-
quent context. Because of this imbalance between
groups, we only analyze data from the test phase
which was identical across participants2. What is
important here is that in the test phase, all partici-
pants heard sentences that contained the full range
of our VOT manipulation (evenly split between all
values) and informative later context (split evenly
between /t/-biasing and /d/-biasing contexts). Test
sentences crossed all 6 steps of our VOT contin-
uum with the two context conditions (/t/-biasing
and /d/-biasing). All 12 combinations of VOT and
context occurred equally often, so as to allow us
to reliably estimate the effect of context across the
VOT continuum.

Participants’ task was simply to categorize
whether they heard the word “tent” or “dent” af-
ter they heard the full sentence. In Experiment
1, this task was constant across all trials. In Ex-
periment 2, on half of all trials, participants in-
stead had to categorize another word in the sen-
tence (e.g., for sentence (2) above they were asked
whether they heard “hotel” or “motel”). Figure 4
shows the structure of the two experiments.

4 Analysis

Following previous work (Bushong and Jaeger,
2017), we excluded participants whose categoriza-
tion responses were not modulated by VOT, sug-

2Additionally, not all combinations of VOT and context
were tested in the exposure phase for the group that did hear
subsequent context.

gesting that they did not understand the task. This
resulted in the exclusion of 11 participants from
Experiment 1 (8.6%) and 16 participants from Ex-
periment 2 (12.5%).

We fit mixed-effects logistic regression analy-
ses predicting the log-odds of /t/ responses in the
test phase from predictors of interest. Regressions
were fit using the lme4 package in R (Bates et al.,
2014). Each analysis contained the maximal ran-
dom effects structure that resulted in successful
model convergence. We fit four different types of
analyses to each of the two experiments in order
to assess each of the models outlined above:

Analysis 1: /t/ response ∼ VOT + VOT2.
This analysis represents the categorize-&-discard
model, where participants only categorize based
on VOT then immediately discard information
(and thus do not integrate the subsequent context
cue).

Analysis 2: /t/ response ∼ VOT + context +
VOT2. This analysis represents the ideal integra-
tion model, where participants optimally integrate
VOT and context (i.e., use both with no interac-
tion).

Analysis 3: /t/ response ∼ VOT*context +
VOT2*context. This analysis represents both the
ambiguity-only and categorize-discard-&-switch
models. Both models predict that there is
a quadratic interaction between VOT and con-
text. A negative quadratic coefficient supports the
ambiguity-only model, and a positive coefficient
supports the categorize-discard-&-switch model.

Analysis 3 control: /t/ response ∼
VOT*context + VOT2. Since both a linear
and squared interaction between VOT and context
are necessary to support the ambiguity-only
and categorize-discard-&-switch models, we fit
an additional control model with only a linear
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Figure 5: Log-odds of /t/-categorizations in Experi-
ments 1 (A) and 2 (B) by VOT and subsequent con-
text. Error bars are 95% confidence intervals over item
means.

interaction between VOT and context. Thus,
for us to conclude that the ambiguity-only or
ategorize-discard-&-switch models have support,
Analysis 3 must be a better fit compared to
Analysis 2 and Analysis 3 must be a better fit
compared to Analysis 3 control.

Note that both the ambiguity-only and
categorize-discard-&-switch models also predict
an overall smaller context effect, compared
to the ideal integration model (see Figure 3).
Additionally, the categorize-discard-&-switch
model also predicts a more shallow slope for the
VOT effect, compared to all other models (see
Figure 2). However, the test of these more specific
predictions would require precise knowledge of
listeners’ beliefs about both a) the distribution of
VOT for /t/ and /d/, and b) the exact strength of
the context cue. Since we do not have access to
this information, we instead take advantage of the
qualitative differences in predictions captured by
Analyses 1-3.

To determine which models were the best fit
for each experiment, we conducted two kinds of
model comparisons between the analyses. First,
we conducted standard likelihood ratio tests be-
tween each pair of models. We additionally de-
rived Bayes Factor (BF) and posterior probability
estimates by comparing the BICs of pairs of mod-
els (see Wagenmakers, 2007).

Table 1 shows the results for Experiments 1 and
2. The results of the likelihood ratio tests and the
Bayesian analysis support the same conclusions.

5 Results

5.1 Experiment 1

Analysis 2 (corresponding to the ideal-integration
model) was the best fit both by standard likeli-
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Figure 6: Model-predicted context effect (in log-odds)
from Analysis 3 for Experiment 1 (A) and Experiment
2 (B). Error bars are 95% confidence intervals.

hood ratio tests and Bayes Factor. Within Anal-
ysis 2, we found significant effects of z-scored
VOT (β̂ = 1.43, z = 5.72, p < 0.001), z-scored
squared VOT (β̂ = 2.43, z = 6.62, p < 0.001),
and subsequent context (β̂ = 0.8, z = 6.67, p <
0.001).

5.2 Experiment 2

Analysis 3 was the best fit to the Experiment 2
data both by standard likelihood ratio tests and
Bayes Factor. Within Analysis 3, we found ef-
fects of z-scored VOT (β̂ = 0.73, z = 2.5, p =
0.01), z-scored squared VOT (β̂ = 1.67, z =
4.873, p < 0.001), subsequent context (β̂ =
1.28, z = 9.75, p < 0.001), and an interaction be-
tween z-scored squared VOT and susbequent con-
text (β̂ = 0.23, z = 2.494, p = 0.01).

5.3 Discussion

Both experiments return clearly significant effects
of squared VOT. This is predicted by an ideal
observer model, since the /t/ and /d/ categories
have unequal variance along the VOT continuum
(Lisker and Abramson, 1967). With regard to the
question of ideal integration, the results differ be-
tween the two experiments.

In Experiment 1, we found strong evidence for
the ideal integration model: participants displayed
effects of VOT and context, with no interaction be-
tween these factors. This suggests that participants
were able to maintain gradient representations of
VOT to later integrate with our contextual cue.

In Experiment 2, we found strong evidence for
the categorize-discard-&-switch model: partici-
pants showed effects of VOT and context, but also
showed a positive interaction between squared
VOT and context such that the context effect was
largest at the endpoints and smallest at the most
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ambiguous points. These results suggest that par-
ticipants in Experiment 2 took a more memory-
efficient strategy where they did not maintain gra-
dient information about VOT but were still able to
use both relevant cues in categorization.

6 General Discussion

Language is a signal that carries thousands of
bits of acoustic information per second that lis-
teners need to somehow compress into categori-
cal abstract representations. However, maintain-
ing some sub-categorical detail about the original
signal in memory in order to integrate it with later
potentially relevant cues is beneficial for achiev-
ing optimal categorization. Several lines of work
have suggested either that this kind of integra-
tion is severely limited by time (Christiansen and
Chater, 2016), the ambiguity of the initial signal
(Connine et al., 1991), or is actually optimal and
not very constrained by time or ambiguity (Bick-
nell et al., under review). However, these propos-
als have not been formalized and tested in a rigor-
ous way (but see Bicknell et al., under review, for
a discussion of ideal observers and one formaliza-
tion of the ambiguity hypothesis). Here, we took
a first step toward understanding and testing these
three proposals.

We enumerated four possible models for the
integration of cues that occur at different points
in the speech signal. Two of these models in-
volve maintaining gradient representations of the
initial speech cue in memory for later integration
with the subsequent cue, either being fully optimal
(the ideal integration model), or partially restricted
by ambiguity of the first cue (the ambiguity-only
model). The other two models reduce the bur-
den on memory by not maintaining gradient in-
formation about the initial speech cue, either by
immediately categorizing and ignoring later cues
(the categorize-&-discard model), or potentially
changing categorization if later information con-
flicts with the initial binary categorization (the
categorize-discard-&-switch model).

In Experiment 1, we found strong evidence for
the ideal integration model, in line with previous
work (Bicknell et al., under review; Szostak and
Pitt, 2013). Experiment 2 added a manipulation
that made it more difficult for participants to pre-
dict which words they would need to attend to
in our sentences. When we introduced this ma-
nipulation, we interestingly found strong support

for the categorize-discard-&-switch model, sug-
gesting that listeners were not maintaining sub-
categorical information about initial speech cues
in memory. This finding is particularly notewor-
thy since the categorize-discard-&-switch model
has not been previously considered in the litera-
ture as a possibility for cue integration during lan-
guage processing. Significantly, in neither experi-
ment did we find any evidence for the ambiguity-
only model, which has been the primary proposal
for how subcategorical information is maintained
(Connine et al., 1991; Dahan, 2010).

Our results here suggest that listeners behave
like ideal integrators under the task demands of
typical right-context studies in the literature (Con-
nine et al., 1991; Szostak and Pitt, 2013; Bushong
and Jaeger, 2017; Bicknell et al., under review).
However, those task demands are quite far from
those of everyday language processing where lis-
teners need to attend to many different parts of
the signal and topics change rapidly. To the ex-
tent that Experiment 2 more closely reflects the
task demands of natural language understanding—
which strikes us as likely—our results suggest that
listeners may not ideally integrate long-distance
cues. Future work should continue to investigate
the limits of subcategorical maintenance: what do
listeners do when confronted with the typical de-
mands of natural language use?

7 Future Work

One question not addressed in the current work is
the extent to which different participants engage
in different integration strategies or may change
strategy over time. Our data are likely a mix of
participants who show ideal integrator-like behav-
ior and categorize-discard-&-switch behavior—
what drives these differences? One possibility
could be differences in working memory and at-
tention. In addition, it is plausible that strate-
gies could change over time as a sort of adap-
tation to task demands. It is possible that lis-
teners under naturalistic demands tend to take a
memory-saving suboptimal strategy for the mem-
ory benefits (like in our Experiment 2), but with
a more constrained, easier-to-predict task become
more inclined to switch to a more optimal strat-
egy. Future work should investigate whether and
why these changes may occur.

By making models of cue integration explicit,
we inform future theoretical and experimental
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work. For example, we can analyze these mod-
els to understand how well each model performs
word recognition: we can directly quantify how
much word identification accuracy is expected to
decline for the non-optimal models compared to
ideal integration. Paired with experiments that em-
phasize different task demands of typical language
use, we can then begin to investigate (i) under what
circumstances listeners are (sub)optimal and (ii)
whether listeners maximize accuracy given task
demands. It may be the case, for example, that in
some contexts non-optimal integration is preferred
to ideal integration if the expected gain in accuracy
does not justify the expected memory demand of
maintaining subcategorical information for ideal
integration. Equipped with these formal models,
we can begin to address such questions.
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Abstract
This paper presents the first results of a mul-
tidisciplinary project, the ”Evolex” project,
gathering researchers in Psycholinguistics,
Neuropsychology, Computer Science, Nat-
ural Language Processing and Linguistics.
The Evolex project aims at proposing a new
data-based inductive method for automatically
characterising the relation between pairs of
french words collected in psycholinguistics
experiments on lexical access. This method
takes advantage of several complementary
computational measures of semantic similar-
ity. We show that some measures are more cor-
related than others with the frequency of lexi-
cal associations, and that they also differ in the
way they capture different semantic relations.
This allows us to consider building a multi-
dimensional lexical similarity to automate the
classification of lexical associations.

1 Introduction

The Evolex project1 brings together researchers in
Psycholinguistics and Natural Language Process-
ing (NLP) and focuses on lexical access and lex-
ical relations by pursuing a threefold objective:
(1) to propose a new computerised tool for as-
sessing lexical access in population with or with-
out language deficits; (2) to complement and re-
inforce the neuropsychological characterisation of
lexical access using both qualitative and quantita-
tive analyses; (3) to develop and train appropriated

1Evolex.1 was funded by the FHU HoPES (Federation
for Cognitive, Psychiatric and Sensory Disabilities) of the
Toulouse University Hospital (CHU de Toulouse).

NLP tools to automatically measure and identify
lexical relations. From a neuropsychology’s per-
spective, assessing and characterising lexical ac-
cess involves answering basic questions such as:
How close two words can be in someone’s men-
tal lexicon? What are the nearest neighbours of a
specific word? Are there more or less ”typical” re-
lations between words and do age (Burke and Pe-
ters, 1986), gender, sociodemographic status and
language deficits (Péran et al., 2004) have an im-
pact on those relations? The traditional method
for tackling such issues is to use word associa-
tion tasks where a participant has to produce a
word in response to a stimulus, i.e. a word that is
read out loud or written (e.g. answering dog after
hearing the stimulus cat). The variables typically
analysed are latencies, error rate, length of the re-
sponse and its lexical frequency obtained from the
analysis of large corpora (see for instance lexical
frequency measures (New et al., 2004)). There are
two main problems with such a method. First, we
lack benchmarks about the typical answers pro-
duced by a large sample of participants and thus
cannot reliably know whether a stimulus/response
pair is more or less plausible for a large number of
words (see for French norms Ferrand and Alario
(1998) based on 300 words for young adults,
de La Haye (2003) based on 200 words for chil-
dren and young adults and Tarrago et al. (2005)
based on 150 words for elderly people). Secondly,
a qualitative subject-by-subject and item-by-item
analysis is time consuming and prone to subjec-
tive interpretation. An answer to these challenges
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is to obtain such data through the analysis of ref-
erence language data with NLP techniques. The
use of data-based inductive methods for automat-
ically measuring the similarity between words is
one of the key task in computational semantics.
If the first methods were based on the colloca-
tion frequency of words in large corpora (Church
and Hanks, 1990; Evert, 2009), newer techniques
rely on the principles of distributional semantics
(Lenci, 2008; Mikolov et al., 2013). Even if the
performance of these systems is impressive for
some specific tasks (analogy resolution, lexical
substitution, etc.), they usually fail to provide a
fine grained characterisation of the relation be-
tween two words. Current distributional seman-
tic models tend to aggregate all the classical lex-
ical relations (e.g. synonymy, hypo/hypernymy,
meronymy) and to confuse relations between sim-
ilar words (e.g. couch - sofa) and relations be-
tween associated words (e.g. couch - nap). There
is also a need for evaluation data when comparing
and assessing these techniques (Hill et al., 2015;
Baroni and Lenci, 2010). This paper proposes a
step toward the satisfaction of both needs. We use
data gathered in psycholinguistics experiments to
compare different similarity measures and at the
same time investigate how using complementary
computational semantic techniques can help char-
acterising lexical relations between stimuli and re-
sponses provided by subjects in a word association
task. Section 2 describes the Evolex protocol from
which data was collected as well as the manual
annotation of the lexical relations in the collected
dataset. We present the computational measures
of semantic similarity in Section 3. Section 4 con-
tains the quantitative analyses and results.

2 Data Collection Process in Evolex and
Qualitative Analysis of Dataset

The Evolex protocol includes different tasks to as-
sess lexical access: a semantic fluency test (Ben-
ton, 1968), a phonemic fluency test (Newcombe,
1969), a classical Picture Naming task and a Word
Association task. In addition to these 4 tasks, par-
ticipants undergo 5 Cognitive Assessment Tests
(MoCA, reading aloud, Trail Making Test, Digit
Span, Stroop). This paper focuses mainly on the
Word Association task which consists in vocalis-
ing the first word coming to mind after listening
to a simple item (e.g. fruit, painting, igloo). The
items used as audio stimuli were selected accord-
ing to their grammatical category (nouns), num-

co-hyponym:balanoire(swing)/toboggan(slide) 73(13.1%)
hypernym:balancoire(swing)/jeu(game) 52 (9.3%)
meronym:balancoire(swing)/corde(rope) 49 (8.8%)
hyponym:animal(animal)/chat(cat 45 (8.1%)
holonym:doigt(finger)/main(hand) 29 (5.2%)
synonym:canap(couch)/sofa(sofa) 21 (3.8%)
antonym:aube(dawn)/crpuscule(dusk) 2 (0.4%)

classical relations: 271(48.5%)
associated:balancoire(swing)/enfant(child) 202(36.1%)
syntagmatic:fleur(flower)/peau(skin) 47 (8.4%)
none found:perroquet(parrot)/placard(closet) 28 (5.0%)
instance:magicien(wizard)/Merlin(Merlin) 6 (1.1%)
phonology:chapiteau(circus tent)/chateau(castle) 5 (0.9%)

non classical relations: 288(51.5%)

Table 1: Breakdown of the semantic relations used
to categorise the 559 distinct stimulus-response word
pairs.

ber of syllables (same number of occurrences of
words of 1, 2 and 3 syllables) as well as their fre-
quency in generic corpora (as given by the Lexique
resource, (New et al., 2004)). This paper exploits
a first dataset of pairs of words collected from a
pilot study with 60 stimuli and conducted with 30
participants presenting no language disorders, that
are native French speaker aged between 15 and 58
(mean age 31 ± 13.06), with various levels of ed-
ucation (from 10 to 20 years of schooling, mean
15.4 ± 2.97). The following instructions were
given to participants: You will hear French com-
mon nouns. You will have to pronounce the first
word which comes to your mind related to the one
you just heard as fast as possible. For instance,
when you hear TABLE, you may answer CHAIR.

After cleaning up and normalising the 1800
(60 × 30) individual collected responses, we ob-
tained 559 distinct stimulus-response pairs. In-
dependent double annotation was performed and
followed by adjudication. The tagset is composed
of 12 tags including 7 classical relations. Table 1
gives the number and % of distinct pairs annotated
according to these 12 relations.

3 Computational Measures of Semantic
Similarity

In this section we describe the different techniques
used in order to compute the similarity measures
that we apply to the stimulus-response word pairs
collected from the Word Association task. The six
techniques we tested differ according to (1) the
linguistic resources they used and (2) the use of
either a first or second order similarity. Three re-
sources reflecting three points of view on language
were distinguished: a large corpus, giving access
to word usage; a dictionary, reflecting expert point
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of view on word meaning; crowdsourced lexical
resource resulting from a GWAP (Game With A
Purpose) proposing a Word Association Task very
similar to ours that offers the advantage of hav-
ing access to many more participants. The cor-
pus used is FrWaC (Baroni et al., 2009), a collec-
tion of Web pages from the .fr domain and con-
sisting of 1.6 billion words. The dictionary is the
TLF (Trésor de la Langue Française, see (Den-
dien and JM., 2003)). The crowdsourced lexical
resource is part of the GWAP JDM (Jeux De Mots
2) where players have to find as many words as
possible and as fast as possible in response to a
term displayed on the screen, according to several
instructions involving different type of lexical re-
lations (semantic association, synonymy, etc., see
(Lafourcade, 2007)). The potential atypicality of
answers is partially controlled by the the game
where two anonymous and asynchronous players
earn points each time they give the same answer.
If an answer is rarely given by other players it gets
more points. Several instructions are proposed in-
cluding a Word Association task (”As-W” task)
very similar to ours with the following instruction:
”You are being asked to enumerate terms most
closely associated with the target word... What
does this word make you think about?”. The
three resources have been POS-tagged and lem-
matised with the Talismane toolkit (Urieli, 2013).
The second dimension on which these techniques
contrasts opposes 1st order similarity (cooccur-
rences or direct relation between two words in
the dictionary or the lexical relation) to 2nd order
similarity, also known as distributional similarity,
considering that words sharing first-order similar
words show a possibly different degree of simi-
larity. 2nd order similarity measures require more
complex algorithms such as word embeddings for
processing corpus similarity and random walk ap-
proach (Bollobas, 2002) for dictionary and lexical
resources. Each measure is described in the next
subsections.

3.1 Corpus-Based Similarity
FrWaC.1st similarity considers collocation:
two words are considered similar if they fre-
quently and systematically collocate in the FrWaC
corpus. This measure has a large number of uses
in NLP and corpus linguistics, and is known
to capture a large variety of semantic relations

2http://www.lirmm.fr/jeuxdemots/
jdm-accueil.php

(Evert, 2009; Wettler et al., 2005). We computed
this similarity using Positive Pairwise Mutual
Information (Evert, 2009). Each word was
considered using its POS-tag and lemma, and
its collocations were extracted in a symmetrical
rectangular (unweighted) window of 3 words in
both directions.

FrWac.2nd similarity relies on the principle
of distributional semantics, which considers that
words appearing in the same contexts have similar
meanings. 2nd-order similarity can be computed
in a number of ways (Baroni and Lenci, 2010; Ba-
roni et al., 2009), and for a few years most of the
work and research has focused on word embed-
dings. For this experiment, we used Word2vec
(Mikolov et al., 2013) on the same FrWac corpus
to obtain a dense matrix in which each word is rep-
resented by a numeric vector. The cosine distance
was then computed to measure the similarity be-
tween two words. In the absence of benchmark
test sets for French (while many exist for English,
including BLESS that can be used to tune a model
for specific semantic relations (Baroni and Lenci,
2011), we relied on the default parameters3.

3.2 Dictionary-Based Similarity
TLF.1st similarity is based on the principle that
two words are considered similar if one appears in
the definition of the other. We computed this sim-
ilarity by building an undirected and unweighted
graph with words as vertices (V ) and relations be-
tween words as edges (E). The TLF.1st measure
relies on the graph GTLF = (VTLF , ETLF ) where
∀x, y ∈ VTLF , {x, y} ∈ ETLF iff x appears in the
TLF’s definition of y or vice-versa (or both). This
similarity measure is therefore binary: the similar-
ity between x and y is 1 if x and y are neighbors
in GTLF and 0 otherwise.

TLF.2nd similarity used a graph traversal tech-
nique. We adopted a random walk approach (Bol-
lobas, 2002) that is known to provide a broader
and more ”robust” measure of similarity between
the nodes of a graph (Gaume et al., 2016). By ap-
plying this technique to the GTLF graph, TLF.2nd
corresponds to P t

GTLF
(x, y) ∈ [0, 1] i.e. the prob-

ability of a walker crossing the links of GTLF ,
starting on vertex x, to reach the vertex y, after t
steps. In this study, the length of the random walks
is t = 3.

3Skipgram algorithm with negative sampling (rate 5),
window size 5, 500 dimensions, subsampling rate 10−3 , 5
iterations, minimum frequency 100
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Similarity measure Spearman’s ρ p-value
FrWac.1st 0.25 2.06e-09
FrWaC.2nd 0.22 6.86e-08
TLF.1st 0.23 3.44e-08
TLF.2nd 0.38 8.48e-21
JDM.1st 0.47 2.30e-32
JDM.2nd 0.51 1.44e-38

Table 2: Spearman correlation.

3.3 Crowdsourced Resource-Based
Similarity

JDM.1st similarity also relies on graph tech-
niques with the principle that words are more
or less similar according to the number of
pairs collected through the ”As-W” task. We
built a directed and weighted graph GJDM =
(VJDM , EJDM ,WJDM ) where WJDM are the
weights of the links: x → y = the number of
times the word y has been associated with x. The
similarity between x and y is the weight of the link
x→ y in the graph GJDM .

JDM.2nd similarity is computed by applying
the technique used for TLF.2nd to the graph
GJDM , but where the probability of jumping in
a step from a vertex x to a vertex y is then propor-
tional to the weight of the edge x → y relative to
the sum of the weights of the arcs coming out of
x. As for TLF.2nd, the length of the random walks
is t = 3.

4 Quantitative Analysis and Results
We performed two kinds of analysis on this data.
First, we computed the correlation between the six
similarity measures presented in Section 4 and the
response frequency, i.e. the number of subjects
that gave the same response for a given stimu-
lus. We computed the Spearman correlation co-
efficient over all distinct pairs and obtained the
scores presented in Table 2. We can see that all
correlation values are positive and statistically sig-
nificant. The highest value (0.51) is obtained with
JDM.2nd. Using a random walk approach (2nd or-
der) increases the Spearman correlation from 0.23
to 0.38, (up to 65%) for TLF-based methods and
from 0.47 to 0.51 (up to 8%) for JDM-based meth-
ods. In order to get a more detailed view of the
complementarity of these measures and to exam-
ine the behaviour of these measures regarding the
semantic relations between stimulus and response,
we performed a multidimensional analysis. We
ran a standard Principal Component Analysis on
the matrix with Stimulus/Response pairs (559) as
rows and 19 columns i.e. 1 for pair frequency, 1
per similarity measure and 1 per tagged relation
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Figure 1: Circle of correlations in the first factor map
of PCA.
(e.g. synonymy, see Table 1) converted to a binary
value. The main factor map represents 33% of
the global variance (see Fig. 1). Several elements
can be learned from this analysis. It clearly shows
that the three resources provide different aspects
of lexical similarity, and that the shifting from 1st
to 2nd order preserves these differences. When
looking at the categorised semantic relations, sev-
eral phenomena can be identified. First, it ap-
pears that all measures are positively correlated
to classical semantic relations, although we ob-
served some variation: measures based on lexical
resources (TLF or JDM) capture the hypernymy
relation more easily, while corpus-based similar-
ity favour co-hyponymy. Other classical seman-
tic relations are positively correlated with all mea-
sures, without a clear advantage for any of them.
In contrast, all similarity measures are negatively
correlated to non classical relations (none cases
and associated word pairs). Instance, syntagmatic,
antonym and phonology relations appear in the
centre of the factor map, indicating that no clear
trend can be identified for these relations. This is
somewhat surprising that even corpus-based first
order similarity (FrWac.1st) does not capture the
pairs in syntagmatic relations.

5 Beyond Semantic Relations:
Clustering Responses

Although the reliable identification of specific se-
mantic relations between a stimulus and responses
provided by the subjects is currently out of reach,
some of the NLP techniques used to compute sim-
ilarity can be used to provide a structure for the
set of responses. This is especially the case for
word embeddings, which are known to provide
vector representation of words that are suitable for
a number of semantic tasks. For example, we can
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Figure 2: PCA maps of the responses to the stimuli (in red) igloo (left) and cat (right), based on word embeddings.

use these representations to identify clusters of re-
sponses based on their position in the vector space
(vector space computed from the distribution of
words in a corpus). We show here two exam-
ples of such an analysis. Focusing on the stimuli
igloo and cat, we extracted the word embeddings
for all responses (as well as the stimulus) and rep-
resented them in a two-dimensional space by the
means of a PCA on the initial 500-dimension vec-
tors. The results can be seen in Figure 2. While
the dimensions themselves cannot be interpreted,
it appears that interesting clustering can be identi-
fied in the responses. For igloo, we can see that all
words related to an igloos typical climate and en-
vironment are gathered close to the stimulus (cold,
ice, snow), while the prototypical inhabitants (Es-
kimo, Inuit) and fauna (penguin, walrus) are far-
ther on the left. The hypernym house is located
in another area, closer to the top. Another inter-
esting case in this example is the presence of cap-
tain in the responses: it refers to a fictional char-
acter named Captain Igloo who used to appear in
TV commercials for frozen fish sticks. Its position
in the figure is understandably the most extremely
afar from the stimulus. It is important to note that
the semantic relations of most of the responses
with this stimulus fall under the associated cate-
gory, with the exception of the meronym ice, the
hypernym house and the syntagmatically-related
noun captain. However, it appears that word em-
beddings are able to separate them efficiently in
relevant subsets. The results for cat are more self-
explanatory, with the interesting case of mouse
which is not considered as a close co-hyponym (as
are dog, rat and lion) but more as an association
because of the cat and mouse topoi.

6 Conclusion
This paper exploits a first dataset of pairs of
words collected from the pilot study of the Evolex

project. We proposed six techniques to compute
lexical similarities of pairs of words. These six
techniques are based on three kind of resources
(large corpus, dictionary and crowdsourced lexi-
cal resource) with the computation of either first
or second order similarity. First we computed the
correlation between these six similarity measures
and the response frequency. All correlation val-
ues are positive and statistically significant. The
highest value (0.51) is obtained with JDM.2nd i.e.
the method based on second order similarity us-
ing a short random walk approach over the crowd-
sourced lexical resource, collected with a proto-
col fairly similar to Evolex. From the experiments
conducted, it appears that exceeding 0.51 might
be challenging. This needs to be investigated with
further experiments. Secondly, we show that the
three resources provide different aspects of lexi-
cal similarity and that shifting from 1st to 2nd or-
der preserves these differences. This conclusion
will be very useful for the future of Evolex as a
diagnostic tool in clinical studies. We are able
to position each pair in a multidimensional space
(one dimension by similarity) and to identify clus-
ters of pairs with the final objective of defining re-
gion i.e. profiles for characterising an incoming
answer to a stimulus. Such profiles may be then
used for evaluating if a given phenomenon (con-
text, age, sex, level of education, cognitive pro-
file, language deficit, ...) favours the production
of stimulus/response pairs positioned in a particu-
lar region of this multidimensional space, this can
then help to identify the phenomenon as a hidden
variable.
Other factors made available by the Evolex proto-
col have now to be taken into account, as for exam-
ple the reaction time of each response and the re-
sults obtained by the participants to the other tasks
of the Evolex protocol.

75



References
Baroni, M., Bernardini, S., Ferraresi, A., and

Zanchetta, E. (2009). The wacky wide web: a col-
lection of very large linguistically processed web-
crawled corpora. Language Resources and Evalua-
tion, 43:209–226.

Baroni, M. and Lenci, A. (2010). Distributional mem-
ory: A general framework for corpus-based seman-
tics. Computational Linguistics, 36:673–721.

Baroni, M. and Lenci, A. (2011). How we blessed dis-
tributional semantic evaluation. In Proceedings of
the GEMS 2011 Workshop on GEometrical Models
of Natural Language Semantics, pages 1–10. Asso-
ciation for Computational Linguistics.

Benton, A. L. (1968). Differential behavioral effects in
frontal lobe disease. Neuropsychologia, 6(1):53–60.

Bollobas, B. (2002). Modern Graph Theory. Springer-
Verlag New York Inc.

Burke, D. M. and Peters, L. (1986). Word associations
in old age: Evidence for consistency in semantic en-
coding during adulthood. Psychology and Aging,
1(4):283.

Church, K. W. and Hanks, P. (1990). Word association
norms, mutual information, and lexicography. Com-
putational linguistics, 16(1):22–29.

de La Haye, F. (2003). Normes d’associations verbales
chez des enfants de 9, 10 et 11 ans et des adultes.
L’Année psychologique, 103(1):109–130.

Dendien, J. and JM., P. (2003). Le trésor de la langue
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Abstract

Backward saccades during reading have been
hypothesized to be involved in structural re-
analysis, or to be related to the level of text
difficulty. We test the hypothesis that back-
ward saccades are involved in online syntac-
tic analysis. If this is the case we expect that
saccades will coincide, at least partially, with
the edges of the relations computed by a de-
pendency parser. In order to test this, we an-
alyzed a large eye-tracking dataset collected
while 102 participants read three short narra-
tive texts. Our results show a relation between
backward saccades and the syntactic structure
of sentences.

1 Introduction

Written language consists of a sequence of graphic
signs. While most eye movements during reading
indeed follow this sequential order, they are also
occasionally interleaved with jumps back to words
in preceding portions of the text. We refer to these
backward saccades as regressions throughout this
paper. There are at least two competing hypothe-
ses concerning the nature and function of this phe-
nomenon.

The first main line of hypotheses on the role of
regressions emphasizes their active role in com-
puting linguistic representations (Kennedy, 1992),
the second stresses their function as a reanalysis
tool in the event of detected parsing errors (Rayner
and Sereno, 1994). In this paper we start from
the former; in particular, we aim to investigate the
relation between regressions and the structure of
sentences as computed by a dependency parser.

We take dependency structures as a valid approx-
imation of syntactic properties of the sentences,
and we investigate whether these are reflected in
eye movement regressions during naturalistic text
reading.

We consider regressions from each word in the
text, and relate those to dependency relations that
link pairs of words in the sentence. In this way we
can represent syntactic properties of the sentences
as shallow structural information at the word level,
by focusing on the number and direction of the
syntactic relations that each word in a sentence is
engaged in.

The aim of this paper is two-fold: on the one
hand we want to investigate whether regressions
might play a role in online sentence parsing; on
the other hand – as an implication of the previous
goal – we are interested in finding traces of syntac-
tic parsing during reading. We report the results of
a mixed-effect regression analysis showing a rela-
tion between the pattern of eye regressions and the
syntactic structure of sentences.

2 Theoretical Background

2.1 The Role of Regressions in Text
Comprehension

Regressions (backward saccades) are relatively
rare, occurring usually only with 15 to 25% of the
words (Rayner & Pollatsek, 1989). They do not
seem to be random, however. Regressions typi-
cally aim at specific word locations, moving fixa-
tion from the current word back to one of the pre-
viously encountered words (Vitu, 2005). Nonethe-
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less their function in language comprehension is
still debated. Here we will review two proposed
explanations: the first links regressions to the dif-
ficulty of text processing; the second instead sees
them as tools for language processing, not neces-
sarily linked to processing difficulties or errors.
According to the first proposal regressions only
start to play a role in reading once difficulties
are encountered; according to the second proposal
they are part and parcel of regular reading.

2.1.1 Regression as a Response to
Comprehension Difficulty

The first hypothesis interprets regressions as part
of the reanalysis of textual input due to encoun-
tered comprehension problems. In a milestone
study, Altmann et al. (1992) introduced the no-
tion of regression-contingent analysis, based on
the assumption that regressive eye movements are
a necessary consequence of subjects being garden-
pathed. A garden-path effect occurs when read-
ers incrementally construct an incorrect interpre-
tation of a sentence as a consequence of its lo-
cally ambiguous syntactic structure. This does not
necessarily mean that the presence of a difficult
structure, leading for instance to the reader be-
ing garden-pathed, triggers a regression. Rayner
and colleagues reported data showing that strong
garden path effects can occur sometimes without
triggering any regressions (Rayner and Sereno,
1994; Castelhano and Rayner, 2008). Nonethe-
less, other studies have given support to the idea
that regressions are linked to textual ambiguity
and contextual difficulties. Readers make more re-
gressions when the text is complex (Rayner and
Pollatsek, 1995), when the topic changes (Hyn,
1995), when the text contains grammatical errors
or ambiguities (Reichle et al., 2013), or when they
encounter information that disambiguates the pre-
ceding text (Blanchard and IranNejad, 1987; Fra-
zier and Rayner, 1982). The general hypothesis
holds that the probability of regressions and their
span might depend on the difficulty of the text.
Therefore these regressions might allow the reader
to reread information that has been missed, forgot-
ten, or wrongly interpreted (Rayner, 1998).

2.1.2 Regression as a Tool for
Comprehension

The alternative explanation focuses instead on the
role of eye movements as a tool in language pro-
cessing, used independently from the structural

difficulty of the input. The idea is that regres-
sions help the reader reactivate cognitive informa-
tion that is associated with the regressed-to loca-
tion. Kennedy (1992) refers to this as the Spatial
Code Hypothesis. The hypothesis is that readers
use the position of words on the page as a support
to their working memory by reactivating previ-
ously read words associated with information rel-
evant for the processing of the word from which
the regression originated (O’Regan, 1992; Spivey
et al., 2004). This hypothesis has been criticized
by Booth and Weger (2013). They presented three
experiments showing that reader comprehension
is not hindered when reading conditions inhibit or
discourage visual access to already read material.
In their Experiment 1, readers knew that candidate
targets for regression were no longer available for
rereading. Experiment 2 discouraged regressions
by forcing readers to follow a visual placeholder
on the stimulus while it was also presented in au-
ditory form. Finally, in Experiment 3, candidate
targets for regression were manipulated after read-
ing. In all these three experiments, readers showed
no hindered comprehension of the presented stim-
ulus sentences. As an entailment of these results,
Booth and Weger suggested that readers do not
use regressions to cue their memory for previously
read words.

Our hypothesis is that readers might make use
of regressions to reactivate previously read infor-
mation in the context of naturalistic language com-
prehension, in order to help compute linguistic in-
formation.

We want to examine whether there is an align-
ment between patterns of regressions and word-to-
word syntactic relations as described by the depen-
dency structure of the stimulus. We hypothesize
that regressions play a role in syntactic parsing
that may go beyond the reanalysis of ambiguous
material. We do not deny their role in reanalysis
and repair, but we rather stand with the hypothesis
that they allow re-reading and cueing of previous
words, as an aid to memory, when this is required
for a successful construction of a syntactic repre-
sentation of the text.

In order to test this hypothesis we rely on an
eye-tracker dataset that was collected during nor-
mal text reading of unmodified literary narratives.
We assess whether there is a relation between the
number of eye regressions from the words and the
number of syntactic relations that those words en-
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tertain with their preceding text. These syntactic
relations are derived from the dependency struc-
tures (described in Section 4) of the sentences
composing the stimuli of the eye-tracker dataset.

2.2 Regressions and Sequence Processing

The hypothesized relation between dependency
structure and eye movement taps into a broader de-
bate on whether language processing relies mainly
on the sequential structure of the input or whether
it involves the computation of non-sequential syn-
tactic parses (Jackendoff and Wittenberg, 2014).
Undeniably, the linguistic stimulus is presented as
a string of symbols, nonetheless regressions seem
to counter the notion that it is processed strictly
in a sequential order. If these eye movements are
involved only in re-analysis, then their existence
does not necessarily contradict sequential process-
ing accounts. They can be explained as an ”emer-
gency recovery” operation that takes place only in
cases of processing difficulties. On the other hand,
if we find evidence of a relation between sac-
cades and syntactic dependency structures inde-
pendent from processing difficulty, then we might
conclude that saccades offer behavioral evidence
that processing involves the computation of non-
sequential structures.

This question is related to the line of research
in psycholinguistics and neuroscience investigat-
ing the computation of syntactic structures in
the mind/brain during language processing. In
this context, sequential structures are usually con-
trasted with hierarchical ones, where input items
are grouped into larger units, which in turn are
(possibly recursively) grouped in even larger units.
These larger units are commonly referred to as
syntactic constituents or phrases and have a cen-
tral position in theoretical linguistics (Chomsky,
1965; Jackendoff, 2002, 2007). An increasing
amount of evidence against a strictly hierarchi-
cal processing of language has emerged over the
past decades. Psycholinguistic studies have sup-
plied evidence suggesting that the mere sequential
properties of the stimulus are sufficient to explain
aspects of human behavior during reading and lis-
tening. Frank et al. (2012) provide a review of
evidence from cognitive neuroscience, psycholin-
guistics and computational modeling studies sup-
porting the hypothesis that hierarchical structure
may not play a central role in language process-
ing and acquisition, and that sequential structure

instead has a significant explanatory power. They
argue that hierarchical structure is rarely needed
to explain behavioral and neural correlates of lan-
guage processing in vivo. In contrast with these
findings, recent neuroimaging studies have delin-
eated a slightly more complex landscape in which
both hierarchical and sequential processing may
be carried out simultaneously by the human brain
during language processing (Brennan et al., 2016;
Nelson et al., 2017).

Dependency parses are different from con-
stituency parses as they lack the non-terminal
nodes characteristic of constituency parses.
Nonetheless they still constitute a non-sequential
type of structure. Demonstrating a relation
between eye movement and such structure will
provide evidence for the non-sequentiality of
language processing, at least in the context of text
reading.

3 Related Work

The present work studies the relation between eye
movements during reading and the dependency
structure as produced by a dependency parser (see
Section 5.2 for more details). Several other studies
tested language processing hypotheses by using
computational models as predictors of eye move-
ments during sentence reading.

Boston et al. (2008) demonstrates the impor-
tance of including parsing costs implemented as
surprisal as a predictor of comprehension diffi-
culty in models of reading. They showed that sur-
prisal of grammatical structures has an effect on
fixation durations and regression probabilities.

Demberg and Keller (2008) compared linguis-
tic integration cost computed as a function of de-
pendency relations distances and word surprisal as
predictors of gaze duration. They showed that dis-
tance is not a significant predictor of reading times
except for nouns. On the other hand, they demon-
strate that surprisal can predict reading times for
arbitrary words in the corpus, concluding that the
two predictors may capture distinct aspects of nat-
uralistic language processing.

In the context of Natural Language Processing,
Klerke et al. (2015) used eye-tracker data as a met-
ric for the quality of automatic text simplification
and compression, which are operations used in
machine translation and automatic summarization.
Their proposal is grounded in the hypothesis that
eye movements are related to perceived text diffi-
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Peter bought a very expensive luxury car

ROOT

nsubj

nobj

det

amod

amodadvmod

Figure 1: Dependency Parse of Sentence 1

culty (Rayner and Pollatsek, 1995), one of the two
hypothesis we have introduced in Section 2 above.

4 Dependency Structure

We chose dependency grammar as the formalism
of non-sequential syntactic structure. Dependency
grammar describes a sentence as a set of rela-
tions between words (heads) and their dependents.
These relations are called dependencies and cor-
respond to grammatical functions and – together
with the words they link – are the only descriptive
elements composing the structure, which has the
form and properties of a directed graph (Tesnière
et al., 2015; Mel’čuk, 1988; Nivre and Kübler,
2009).

(1) Peter bought a very expensive luxury car.

Take for instance Sentence 1 above. Figure 1
contains the dependency graph representing the
dependency structure of the sentence in terms of
typified head-dependent relations. The main verb
(bought) acts as head for Peter and car, with which
it is in subject and object relations, respectively.
A dependent of one dependency relation can in
turn be the head of another one. For instance car
is head of luxury and of expensive with which it is
linked by modifier relations, and also head of the
article a via a determiner relation.

This structure lacks phrasal non-terminal con-
stituents. In addition, it is not strictly sequential,
or put differently, it is not isomorphic to the se-
quence of items that makes up the stimulus. This
is based on the fact that the dependency relations
can hold between words that are non-consecutive
or possibly even far apart in the sentence. There is
the assumption that during reading, these links are
created once a suitable candidate for the second
term of the dependency is introduced. Therefore,
online dependency parsing proceeds by introduc-
ing one word at a time, and by looking back at the
prefix in order to assess whether this novel input is
a suitable candidate for a dependency link with a
preceding word that has not yet been matched.

5 Materials and Methods

5.1 Eye-tracker data

The eye tracker data used in this study was orig-
inally collected for a study on mental stimula-
tion during literary reading by Mak and Willems
(2018) at Radboud University, Nijmegen, the
Netherlands. For more details on data acquisition
and preprocessing we refer to the original publica-
tion.

5.1.1 Participants and Stimuli

Data was collected from 102 participants (82 fe-
males, mean age 23.27, range 18–40), all of whom
were native speakers of Dutch, with normal or
corrected-to-normal vision. All participants gave
written informed consent in accordance with the
Declaration of Helsinki.

Stimuli consisted of three published short sto-
ries in Dutch. Stories 1 and 2 were written by con-
temporary Dutch writers, and Story 3 was trans-
lated from American English to Dutch. Their
lengths were 2143, 2659, and 2988 words respec-
tively, and they required around 10-15 minutes
each to be read.

5.1.2 Data Acquisition and Pre-processing

For eye-movement data collection, a monocu-
lar desktop-mounted EyeLink1000+ eye-tracking
system was used (500 Hz sampling rate). Head
movements were minimized using a head stabi-
lizer, ensuring that all participants were seated at
108 cm from the screen.

The stimuli were presented using SR Research
Experiment Builder software (SR Research, Ot-
tawa, Canada). The stories were divided into 30
sections each. The stories were presented in coun-
terbalanced order. After data collection, partici-
pants were presented with a comprehension ques-
tionnaire.

All fixations were checked to make sure that
they did not drift off and enter a different inter-
est area. If correction of the drifts was not possi-
ble, individual sections were excluded. Data for at
least one section was removed for 40 participants.
For four participants, the number of excluded sec-
tions exceeded six, resulting in the exclusion of
one story for these participants.

Eight participants answered more than one
comprehension question incorrectly for one of the
three stories (four times for Story 2 and four times
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for Story 3), resulting in the exclusion of the data
for one story reading for eight participants.

The dataset contains a total of 582,807 words
across all participants and narratives.

5.1.3 Eye Tracker Measures
For the present study we focus on the number of
eye regressions. A regression consists of a fast eye
movement from a word back to a previous word.

5.2 Dependency Parsing

The text of the three stories presented to the partic-
ipants were fed to the ALPINO toolbox for Dutch
natural language processing (Noord, 2006) to gen-
erate a dependency parse for each of their sen-
tences. The parser creates a structure composed
of dependency triples consisting of a head word,
the type of dependency relation and its dependent
word. A parse is produced for each sentence in-
dependently, therefore no relation can be assigned
between words belonging to different sentences.
The output of the parser was manually checked
in order to prevent tokenization and sentence seg-
mentation errors.

5.2.1 Number of Dependency Relations
As described in Section 4, every word in a sen-
tence entertains at least one relation with another
word in the same sentence. Every non-final and
non-initial word can have relations with a variable
number of other words on its right and its left. Be-
cause we are interested in eye regressions, we de-
cided to focus our attention only on relations be-
tween a word w and its preceding context. There-
fore only relations with a head and possible depen-
dents on the words preceding w are counted.

From the dependency structure of a sentence,
we derived the following count measures:

• N head indicates the presence of a syntactic
relation between wi and a word in w1:i−1 that
is head of wi;

• N dependents counts the number of syntactic
relations betweenwi and words inw1:i−1 that
are dependents of wi.

Measure N head is a binary variable indicat-
ing whether word w has a head in its left context
w1:t−1. This is because every word has one, and
only one, head.

For example, the word expensive in Sentence 1
has one head relation with a word on its right

Peter bought a very expensive luxury car
N head 0 0 0 0 0 0 1
N dependents 0 1 0 0 1 0 3

Table 1: Number of dependency relations per word w
that correspond to words in w’s own preceding context.

(car), no dependents on its right, and one on its
left (very). On the other hand, the word car, be-
ing sentence-final, does not have any links on its
right, but it has 1 head (bought) and 3 dependents
(a, expensive, luxury) on its left. Table 1 contains
the count measures (N head and N dependents)
for Sentence 1.

5.3 Descriptors not Related to Dependencies

We are interested in the effect of syntactic struc-
ture, implemented as dependency relations, on the
pattern of regressions. For this reason it is nec-
essary to control for other possible quantifiable
factors affecting these eye movements. We chose
to use log-transformed lexical frequency and sur-
prisal.

Base-2 log-transformed lexical frequency per
word was computed using the Subtlex NL corpus
(Keuleers et al., 2010). Surprisal was computed
from a second-order Markov model, also known as
trigram model, trained on a random selection of 10
million sentences (comprising 197 million word
tokens; 2.1 million types) from the Dutch section
of Corpora from the Web (NLCOW2012; Schäfer
and Bildhauer, 2012). Surprisal of word wt is
the negative logarithm of the conditional prob-
ability of encountering wt after having read se-
quence wt−2, wt−1, or: − logP (wt|wt−2, wt−1).
The computation was performed by the SRILM
toolbox (Stolcke, 2002).

Frequency and surprisal are computed in order
to control for processing difficulties. Intuitively,
infrequent words and words with high surprisal
are more difficult to retrieve (and possibly to in-
tegrate) with their preceding context. Controlling
for processing difficulty is motivated by the alter-
native hypothesis regarding the role of regressions
as depending on the level of complexity posed by
a linguistic input.

In addition to frequency and surprisal, we also
use word position in the sentence. Intuitively, the
probability of regressing from a word to its previ-
ous context increases linearly with the position of
the word in a sequence. By controlling for it, we
ensure that the eye movements are not due simply
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to the opportunity given by the larger target pool
to regress to.

5.4 Analyses
We fitted two logistic mixed-effect models predict-
ing eye regressions. The first model (null, Eq. (1)
below) contains as predictors only the position
of the words in their sentences (word order), and
probabilistic information consisting of the above-
mentioned log-transformed frequency (freq) and
surprisal (surp). The second model (full, Eq. (2)
below) contains as predictors of interest also the
number of left-hand side dependency relations
(i.e. N head and N dependents) of each word. In
addition, we included by-participant and by-word
random intercepts, as well as by-participant ran-
dom slopes for word order in the null model and
for word order, N head and N dependents in the
full models.

We expect the model’s fit to improve signif-
icantly after inclusion of the measures derived
from the dependency parse as regressors. The in-
crease in model fit is quantified by the χ2-statistic
of a likelihood-ratio test for significance between
the null and full models and is taken as the
measure of the fit of N head and N dependents
measures at each word to the probability of a
regression being generated at each word.

null : eye regressions

∼ word order + surp + freq + (1|word)
+ (1 + word order |participant)

(1)

full : eye regressions

∼ word order + surp + freq

+N head +N dependents

+ (1|word) + (1+word order +N head

+N dependents|participant)
(2)

The models are fit by maximum likelihood
(Laplace Approximation) and with a binomial dis-
tribution.

6 Results

6.1 Regression Model Analysis
In the results below we first describe the fit of
each of the two models (null and full) separately,
then we report the results of the model comparison
analysis using the χ2-statistic.

Table 2 presents the fitted null model. Table 3
shows the fitted full model. The head and de-
pendent regressors have significant effects on the
number of regressions (eye regressions) - N head:
β = 0.242, p < .0001; N dependents: β =
0.046, p < .0005.

In addition, both word frequency (freq) and sur-
prisal (surp) have a significant negative effect. The
negative effect of frequency might be due to less
frequent words being more difficult to retrieve
from memory, therefore triggering a regression to
gather more contextual information to help word
processing. The negative effect of surprisal indi-
cates that the larger the surprisal of a word – there-
fore more difficult its integration into the context
– the less probable the reader is to regress to the
word’s previous context. Mak and Willems (2018)
reported a positive effect of surprisal on the num-
ber of incoming saccades, that is, eye movements
into a word back from subsequent parts of the text.

Estimate Std. Error z value Pr(> |z|)
(Intercept) −1.616 0.049 −32.9 < .0001
word order 0.035 0.007 5.2 < .0001
surp −0.140 0.013 −11.1 < .0001
freq −0.165 0.028 −6.0 < .0001

Table 2: Fixed effects for the null model

Estimate Std. Error z value Pr(> |z|)
(Intercept) −1.798 0.049 −36.6 < .0001
word order 0.019 0.006 3.0 < .003
surp −0.102 0.012 −8.0 < .0001
freq −0.125 0.027 −4.6 < .0001
N head 0.242 0.016 14.8 < .0001
N dependents 0.046 0.013 3.6 < .0005

Table 3: Fixed effects for the full model

In order to test whether the introduction of head
and dependent measures improves the fit of the lo-
gistic mixed effect model to outgoing saccades, we
computed the χ2-statistic of a likelihood-ratio test
for the difference between the null and full mod-
els above. The χ2 is taken as the measure of the
fit of the dependency measures to the probability
of a regression being initiated at each word. Table
4 reports the results of the test, showing the dif-
ference in model fit to be significant (χ2 = 738.87,
p < .0001).

6.2 Analysis of Regression Counts

The results of the regression model comparison
indicate that regressions are partially driven by
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model df AIC BIC deviance χ2 χ2df Pr
null 8 401023 401111 401007
full 17 400302 400489 400268 738.87 9 < .0001

Table 4: Results of log-likelihood comparison between
null and full model.

the presence of left-hand side dependency rela-
tions. In order to corroborate these observations,
we counted the number of times regressions
generated from each word do actually land on
preceding words that are heads or dependents of
that word. As reported in Table 5, it turns out that
of the 110,336 regressions, about 40% do actually
land on a head or dependent of the words they
originate from. These are referred to as matches.
The analyses were limited only to regressions
landing within sentence boundaries. In the table,
“misses” refers to the regressions that land on
targets that are neither head nor dependent of the
the word they originated from.

tot nr of regressions: 110336
tot nr of matches: 46378
tot nr of misses: 63958

Table 5: Total numbers of regressions, matches (i.e. re-
gressions that land on heads or dependents), and misses
(i.e. regressions do not land on heads or dependents of
the word they originated from).

A χ2-test of independence was performed to as-
sess the relation between having a dependency re-
lation with a word and generating a regression to
that word. The test was computed independently
for 10 separate left-hand side distances d = [−10 :
−1]. In other words, for d = −1, we want to as-
sess whether there is a relation between having a
dependency relation with the preceding word and
looking back at that word; for d = −2, we want to
assess whether there is a relation between having
a dependency relation with the preceding word at
position −2 and looking back at that word, and so
on for the other considered distances.

Table 6 contains the per-distance results of the
χ2 analyses. An association between presence of
a dependency relation at position d and the gener-
ation of a regression to that position is significant
for distances −1 (χ2 = 132.52, p < 0.001), −2
(χ2 = 678.14, p < 0.001), −3 (χ2 = 8.05, p <
0.005), and −4 (χ2 = 13.68, p < 0.001). For all
other tested distances (between −5 and −10) the
association was not significant (see Figure 2). For

d = {−1,−2,−3,−4}:
• The fraction of words wi in a dependency re-

lation with wi−d that originate a regression
of length −d is significantly higher than the
fraction of wi not in a dependency relation
with wi−d originating a regression of length
−d;

• The fraction of words wi with a regression
of length −d that are in a dependency rela-
tion with wi−d is significantly higher than the
fraction of wi without a regression of length
−d that are in a dependency relation with
wi−d.

dist +dp+reg -dp+reg +dp-reg -dp-reg χ2

-1 29245 19520 305931 228111 132.52**
-2 5711 14798 113028 449270 678.14**
-3 937 6239 68785 506846 8.05*
-4 309 2641 49324 530533 13.68**
-5 76 1370 33153 548208 0.55
-6 35 850 29823 552099 2.69
-7 17 530 23728 558532 1.42
-8 13 355 17687 564752 0.29
-9 5 261 16774 565767 1.08

-10 3 263 13785 568756 2.18

Table 6: χ2 analyses for distances −10 : −1. +dp+reg
indicates the number of words in the corpus having a
relation and a regression at−d; +dp-reg the number of
words having a relation but not a regression at −d; -
dp+reg number of words not having a relation but hav-
ing a regression at −d; -dp-reg not having nor relation
nor regression at −d (∗∗ = p < 0.001, ∗ = p < 0.01).

wi−n ... wi−4 wi−3 wi−2 wi−1 wi

**

**

*

**

Figure 2: The effect of dependency relations on re-
gressions from wi is significant only for the preceding
four words - further away saccades might not be influ-
enced by a possible relation with wi (∗∗ = p < 0.001,
∗ = p < 0.01).

This seems to indicate that the effect of the de-
pendency structure of a sentence on the pattern of
outgoing eye-movements from a word is present
only for short-distance relations (between a word
and its four preceding words).

It is important to keep in mind however that
the number of dependency relations found by the
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parser is much higher than the actual number of
matches. This is simply because the parser does
assign at least a head to each and every word in
the text (even words in isolation are assigned a
root head), whereas a regression is a relatively rare
event (under normal conditions, using naturalistic
language). The present work aims at demonstrat-
ing that regressions are related (also) to the struc-
ture of the dependency graph. The results we have
produced so far point in that direction. In other
words, it is possible to affirm that if a regression
takes place, it might be triggered by the presence
of a dependency relation between the word it is
generated from and the word it lands on.

7 Conclusion

In this paper we have presented an analysis inves-
tigating whether eye movements of readers may
be influenced directly by the syntactic structure of
the sentence. We tested this using shallow non-
hierarchical structures computed by a dependency
parser. The hypothesis was that the path of re-
gressions from a word to an earlier word coin-
cide, at least partially, with the edges of depen-
dency relations between these words. We used a
substantially large eye-tracking dataset collected
while 102 participants were engaged in reading
three short narrative texts.

The results of a mixed-effect regression analy-
sis indicate that there is a significant effect of the
number of left-hand side dependency relations on
the number of backward saccades. This effect is
well above chance even after correcting for word
position in the sentence and word frequency and
surprisal – measures held to explain a large part of
natural language processing behavioral and neural
correlates. These results are corroborated by the
observation that about 40% of backward saccades
do indeed land on target words engaged in depen-
dency relations according to the syntactic structure
of the sentences composing our stimuli.

The length of the regressions seems to be rela-
tively short: the vast majority being shorter than
three words, with a predominance of regressions
one position backwards. The results of a series
of χ2 tests for independence shows that there
is a significant association between presence
of a dependency link and backward saccading
between two words holds only for pairs which are
not further apart than four positions. This might
indicate that the eye regressions are involved

predominantly in dependency parsing at the local
level, rather than at long distance.

Altogether these results converge on the idea
that eye movements reflect, among other things,
the shallow syntactic structure of language. More-
over these results seems also to corroborate the
idea that humans do engage in online syntactic
analysis of the input – at least in the form of lo-
cal dependency parsing.
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Abstract

We propose a novel framework for modeling
event-related potentials (ERPs) collected dur-
ing reading that couples pre-trained convolu-
tional decoders with a language model. Using
this framework, we compare the abilities of a
variety of existing and novel sentence process-
ing models to reconstruct ERPs. We find that
modern contextual word embeddings under-
perform surprisal-based models but that, com-
bined, the two outperform either on its own.

1 Introduction

Understanding the mechanisms by which compre-
henders incrementally process linguistic input in
real time has been a key endeavor of cognitive sci-
entists and psycholinguists. Due to its fine time
resolution, event-related potentials (ERPs) are an
effective tool in probing the rapid, online cog-
nitive processes underlying language comprehen-
sion. Traditionally, ERP research has focused on
how the properties of the language input affect dif-
ferent ERP components (see Van Petten and Luka,
2012; Kuperberg, 2016, for reviews).1

While this approach has been fruitful, re-
searchers have also long been aware of the po-
tential drawbacks to this component-centric ap-
proach: a predictor’s effects can be too transient
to detect when averaging ERP amplitudes over a
wide time window—as is typical in component-
based approaches (see Hauk et al., 2006, for dis-
cussion). Different predictors can affect ERP in
the same time window as an established compo-
nent but have slightly different temporal (Frank
and Willems, 2017) or spatial (DeLong et al.,

1Examples of such components include the N1/P2
(Sereno et al., 1998; Dambacher et al., 2006); N250 (Grainger
et al., 2006); N400 (Kutas and Hillyard, 1980; Hagoort et al.,
2004; Lau et al., 2008); and P600 (Osterhout and Holcomb,
1992; Kuperberg et al., 2003; Kim and Osterhout, 2005)

Figure 1: An instance of our framework using a bidi-
rectional language model as the text encoder.

2005) profiles. This means that the definition of
a component strongly affects interpretation.

There are two typical approaches to resolving
these issues. The first is to plot the data and use vi-
sual inspection to select an analysis plan, introduc-
ing uncontrollable researcher degrees of freedom
(Gelman and Loken, 2014). Another approach is
to run separate models for each time point (or even
each electrode) to look for the emergence of an ef-
fect. This necessitates complex statistical tests to
monitor for inflated Type I error (see, e.g., Blair
and Karniski, 1993; Laszlo and Federmeier, 2014,
for discussion) and to control for autocorrelation
across time points (Smith and Kutas, 2015a,b).

We explore an alternative approach to the anal-
ysis of ERP data in language studies that substan-
tially reduces such researcher degrees of freedom:
directly decoding the raw electroencephalography
(EEG) measurements by which ERPs are col-
lected. Inspired by multimodal tasks like image
captioning (see Hossain et al., 2019, for a re-
view) and visual question answering (Antol et al.,
2015), we propose to model EEG using standard
convolutional neural networks (CNNs) pre-trained
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under an autoencoding objective. The decoder
CNN can then be decoupled from its encoder and
recoupled with any language processing model,
thus enabling explicit quantitative comparison of
such models. We demonstrate the efficacy of this
framework by using it to compare existing sen-
tence processing models based on surprisal and/or
static word embeddings with novel models based
on contextual word embeddings. We find that
surprisal-based models actually outperform con-
textual word embeddings on their own, but when
combined, the two outperform either model alone.

2 Models

All of the models we present have two compo-
nents: (i) a pre-trained CNN for decoding raw
EEG measurements time-locked to each word in
a sentence; and (ii) a language model from which
features can be extracted for each word—e.g. the
surprisal of that word given previous words or its
contextual word embedding. An example model
structure using ELMo embeddings (Peters et al.,
2018) is illustrated in Figure 1.

Convolutional decoder For all models, we use a
convolutional decoder pre-trained as a component
of an autoencoder. To reduce researcher degrees of
freedom, the decoder architecture is selected from
a set of possible architectures by cross-validation
of the containing autoencoder.

The autoencoder consists of two parts: (a) a
convolutional encoder that finds a way to best
compress the ERP signals; and (b) a convolutional
decoder with a homomorphic architecture that re-
constructs the ERP data from the compressed rep-
resentation. ERPs were organized into a 2D ma-
trix (channel × time points). For the encoder,
we pass the ERPs through multiple interleaved
1D convolutional and max pooling layers with re-
ceptive fields along the time dimension, shrinking
the number of latent channels at each step. Cor-
respondingly, for the decoder part, we use a ho-
momorphic series of 1D transposed convolutional
layers to reconstruct the ERP data.

At train time, the decoder weights are frozen,
and the encoder is replaced by one of the language
models described below. This entails fitting an in-
terface mapping—a linear transformation for each
channel produced by the encoder—from the fea-
tures extracted from the language model into the
representation space output by the encoder.

Language models We consider a variety of fea-
tures that can be extracted from a language model.

Surprisal We use the lexical surprisal
− log p(wi | w1, . . . , wi−1) obtained from a RNN
trained by Frank et al. (2015).

Semantic distance Following Frank and
Willems (2017), we point-wise average the GloVe
embedding (Pennington et al., 2014) of each word
prior to a particular word to obtain a context
embedding and then calculate the cosine distance
between the context embedding and the word
embedding for that word. We use the GloVe
embeddings trained on Wikipedia 2014 and
Gigaword 5 (6B tokens, 400K vocabulary size).

Static word embeddings We also consider
the GloVe embedding dimensions as features. We
do not tune the GloVe embeddings using an ad-
ditional recurrent neural network (RNN), instead
just passing the them through a multi-layer percep-
tron with one hidden layer of tanh nonlinearities.
The idea here is that the GloVe-only model tells us
how much the distributional properties of a word,
outside of the current context, contribute to ERPs.

Contextual word embeddings We consider
contextual word embeddings generated from
ELMo (Peters et al., 2018) using the allennlp
package (Gardner et al., 2017). ELMo produces
contextual word embeddings using a combination
of character-level CNNs and bidirectional RNNs
trained against a language modeling objective, and
thus it is a useful contrast to GloVe, since it cap-
tures not only a word’s distributional properties,
but how they interact with the current context.

We take all three layers of the hidden layer out-
put in the ELMo model and concatenate them. To
ensure a fair comparison with the surprisal- and
GloVe-based models, we use the same tuning pro-
cedure employed for the static word embeddings.
Further, because sentences are presented incre-
mentally in ERP experiments and because ELMo
is bidirectional and thus later words in the sen-
tence will affect the word embeddings of previous
words, we do not obtain an embedding for a par-
ticular word on the basis of the entire sentence, in-
stead using only the portion of the sentence up to
and including that word to obtain its embedding.

Combined models We also consider models
that combine either static or contextual word em-
bedding features with frequency, surprisal, and se-
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Figure 2: Original ERPs and ERPs decoded from the
trained autoencoder of an example trial. a) ERPs from
all 32 channels (denoted by color). b) Original (solid)
and decoded ERPs (dashed) for example electrodes.

mantic distance. The latter features were concate-
nated onto the tuned word embeddings before be-
ing passed to the interface mapping.

3 Experiments

We use the EEG recordings collected and modeled
by Frank and Willems (2017). In their study, 24
subjects read sentences drawn from natural text.
Sentences were presented word-by-word using a
rapid serial visual presentation paradigm. We use
the ERPs of each word epoched from -100 to
700ms and time-locked to word onset from all the
32 recorded scalp channels. After artifact rejection
(provided by Frank and Willems with the data),
this dataset contains 41,009 training instances.

Pre-training To select which decoder to use, we
compare the performance of two CNN architec-
tures motivated by well-known properties of EEG.
The first architecture has 5 latent channels and 9
time steps. Given the sampling rate and size of
the input (250Hz, 200 time steps), this roughly
corresponds to filtering the EEG data with alpha
band frequency (∼ 10Hz). The other has 10 la-
tent channels and 20 time steps, thus lying within
the range of beta band activity (∼ 25Hz). In ad-
dition to these two architectures, we also examine
whether including subject- and electrode-specific
random intercepts improves model performance.

We conduct a 5-fold cross-validation for each
architecture to find the one that has the best per-
formance in reconstructing ERP data. As shown
in Table 1, the beta models perform better overall

than alpha models, since they likely capture both
alpha and beta band activities. Adding subject-
specific intercept, on the other hand, did not
greatly improve the model performance.

Model No Intercept Intercept
alpha 49.9 (0.532) 49.7 (0.533)
beta 33.5 (0.686) 32.7 (0.692)

Table 1: Mean MSE and R2 (in parentheses).
Figure 2 shows the reconstructed ERPs of the beta
model on one trial. The autoencoder can recon-
struct the ERP signal very well. The selected
channels are illustrative of the reconstruction ac-
curacy across all channels. We thus selected the
beta model without subject-specific intercept as
the decoder for our consequent models.

Training The interface mapping and (where ap-
plicable) word embedding tuner are trained un-
der an MSE loss using mini-batch gradient de-
scent (batch size = 128) with the Adam optimizer
(learning rate=0.001 and default settings
for beta1, beta2, and epsilon) implemented
in pytorch (Paszke et al., 2017). Each model is
trained for 200 epochs. Since we need at least one
preceding word to compute contextual word em-
beddings, we do not include the first word of the
sentence. This left ERPs for 1,618 word tokens
per subject (638 word types). After excluding tri-
als containing artifacts, a total of 37,112 training
instances remain.

Development To avoid overfitting, we use early
stopping and report the models with the best per-
formance on the development set. We did a pa-
rameter search over three different weight decays:
1e-5, 1e-3, 1e-1. For each model, we chose
the weight decay that produced the best mean
performance on held-out data in a 5-fold cross-
validation.

Baselines As a baseline we train an intercept-
only model that passes a constant input (optimized
to best predict the data) to the decoder. In addi-
tion, we fit a baseline model that only has word
frequency as a feature. Frequency is also included
as an additional feature in all models.

Metrics To account for the fact that our model
performance is bounded by the performance of the
autoencoder, we report a modified form of R2 to
evaluate the overall model performance.

R2
mod = 1− MSEmodel −MSEautoencoder

MSEintercept −MSEautoencoder
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Model R2
mod 95% CI

Frequency 19.5 [18.5, 20.7]
F + Surp 37.4 [36.5, 38.3]

F + SemDis 36.1 [32.3, 38.4]
F + GLoVE 35.0 [31.8, 38.2]
F + ELMo 35.2 [34.3, 36.2]
F + S + SD 46.6 [43.5, 49.7]

F + S + SD + GloVe 47.1 [43.2, 49.4]
F + S + SD + ELMo 49.5 [48.9, 50.1]

Table 2: Proportion variance explained by each model
(×100) and confidence interval across folds computed
by a nonparametric bootstrap. F = frequency, S(urp) =
surprisal, S(em)D(is) = semantic distance.

4 Results

Table 2 shows theR2
mod metric for each model. We

see that both surprisal and semantic distance out-
perform both types of word embedding features,
all of which outperform frequency alone. When
combined, surprisal and semantic distance outper-
form either alone, and further gains can be made
with the addition of either static (GloVe) or con-
textual (ELMo) embedding features. The addition
of contextual embedding features increases perfor-
mance more than the addition of static word em-
bedding features, such that there is some benefit to
capturing context over and above that provided by
surprisal and semantic distance.

Time course analysis To understand where in
time each predictor improved model performance,
we examine the increase in correlation over the in-
tercept model at each time point (Figure 3). There
are roughly three regions where the language mod-
els outperform the intercept model. The first is
right after 100ms post word onset: correspond-
ing to the N1 component, which is typically con-
sidered to reflect perceptual processing; the sec-
ond is between 200 and 350ms: corresponding to
the N250 component, which correlates with lexi-
cal access (Grainger et al., 2006; Laszlo and Fe-
dermeier, 2014); and the third is between 300ms
and 500ms: corresponding to the N400, which is
typically associated with semantic processing.

Consistent with previous findings (Hauk et al.,
2006; Laszlo and Federmeier, 2014; Yan and
Jaeger, 2019), adding frequency into the model
improved model performance in all three time
windows. Also consistent with the literature,
adding surprisal and semantic distance improved
model performance in the N400 time window

Figure 3: Increase in Pearson’s R between predicted
and actual ERPs. Lines show GAM smooth over time.

(Frank and Willems, 2017; Yan and Jaeger, 2019).
Models with word embeddings do not differ

much from the models containing only frequency,
surprisal, and semantic distance, with the biggest
difference around 300ms post word onset. This
might indicate an effect in the early N400 time
window. This could also indicate that processes
commonly associated with the N250 may be bet-
ter captured by the models containing word em-
beddings. If so, it is less expected and potentially
interesting, since most of our models have no ac-
cess to perceptual properties of the input—with
the possible exception of ELMo, whose charCNN
may capture orthographic regularities. These ef-
fects could reflect our models’ ability to capture
top-down lexical processing (see, e.g., Penolazzi
et al., 2007; Yan and Jaeger, 2019) or possibly sys-
tematic correlations between higher-level features
and perceptual features.

Part-of-speech analysis Prior work on ERP
during reading distinguishes function word—such
as determiners, conjunctions, pronouns, preposi-
tions, numerals, particles—from content words—
such as (proper) nouns, verbs, adjectives, adverbs
(Nobre and McCarthy, 1994; Frank et al., 2015).
As such, we also examine whether each model’s
performance differs for content words and func-
tion words. We calculate the Pearson’s correlation
between the predicted and actual ERPs for each
word of each model and used linear mixed-effects
model to examine the influence on model fit with
the inclusion of different information. If a model
included a specific type of information, the corre-
sponding predictor is coded as 1, otherwise it was
coded as -1. For example, the surprisal model was
trained with surprisal but not semantic distance, so
the surprisal predictor is 1 for this model and the
semantic distance predictor is -1. We further in-
cluded the interaction between models and word
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Predictor β̂ t
Intercept −0.0013 −0.225

Word Type (Content) 0.0030 2.01 ∗

Frequency 0.0110 21.2 ∗∗

Surprisal 0.0050 13.0 ∗∗

Semantic Distance 0.0040 11.60 ∗∗

GloVe Embeddings 0.0040 10.3 ∗∗

ELMo Embeddings 0.0040 10.1 ∗∗

Freq : Word Type −0.0010 −2.43 ∗

Surp : Word Type 0.0001 0.24
SemDis : Word Type −0.0003 −0.70
GloVe : Word Type 0.0002 0.55
ELMo : Word Type 0.0007 −1.85 +

Table 3: Model estimates and t statistics from mixed-
effects model. ∗∗ : p < 0.01; ∗ : p < 0.05; + : p < 0.1

types (function=-1, content=1).
Table 3 shows the resulting coefficients. Over-

all, models display better performance for content
words than for function words (β̂ = 0.003, t =
2.01, p < 0.05), consistent with previous find-
ings (Frank et al., 2015). Including each type
of information also significantly increased model
fit (ts > 10.1, p < 0.01). There was a signifi-
cant interaction between frequency and word type
(β̂ = −0.001, t = −2.43, p < 0.02): including
frequency increased model performance for func-
tion words more than for content words. There
was also a marginally significant interaction be-
tween ELMo and word type (β̂ = 0.0007, t =
−1.85, p < 0.064), suggesting that including
ELMo embeddings increased model performance
for content words more than for function words.

We also examine the interaction between each
type of information and each part-of-speech.
Overall, the models had worse performance for
particles (β̂ = −0.017, t = −3.37, p < 0.01),
nouns (β̂ = −0.007, t = −1.95, p < 0.051) and
pronouns (β̂ = −0.012, t = −1.76, p < 0.08).
Including each type of information increased over-
all model fit (ts > 6.05, p < 0.01). While
including frequency increased overall model fit,
it increased the model fit for verbs less (β̂ =
−0.003, t = −2.04, p < 0.05). No other effects
reached significance.

5 Related Work

Traditionally, ERP studies of language process-
ing use coarse-grained predictors like cloze rates,
which often lack the precision to differentiate dif-
ferent neural computational models (for discus-

sion, see Yan et al., 2017; Rabovsky et al., 2018).
To overcome such limitations, a main line of attack
has been to extract measures from probabilistic
language models and evaluate them against ERP
amplitudes (Frank et al., 2015; Brouwer et al.,
2017; Rabovsky et al., 2018; Delaney-Busch et al.,
2019; Fitz and Chang, 2018; Szewczyk and Wod-
niecka, 2018; Biemann et al., 2015).

While prior studies have also predicted ERPs
from language model-based features (Broderick
et al., 2018; Frank and Willems, 2017; Hale et al.,
2018), they fit to aspects of the EEG signals that
are unlikely to be related to language processing.
Our approach threads the needle by first finding
abstract structure in the ERPs with a CNN, then
using that knowledge in predicting that structure
from linguistic features. We are not the first to use
CNNs to model EEG/ERPs (Lawhern et al., 2016;
Schirrmeister et al., 2017; Seeliger et al., 2018;
Acharya et al., 2018; Moon et al., 2018), but to
our knowledge, no other work has yet used CNNs
for modeling ERPs during reading.

6 Conclusion

We proposed a novel framework for modeling
ERPs collected during reading. Using this frame-
work, we compared the abilities of a variety of
existing and novel sentence processing models to
reconstruct ERPs, finding that modern contextual
word embeddings underperform surprisal-based
models but that, combined, the two outperform ei-
ther on its own.

ERP data provides a rich testbed not only for
comparing models of language processing, but po-
tentially also for probing and improving the rep-
resentations constructed by natural language pro-
cessing (NLP) systems. We provided one example
of how such probing might be carried out by ana-
lyzing the differences among models as a function
of processing time, but this analysis only scratches
the surface of what is possible using our frame-
work, especially for understanding the more com-
plex neural models used in NLP.
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Abstract

Stabler’s (2013) top-down parser for Minimal-
ist grammars has been used to account for
off-line processing preferences across a vari-
ety of seemingly unrelated phenomena cross-
linguistically, via complexity metrics measur-
ing “memory burden”. This paper extends the
empirical coverage of the model by looking
at the processing asymmetries of Italian rela-
tive clauses, as I discuss the relevance of these
constructions in evaluating plausible structure-
driven models of processing difficulty.

1 Introduction

Recent studies have shown that a top-down parser
for Minimalist grammars (MGs; Stabler, 1996,
2013)) can be combined with complexity metrics
to relate parsing behavior to memory usage, and
successfully used to model sentence processing
preferences across a variety of phenomena cross-
linguistically (Kobele et al., 2013; Gerth, 2015;
Graf et al., 2017). This kind of work follows a
line of research on syntactic processing that sees
computational models provide a transparent, inter-
pretable linking theory between syntactic assump-
tions and processing behavior (Joshi, 1990; Ram-
bow and Joshi, 1994; Hale, 2011). Importantly, at
the core of the particular approach adopted here
is a theory of grammatical structure driving off-
line processing cost, thus connecting longstand-
ing ideas about memory resources with explicit
syntactic analyses in rigorous ways. Extending
the range of phenomena correctly modeled by the
parser is then going to be crucial to confirm the
empirical feasibility of the approach.

Here, I adopt Kobele et al.’s (2013) imple-
mentation of Stabler’s (2013) top-down traver-
sal algorithm, coupled with the set of complex-
ity metrics defined by Graf et al. (2017). We test
the MG parser’s performance on the processing

asymmetries reported for Italian relative clauses,
which have been object of extensive study in the
psycholinguistic literature. Apart from conform-
ing to a well-attested cross-linguistic preference
for subject over object relatives, Italian speak-
ers also show increased processing difficulties
when encountering relative clauses with subjects
in postverbal position. This difficulty gradient has
often been accounted for in the literature in terms
of the cost of local ambiguity resolution. Since in
the particular formulation of Kobele et al. (2013)
the MG parser acts as an oracle and deliberately
ignores structural ambiguity, these constructions
thus make for a challenging testing ground for a
model attempting to account for processing con-
trasts just in terms of structural complexity.

The paper is structured as follows. Section 2
presents an informal introduction to MGs and Sta-
bler’s (2013) top-down parser, and an overview of
previous work on combining the MG parser with
complexity metrics measuring memory burden.
Section 3 discusses Italian relative clause asym-
metries and our modeling assumptions. Section 4
looks at the modeling results, and shows how the
MG parser succeeds in predicting the correct pro-
cessing preferences. Section 5 concludes with a
brief discussion of possible limits of the model,
and promising future work.

2 Preliminaries

2.1 Minimalist Grammars

MGs (Stabler, 1996, 2011) are a highly lexical-
ized, mildly context-sensitive formalism incorpo-
rating the structurally rich analyses of Minimalist
syntax — the most recent version of Chomsky’s
transformational grammar framework. Therefore,
they have proven to be a fruitful grammar for-
malism in investigating how ideas from theoreti-
cal syntax weight on sentence processing. While
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Figure 1: Phrase structure tree (a), MG derivation tree (b), and annotated derivation tree (c) for Steven likes Connie.
Boxed nodes in (c) are those with tenure value greater than 2, following (Graf and Marcinek, 2014).

much work has been done on the formal proper-
ties of MGs, the fine-grained details of the formal-
ism are unnecessary given the focus of this paper.
Thus, I introduce MGs in a mostly informal way,
as my main goal is to provide the reader with an
intuitive understanding of the core data structure
the parser is going to operate on: derivation trees.

An MG grammar is a set of of lexical items
(LIs) consisting of a phonetic form and a finite,
non-empty string of features. They distinguish two
types on features, each with either positive or
negative polarity: Merge features (written here in
upper caps, with the exception of little v), and
Move features (in lower caps). LIs are assem-
bled via two feature checking operations: Merge
and Move. Informally, Merge combines two LIs if
their respective first unchecked features are Merge
features of opposite polarity. Move removes a
phrase from an already assembled tree and dis-
places it to a different position (Stabler, 2011). In-
tuitively, Merge encodes subcategorization, while
Move long-distance movement dependencies.

MGs succinctly encode the sequence of Merge
and Move operations required to build the phrase
structure tree for a specific sentence into deriva-
tion trees (Michaelis, 1998; Harkema, 2001; Ko-
bele et al., 2007). For instance, Fig. 1a and Fig. 1b
compare these two kind of trees for a simplified
analysis of the sentence Steven likes Connie. In
the derivation tree (Fig. 1b), all leaf nodes are la-
beled by LIs, while unary and binary branching
nodes are labeled as Move or Merge, respectively.
Crucially, the main difference between the phrase
structure tree and the derivation tree is that in the
latter, moving phrases remain in their base po-

sition, and their landing site can be fully recon-
structed via the feature calculus. Thus, the final
word order of a sentence is not directly reflected
in the order of the leaf nodes in a derivation tree.

Importantly, MG derivation trees form a regular
tree language, and thus — modulo a more com-
plex mapping from trees to strings — can be re-
garded as a simple variant of context-free gram-
mars (CFG), which have been studied extensively
in the computational parsing literature. This is the
crucial insight behind Stabler’s top-down parser.

2.2 MG Parsing

Stabler’s (2013) parser for MGs is a variant of a
standard depth-first, top-down parser for CFGs: it
takes as input a sentence represented as string of
words, hypothesizes the structure top-down, veri-
fies that the words in the structure match the input
string, and outputs a tree encoding of the sentence
structure. Basically, the parser scans the nodes
from top to bottom and from left to right; but since
the surface order of lexical items in the derivation
tree is not the phrase structure tree’s surface or-
der, simple left-to-right scanning of the leaf nodes
yields the wrong word order. Thus, while scanning
the nodes, the MG parser must also keep tracking
the derivational operations which affect the linear
word order.

Without delving too much in technical details,
the parsing procedure can be outlined slightly
more clearly as follows: I) hypothesize the top of
structure and add nodes downward (toward words)
and left-to-right; II) if move is predicted, it triggers
the search for mover⇒ build the shortest path to-
wards predicted mover; III) once the mover has
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been found, continue from the point where it was
predicted (Kobele et al., 2013).

Essential to this procedure is the role of mem-
ory: if a node is hypothesized at step i, but can-
not be worked on until step j, it must be stored
for j − i steps in a priority queue. To make the
traversal strategy easy to follow, I adopt Kobele
et al.’s (2013) notation, in which each node in the
tree is annotated with an index (superscript) and an
outdex (subscript). Intuitively, the annotation indi-
cates for each node in the tree when it is first con-
jectured by the parser (index) and placed in the
memory queue, and at what point it is considered
completed and flushed from memory (outdex). In
the rest of the paper I adopt an annotated, simpli-
fied version of derivation trees, with internal nodes
explicitly labelled and dashed arrows indicating
movement relations (as shown in Fig. 1c).1

Finally, note that in Stabler’s original formula-
tion the parser is equipped with a search beam dis-
carding the most unlikely predictions. In this paper
though, I follow Kobele et al. (2013) in ignoring
the beam and assuming that the parser is equipped
with a perfect oracle, which always makes the
right choices when constructing a tree. This ide-
alization is clearly implausible from a psycholin-
guistic point of view. However, it is made with
a precise purpose in mind: to ignore the cost of
choosing among several possible predictions and,
by assuming a deterministic parse, to focus on
the specific contribution of syntactic complexity
to processing difficulty. In Sec. 3 I will discuss
how assuming an idealized parser is exactly what
makes Italian RCs an interesting test case.

2.3 Complexity Metrics
In order to allow for psycholinguistic predictions,
the behavior of the parser must be related to pro-
cessing difficulty via a linking theory, which here
takes the form of complexity metrics. Specifically,
I employ complexity metrics that predict process-
ing difficulty based on how the geometry of the
trees built by the parser affects memory usage.

Extending previous work on MG parsing (Ko-
bele et al., 2013; Graf and Marcinek, 2014; Gerth,
2015), Graf et al. (2017) distinguish three cog-
nitive notions of memory usage: I) how long a
node is kept in memory (tenure); II) how many
nodes must be kept in memory (payload); or III)

1Note that, due to the fact that intermediate landing sites
for moved phrases do not affect the traversal strategy, they
not explicitly marked by movement arrows.

how many bits a node consumes in memory (size).
Tenure and payload for each node n in the tree
can be easily computed via the node annotation
scheme of Kobele et al.: a node’s tenure is equal
to the difference between its index and its outdex;
the payload of a derivation tree is computed as
the number of nodes with a tenure strictly greater
than 2. Defining size in an informal way is slightly
trickier, as its original conception was based on
how information about movers is stored by Sta-
bler’s top-down parser (for a technical discussion,
see Graf et al., 2015). Procedurally, the size of the
parse item corresponding to each node n can be
simply computed by exploiting our simplified rep-
resentation of derivation trees: it corresponds to
the number of nodes below n that have a move-
ment arrow pointing to somewhere above n.2 For
example, referring to the annotated tree in Fig. 1c,
the size of vP is 1, while the size of VP is 0.
In practice, size encodes how many nodes in a
derivation consume more memory because a cer-
tain phrase m moves across them.

With the exception of payload, these concepts
are not exactly metrics we can use to directly com-
pare derivations. What we are missing is a way for
them to be applied to a given derivation as mea-
sures of overall processing difficulty. In order to
do so, these notions of memory have been used to
define a vast set of complexity metrics measuring
processing difficulty over a full derivation tree. In
this paper, we look at Italian relative clause asym-
metries using the full set of 1600 metrics as de-
fined in Graf et al. (2017). However, in what fol-
lows we only give a general intuition of how such
metrics can be defined, and we refer the reader to
Graf et al. for the detailed formal definitions. Im-
portantly, just a few of these metrics are enough to
account for the contrasts we are interested in.

Kobele et al. (2013) show that tenure can be as-
sociated to quantitative values by defining metrics
ike MAXT := max({tenure-of(n)}) and SUMT
:=

∑
n tenure-of(n). MAXT measures the max-

imum amount of time any node stays in mem-
ory during processing, while SUMT measures the
overall amount of memory usage for all nodes
whose tenure is not trivial (i.e., > 2). It thus
captures total memory usage over the course of
a parse. Building on these findings, Graf and
Marcinek (2014) show that MAXT (restricted to

2Thus, as a reviewer correctly notes, size is sensitive to
the hierarchical distance between the filler and the gap.
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pronounced nodes) makes the right difficulty pre-
dictions for several phenomena, such as right em-
bedding vs. center embedding, nested dependen-
cies vs. crossing dependencies, as well as a set of
contrasts involving relative clauses.

Extending Graf & Marcinek’s (2014) analysis
of relative clause constructions, Graf et al. (2015)
argue for the insufficiency of MAXT as a single,
reliable metric. They then introduce several new
metrics, inspired by those defined for tenure. For
example, they define an the equivalent of SUMT
for size, which measures the overall cost of main-
taining long-distance filler-gap dependencies over
a derivation. Let M be the set of all nodes of
derivation tree t that are the root of a subtree un-
dergoing movement. For each m ∈ M , i(m) is
the index of m and f(m) is the index of the high-
est Move node that m’s subtree is moved to. Then
SUMS is defined as

∑
m∈M i(m)− f(m).

Graf et al. (2015) also introduce the idea of
ranked metrics of the type 〈M1,M2, . . . ,Mn〉,
similar to constraint ranking in Optimality The-
ory (Prince and Smolensky, 2008): a lower ranked
metric matters only if all higher ranked metric
have failed to pick out a unique winner (e.g., if
two constructions result in a tie over MAXT). This
suggestion is fully explored in Graf et al. (2017),
which show that when complexity metrics are al-
lowed to be ranked in such a way the total num-
ber of possible metrics quickly reaches an astro-
nomical size. However, surveying the variety of
previously modeled phenomena, the authors also
suggest that the number of metrics truly needed
to account for human processing contrasts can be
reduced to a small number of core metrics (partic-
ularly, they point toward a combination of MAXT
and SUMS), an hypothesis that seems supported
by recent work on several different constructions
(Liu, 2018; Lee, 2018).

3 Modeling Italian RCs

3.1 Processing Asymmetries

Restrictive relative clauses (RCs) in Italian have
been the focus of extensive experimental stud-
ies from the perspective of comprehension (Vol-
pato and Adani, 2009), production (Belletti and
Contemori, 2009), and acquisition (Volpato, 2010;
Friedmann et al., 2009). Italian speakers conform
to the general cross-linguistic preference for sub-
ject over object RCs (Frauenfelder et al., 1980;
King and Kutas, 1995; Schriefers et al., 1995,

a.o.), so that (1) is easier to process than (2):

(1) Il cavallo che ha inseguito i leoni
The horse that has chased the lions
“The horse that chased the lions” SRC

(2) Il cavallo che i leoni hanno inseguito
The horse that the lions have chased
“The horse that the lions chased” ORC

Interestingly, Italian also allows for sentences
like (3), ambiguous between a SRC interpretation
(3a) and an ORC interpretation (3a) with the em-
bedded subject expressed postverbally:

(3) Il cavallo che ha inseguito il leone
The horse that has chased the lion
a. “The horse that chased the lion” SRC

b. “The horse that the lion chased” ORCp

Although postverbal subject constructions are
very common in Italian, in such cases native
speakers show a marked preference for the SRC
interpretation over the ORCp one. Sentences like
(3) can be disambiguated by grammatical cues like
subject-verb agreement:

(4) Il cavallo che hanno inseguito i leoni ORCp
The horse that have chased the lions
“The horse that the lions chased”

However, even in unambiguous cases like (4),
studies report increased efforts with ORCp, lead-
ing to the following difficulty gradient: SRC <
ORC < ORCp (Utzeri, 2007, a.o.).

The contrast between SRCs and ORCs has been
well studied in the past, and it is compatible
with a variety of models, such as surprisal (Levy,
2013), cue-based memory retrieval (Lewis and Va-
sishth, 2005), the active filler strategy (Frazier,
1987), the Dependency Locality Theory (Gibson,
1998, 2000), the Competition Model (Bates and
MacWhinney, 1987), the Minimal Chain Principle
(De Vincenzi, 1991), among many. The increased
complexity reported for ORCs with postverbal
subjects comes as a challenge to some of these
models (e.g., for the Competition model and De-
pendency Locality Theory; Arosio et al., 2009).
However, their processing profile can be explained
in terms of economy of gap prediction and cost
of structural re-analysis, due to the possible am-
biguity in ORCps at the embedded subject site —
where the parser has the choice of either postu-
lating a null pronominal subject or establishing
a filler-gap dependency. Importantly though, the
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Figure 2: Annotated derivation trees for right-embedding (a) SRC, (b) ORC, and (c) ORCp.

aim of this paper is not to argue for the correctness
(or lack thereof) of these accounts. Our purpose is
to extend previous evaluations of memory metrics
for a top-down MG parser as a reliable model of
processing difficulty.

As discussed above, the MG parser has already
been successful in accounting for RC asymme-
tries cross-linguistically (Graf et al., 2017; Zhang,
2017). Thus, Italian RCs are the perfect next step
in understanding the plausibility of the model, al-
lowing us to build on the insights provided by
previous work while incrementally exploring new
structural configurations. In particular, the fact that
by assumption the MG parser ignores structural

ambiguity (thus potential costs associated to re-
analysis) and deterministically builds only the cor-
rect parse, makes ORCs with postverbal subjects
an intriguing test case.

3.2 Syntactic Assumptions
The central tenant of the MG model is to take syn-
tactic commitments seriously, so to explore how
different aspects of sentence structure drive pro-
cessing cost. The choice of a syntactic analysis
is then particularly important. In line with most
of the psycholinguistic literature on Italian RCs,
this paper’s analysis of postverbal subjects follows
Belletti and Leonini (2004, a.o.). Specifically, I as-
sume that in ORCp constructions the subject DP
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[i leoni] is merged in preverbal subject position
Spec,vP, and then raised to a Spec,Focus position
in the clause-internal vP periphery. The whole ver-
bal cluster is raised to a clause-internal Spec,Topic
position; and an expletive pro is base generated
in Spec,TP and co-indexed with the postverbal
subject (Fig. 2c).3 Furthermore, again consistently
with the Italian psycholinguistic literature (Arosio
et al., 2017, a.o.), we adopt a promotion analy-
sis of relative clauses (Kayne, 1994). That is to
say, the head noun starts out as an argument of
the embedded verb and undergoes movement into
the specifier of the RC. The RC itself is treated as
an NP, and selected by the determiner that would
normally select the head noun in more traditional,
head-external accounts (Chomsky, 1977).

4 Modeling Results

4.1 Core Results

I tested the parser performance on right-branching
restrictive RCs of the form (pro) vedo il cavallo
[RC che ...] (I see the horse [RC that ...]) — the
RC head raising to the matrix object position, and
the embedded relative clause either an SRC (1),
an ORC (2), or an ORCp (4). The corresponding
derivation trees, annotated by the MG parser with
index and outdex values at each node, are shown
in Fig. 2a, Fig. 2b, and Fig. 2c respectively. Re-
call that by assumption the parser is equipped with
a perfect oracle, and that the complexity metrics
are only sensitive to structural differences (i.e., the
MG model is blind to agreement relationships).
Contrasting (1) and (4) is then equivalent to con-
trasting (3a) and (3b). Thus, to reiterate the central
tenants of the approach, these comparisons aim to
model both the preference for SRC in ambiguous
cases, and the overall increased processing diffi-
culty of ORCps, just in terms of structural differ-
ences.

Modeling results show that the parser correctly
predicts the gradient of difficulty observed for Ital-

3Technically, Belletti & Leonini (2004) assume that VP,
not vP, raises to Spec,Topic. This follows from the authors
adopting Collins (2005)’s smuggling analysis of passives di-
rectly. However, if we follow the traditional view of active
verbs moving out of their base position to adjoin to little v,
this analysis cannot hold as it would derive the wrong word
order. Thus, I raise the whole vP cluster to Topic. This also
seems to be in the spirit of what suggested by Belletti and
Contemori (2009). But note that the modeling results in the
following section would remain mostly unchanged even if we
were to leave the vP shell in its base position, while both verb
and object raise above.

ian RCs (SRC < ORC < ORCp), across a vari-
ety of complexity metrics.4 In fact, the increased
difficulty of ORCps over both SRCs and ORCs
is predicted by every base (i.e., non ranked) met-
rics defined in (Graf et al., 2017). However, since
the relationship between complexity metrics and
the structure of a specific derivation tree is sub-
tle, a detailed discussion of why each metric fares
the way it does is not feasible within the scope of
this paper. In what follows, I focus on two metrics
that have been noted in previous studies as con-
sistent predictors of processing difficulty: MAXT
and SUMS.

The fact that MAXT (SRC: 8/che; ORC: 11/ha;
ORCp:16/Foc) succeeds in predicting the reported
processing preferences is encouraging, given the
past success of this metric on many different con-
structions.5 In particular, observe how the string-
driven traversal strategy of the MG parser makes
tenure sensitive to minor structural differences. In
the SRC, che is introduced at step 15. Since, based
on information in the input string, the parser is
looking for the the subject DP il cavallo, che has
to be kept in memory until the latter is found.
Thus, it is flushed from memory at step 23. In
the ORC, che is also put in memory at step 15.
However, since the head of the relative clause is
the embedded object, the parser will discard the
standard CFG top-down strategy, ignore the sub-
ject DP, and keep expanding nodes until il cavallo
is found. Thus, che cannot be flushed from mem-
ory until step 25.

The difference between SRC and ORC also
highlights how tenure interacts with movement.
Once che has been found in the SRC tree, the next
node in the stack is ha, which can be discharged
from memory immediately after. In the ORC how-
ever, the parser still has to find the subject DP.
Thus, ha has to be kept in memory for the three
additional steps that are required to conjecture and
scan il leone.

Similarly, the maximum tenure recorded on the
Foc head in ORCp highlights the cost of the ad-
ditional movement steps postulated for this con-
struction. The Foc node needs to wait until both
the RC object and subject are built and scanned,
before being itself discharged from the memory

4https://github.com/CompLab-StonyBrook/mgproc.
5These predictions hold even if we ignore tenure on un-

pronounced nodes — as suggested by Graf et al. (2017)
— since we would obtain (SRC: 8/that; ORC: 11/has;
ORCp:14/that.
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Figure 3: Annotated derivation trees for left-embedding (a) SRC (b) ORC and (c) ORCp.

queue.

4.2 Additional Simulations

From one side, the successful predictions made
by MAXT are a welcome result, as they con-
firm the sensitivity of tenure-based metrics to fine-
grained structural details. From the other though,
one might wonder exactly how much these differ-
ences depend on the specific case study we are
modeling. In this section, I partially address this
issue by looking at variations in the construction
of the RCs, and at two more processing asymme-
tries involving Italian post-verbal subjects.6 I re-
turn to the general issue of the sensitivity of the
MG results to syntactic choices in Sec. 5.

4.2.1 Left-Embedding RCs
Due to the string-driven nature of its traversal
strategy, the MG parser is peculiarly sensitive to
the depth of left- vs. right-embedding construc-
tions. To control for this, I tested the parser pre-

6Trees for these simulations can be found in Appendix A.

dictions on sentences of the form Il cavallo [RC

che ...] salta la siepe (The horse [RC that ...]
jumps the fence, Fig. 3), with the head noun rais-
ing to the subject position in the matrix clause.
Here, MAXT predicts that SRC and ORC should
have the same processing complexity (they tie),
since their memory differences are flattened by
the increased tenure on the matrix v’ (the Merge
node expanding the matrix vP). The tenure of this
node depends on the size of the matrix subject —
thus, on the size of the relative clause. Since the
size of the SRC and of the ORC is the same (the
only thing changing being the site of extraction),
MAXT for the whole sentence will never vary be-
tween the two constructions. This issue is solved
by SUMS, which correctly predicts SRC < ORC,
as well as the SRC/ORC < ORCp contrast.

Interestingly, MAXT also correctly predicts
the increased difficulty of ORCps in these left-
embedding cases. As seen above, MAXT flattens
the differences in clauses with subject-modifying
SRC/ORCs because the size of the RCs in subject
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position is identical. This is not the case for OR-
Cps, due the sequence of projections and move-
ment steps involved in deriving postverbal sub-
jects from the base SVO order. Thus, while MAXT
in these sentences in still measured on the matrix
v’ (28), this value is also picking up on the addi-
tional steps required to derive the internal structure
of the ORCp construction.

4.2.2 Postverbal Subjects in Matrix Clauses
In order to understand the complexity of the gram-
matical assumptions made for the postverbal sub-
jects, we can look at processing asymmetries of
postverbal constructions outside of RC environ-
ments. Consider Italian declarative sentences with
a lexically empty subject position, like in (5).

(5) Ha chiamato Gio
Has called Giovanni
a. “He/she/it called Gio” SVO

b. “Gio called” VS

Without contextual/discourse cues, sentences
like (5) are structurally ambiguous between a null-
subject interpretation (5a) and a postverbal subject
one (5b), with a marked processing preference for
(5a) as compared to (5b) (De Vincenzi, 1991).

As summarized in Tbl. 1, both MAXT and
SUMS predict the correct preferences under Bel-
letti and Leonini (2004)’s analysis, as the Top and
Foc heads have to wait for the whole vP to be
found, before they can be discharged from mem-
ory themselves (cf. Fig. 4 and Fig. 5).

4.2.3 Unaccusatives vs. Unergatives
Finally, it is interesting to look at declarative sen-
tences containing intransitive verbs of two classes:
unaccusatives (6) and unergatives (7).

(6) È arrivato Gio
Is arrived Gio
“Gio arrived” Unaccusative

(7) Ha corso Gio
Has ran Gio
“Gio ran” Unergative

While on the surface these sentences look very
similar, they differ in that the subject originates in
postverbal position for unaccusatives but in pre-
verbal position for unergatives (Belletti, 1988).
Importantly, De Vincenzi (1991) reports faster
reading times and higher comprehension accuracy
for (6) over (7), a preference that is again correctly
captured both by MAXT and SUMS (cf. Fig. 6

Clause Type MaxT SumS
obj. SRC 8/che 18
obj. ORC 11/ha 24
obj. ORCp 16/Foc 31
subj. SRC 21/v’ 37
subj. ORC 21/v’ 44
subj. ORCp 28/v’ 56
matrix SVO 3/ha/v’ 7
matrix VOS 7/Top/Foc 11
VS unacc 2/vP 3
VS unerg 7/Top/Foc 11

Table 1: Summary of MAXT (value/node) and SUMS
by construction. Obj. and subj. indicate the landing site
of the RC head in the matrix clause.

and Fig. 7). In particular, due to unaccusative sub-
jects being base-generated postverbally, MAXT
for these constructions is the lowest it can be (2,
the tenure of any right sibling which is predicted
and immediately discharged).

5 Discussion

The success of a top-down parser in modeling the
processing difficulties of Italian RCs adds support
to the MG model as a valuable theory of how pro-
cessing cost is tied to structure.

As some reviewers point out though, one poten-
tial concern with the plausibility of the approach is
in the degrees of freedom that are left to the model.
In particular, the processing predictions depend
on the interaction of three factors: the parsing
strategy, the syntactic analysis, and the complex-
ity metrics. Here, I put aside the choice of parsing
strategy (but see Hunter, 2018; Stanojević and Sta-
bler, 2018), and briefly address concerns about the
remaining two factors.

Due the large number of existing metrics, it is
conceivable that some combination of syntactic
analysis and metric could have explained any other
processing ranking among sentences. Similarly, it
is possible that any syntactic analysis would make
the right (i.e., empirically supported) predictions
with some metric. Both these possibilities would
undermine the relevance of this kind of model-
ing. Luckily, this does not seem to be the case.
In fact, previous work has ruled out the vast ma-
jority of the existing metrics, by showing their
insufficiency in accounting for some crucial con-
structions across a variety of possible grammatical
analyses (Graf et al., 2017). Thus, it seems that
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underspecification is not an issue in practice.
The results in this paper are indeed consis-

tent with these observations, as they show SUMS
as a reliable complexity metric. Importantly, as
subject-modifying SRCs and ORCs only tie on
MAXT, these findings are also consistent with
Graf et al. (2017)’s hypothesis that SUMS should
be used a secondary metric to adjudicate between
constructions, after they tie on MAXT.7

A second, reasonable concern is how much the
correct predictions depend on the specific syntac-
tic analysis of choice. Due to the richness of ex-
isting analyses and to space constraints, in this pa-
per I only considered an analysis of Italian RCs
and postverbal constructions which had been ex-
tensively referred to in the psycholinguistic liter-
ature. To partially address this concern though, I
showed how SUMS and MAXT not only make the
right predictions for RC constructions under a few
different syntactic configurations, but they also
correctly account for postverbal subject asymme-
tries in different kind of sentences. Nonetheless,
an important future enterprise will be to look at
alternative approaches to postverbal subject con-
figurations, such as right dislocation (Antinucci
and Cinque, 1977; Cardinaletti, 1998), or leftward
scrambling (Ordóñez, 1998). Note though that
these analyses all assume additional movement de-
pendencies in the structure of ORCps compared to
clauses with preverbal subjects. Given what this
paper taught us about SUMS and MAXT, it seems
probable that such dependencies would also be
picked up by these metrics.

Independently on the specific predictions of the
parser for alternative analyses though, the contri-
butions of this line of inquiry would be twofold.
From one side, it will improve our understand-
ing of the MG model, by clarifying which as-
pects of sentence structure drive the parser’s per-
formance, and how they weight on the recruit-
ment of memory resources as measured by differ-
ent metrics. Secondly, grounded in the discrimina-
tive power given to MAXT and SUMS by their suc-
cess across empirical phenomena, comparing the
predictions made by the parser for different anal-
yses of the same construction might help adjudi-
cate between competing theoretical assumptions,
as was the original goal of Kobele et al. (2013).

Clearly, the fact that the parser relies on an ide-
7 SUMS by itself does not seem to be enough, as it fails to

predict the right preferences for contrasts like English right
vs. center embedding (Graf et al., 2017).

alized deterministic search strategy is one of the
(potentially) most contentious assumption of the
MG model, and could thus be used as yet another
objection to the plausibility of the linking theory.
As already mentioned, the goal is not to claim this
as a comprehensive model of processing difficulty,
as a cognitively realistic theory would see multiple
factors interact with each other to derive the cor-
rect contrasts (Demberg and Keller, 2008; Bren-
nan et al., 2016, a.o.). In principle though, the MG
parser can be integrated with several of these addi-
tional factors (e.g., uncertainty; Hunter and Dyer,
2013; Yun et al., 2015). Crucially, the main advan-
tage of the MG model is its transparent specifica-
tion of the parser’s behavior, which clarifies the ef-
fects of structural complexity on memory burden
and would allow us to separate them from other
effects contributing to processing load.

Moreover, while uncertainty is clearly a funda-
mental component of the human sentence process-
ing system, the fact that an account deliberately
abstracting away from all ambiguity can explain
effects that would usually be attributed to it is an
intriguing result. A fascinating open question is
then whether we can characterize those phenom-
ena where ambiguity really is the decisive factor,
and cannot be “eliminated” from the model.

Finally, another advantage of having a compu-
tational model which provides a testable link be-
tween syntactic theory and behavioral data, is that
it allows us to formally integrate structural hy-
potheses in existing psycholinguistic theories in a
way that leads to precise quantitative predictions.
However, as one reviewer observes, the complex-
ity metrics exploited by the MG parser rely on
very weak assumptions about the nature of human
memory. In a sense, this could be considered a
perk, as it leaves the model open to connections
with a variety of sentence processing theories. In
another sense though, this lack of cognitive plau-
sibility weakens the impact of the approach, as it
is often difficult to connect its results to more gen-
eral concerns in the sentence processing literature.
An important future research direction will thus be
to re-evaluate the existing complexity metrics in
light of psychological insights about human mem-
ory mechanisms (cf. Zhang, 2017).
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Figure 4: Annotated derivation tree for the SVO sen-
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Figure 6: Annotated derivation trees for the unac-
cusative sentence in (6)
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Abstract

Inspired by the literature on multisensory inte-
gration, we develop a computational model to
ground quantifiers in perception. The model
learns to pick out of nine quantifiers (‘few’,
‘many’, ‘all’, etc.) the one that is more likely
to describe the percent of animals in a visual-
auditory input containing both animals and ar-
tifacts. We show that relying on concurrent
sensory inputs increases model performance
on the quantification task. Moreover, we eval-
uate the model in a situation in which only
the auditory modality is given, while the visual
one is ‘hallucinanted’ either from the auditory
input itself or from a linguistic caption de-
scribing the quantity of entities in the auditory
input. This way, the model exploits prior asso-
ciations between modalities. We show that the
model profits from the prior knowledge and
outperforms the auditory-only setting.

1 Introduction

Quantifiers (words like ‘some’, ‘most’, ‘all’) have
long been the holy grail of formal semanticists
(see Peters et al. (2006) for an overview). More
recently, they have caught the attention of cogni-
tive scientists, who showed that these expressions
are handled by children quite early in life (Hal-
berda et al., 2008), even before developing the
ability to count (Hurewitz et al., 2006). Though
some effort has been paid to model these high-
frequency expressions from their use in big cor-
pora of texts (Baroni et al., 2012; Herbelot and
Vecchi, 2015), relatively little work has focused on
the models’ ability to quantify using these words.

In computer vision, some focus to the task of
extracting quantities from images has been ex-
pressed through visual question answering, whose
benchmark dataset (Antol et al., 2015) contains
‘count questions’ (e.g., ‘How many Xs have the
property Y?’) that repeatedly turned out to be
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Figure 1: Learning to quantify through a ‘Hub and
Spoke’ model enhanced with prior knowledge. The
Hub learns to integrate multisensory inputs, whose rep-
resentations (Spokes) are affected by such integration
and can be ‘hallucinated’ by prior knowledge. We fo-
cus on how this prior knowledge hallucinates the visual
representation (signalled by the dotted arrow).

rather challenging (Malinowski et al., 2015; Fukui
et al., 2016). While this work paid little atten-
tion to quantifiers, a few recent studies specifically
investigated their computational learning from vi-
sual inputs (Sorodoc et al., 2016; Pezzelle et al.,
2017). These works built on the evidence that (part
of) the meaning of quantifiers is grounded in per-
ception. However, they only experimented with
the visual modality, though the numerical repre-
sentations humans derive from sensory inputs have
been shown to be shared across modalities, e.g.,
vision and sound (Feigenson et al., 2004).

In the literature on multisensory integration it is
well established that redundant information con-
veyed through different sensory inputs leads to
a better performance on semantic tasks (McGurk
and MacDonald, 1976). These findings have
brought researchers to propose the ‘Hub and
Spoke’ model (hence, H&S): concepts are learned
by mutual interaction of the representation pro-
duced by sensory specific processors, the ‘spokes’,
with a transmodal ‘hub’ (Patterson et al., 2007;
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Ralph et al., 2017). The role of the cross-modal
hub is to take each of the spokes’ output and to re-
produce the correct information across the others
by back-propagation (Ralph et al., 2017). There
is evidence that memory recall is affected by the
multisensory context in which the concept was
learned. In particular, it has been shown that a
congruent pair of audiovisual inputs may facilitate
subsequent recall. In other words, we learn to pro-
cess a sound (e.g., ‘meow’ or ‘woof’) and to asso-
ciate it to the visual representation of the entity we
see making it, and this facilitates the recall of the
corresponding concept (i.e., ‘cat’ or ‘dog’).

In this work, we apply the H&S model to the
conceptual learning of quantifiers and study how
the hub learns to integrate the visual and auditory
spoke representations (as illustrated in Figure 1) to
perform the quantification task. That is, the model
has to learn to say that ‘none’, ‘few’, ‘most’, etc.
of the objects in the visual and auditory inputs be-
long to a given category, that of animals. We fo-
cus on 9 common quantifiers and experiment with
visual and auditory inputs strongly aligned (viz.,
aligned at the entity level). We show that

• Using congruent audio visual inputs in-
creases the performance of the model in
learning quantifiers within single-sensory
models;

• The H&S model can generalize to unseen
data quite well. In particular, it generalizes
better when trained on small combinations
and tested on large ones than vice versa.

Furthermore, a second part of our work is based
on an ongoing debate in multisensory integra-
tion, namely whether the processing of sensory
inputs is passive or rather influenced by previ-
ous experience that creates cross-sensory associ-
ations. Within this debate, one of the most influ-
ential frameworks is the Predictive Coding Model
(hence, PCM), according to which prior knowl-
edge affects the representation of perceptual in-
puts (Friston, 2010). There is a general agree-
ment on the predictive effects between visual and
auditory inputs, whereas the role of language in
priming visual perception is still under debate
(see Simanova et al. (2016) for an overview).

Inspired by this work, we compare a single au-
ditory sensory model with a model in which the
processing of the auditory stimuli is facilitated
by prior expectation elicited by either the visual

spoke (implemented as a mapping from the expe-
rienced auditory input to its corresponding visual
representation) or the language input (again im-
plemented as a mapping from language to visual
representations). In Figure 1, the ‘prior’ arrow il-
lustrates this predictive factor. Simplifying some-
what, we simulate a setting where a model, trained
to quantify from co-occurring synchronous audio
visual inputs, is tested on a situation where (a) it
hears but does not see the entities (audio-vision
association prior) or (b) it reads a description of
the entities and hears their sounds but does not
see them (language-vision association prior). We
show that

• Using priors hallucinating the visual repre-
sentation improves the performance of the
model compared to when it receives only au-
ditory inputs;

• Language prior is slightly more effective than
sound prior to hallucinate concurring vision.

2 Related Work

2.1 Multimodal Models
Fueled by the explosion of deep learning, much ef-
fort has been paid in recent years to develop mod-
els that exploit information from various modal-
ities. Attention has been mostly on language
and vision, for which various tasks have been
proposed, i.e. image captioning (Hodosh et al.,
2013), visual question answering (Antol et al.,
2015; Goyal et al., 2017), visual reasoning (An-
dreas et al., 2016; Johnson et al., 2017; Suhr
et al., 2017), visual storytelling (Huang et al.,
2016; Gonzalez-Rico and Fuentes-Pineda, 2018),
and visual dialogue (De Vries et al., 2017). While
all this work combines images with written text,
some other studies employed spoken language to
perform various tasks, such as image-audio re-
trieval (Chrupała et al., 2017; Harwath et al.,
2018). Overall, these works repeatedly showed
that combining information from language and vi-
sion leads to representations that are beneficial in
virtually any task.

A relatively recent strand of research focused
on the integration of visual and sound informa-
tion, where the latter is, e.g., the ‘roar’ of a fast
car (Owens et al., 2016, 2018; Zhao et al., 2018).

More akin to our work is Aytar et al. (2017),
who jointly investigated language, vision, and
sound. By training a deep convolutional network
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for aligned representation learning across the three
modalities, they showed that the emerging align-
ment improved both retrieval and classification
performance. Interestingly, their results also sug-
gested that, even though the network was never
exposed to pairs of sounds and text inputs during
training, an alignment between these two modali-
ties was learned, possibly due to the use of images
as an internal ‘bridge’. We explore the same three
modalities studied by Aytar et al. (2017). How-
ever, we use different models and evaluation set-
tings (to mimic the PCM) and tackle a different
task, namely quantification.

2.2 Computational Models of Quantification

The task of quantification (in the broad sense
of providing some quantitative information), has
been largely explored in computer vision (Seguı́
et al., 2015; Zhang et al., 2015a; Arteta et al.,
2016). In these works, the focus is to provide
the exact number of objects in a scene, and only
rarely it is inspired by cognitive abilities (Zhang
et al., 2015b; Chattopadhyay et al., 2017). Simi-
larly, in the visual question answering community,
the so called ‘number’ questions are almost exclu-
sively about cardinals, with some exceptions in-
cluding generalized quantifiers like every or more
than half (Suhr et al., 2017; Kuhnle et al., 2018).

Inspired by the cognitive skill of Approximate
Number Sense (ANS) is instead Stoianov and
Zorzi (2012), which tested hierarchical generative
networks and showed that they learn ANS as a
statistical property of images. Practically speak-
ing, the model was able to compare one approxi-
mate ‘numerosity’ against another and to perform
a more/less task. Similar high-level cognitive abil-
ities are required to humans to use vague quanti-
fiers such as few, many, or most, whose meaning is
heavily dependent on contextual factors. Using vi-
sual scenes as context, a recent strand of work has
focused on the computational learning of quanti-
fiers with neural networks. One approach tack-
led the task in a visual question answering fash-
ion (Sorodoc et al., 2018), while another aimed at
learning to apply the correct quantifier to a given
scene (Sorodoc et al., 2016; Pezzelle et al., 2017).

More related to our work is Pezzelle et al.
(2018b), which tested a model in the task of pre-
dicting the probability of each quantifier to be used
in a given scene. The network was trained with
probabilities from human participants by Pezzelle

et al. (2018a). We use the same human annotation
but make two steps further: First, we also experi-
ment with auditory inputs; second, we experiment
with different settings inspired by the literature on
multisensory integration.

3 Task and Datasets

3.1 Task

Given an input (a scene) consisting of entities
that are either animals (targets) or artifacts (dis-
tractors), the model has to quantify the former.
For instance, given the image in Figure 2 on the
left, it should assign a high probability to ‘most’,
whereas for the image on the right it should as-
sign a high probability to ‘few’. The inputs are
either unimodal (sound, vision) or multimodal
(sound+real vision, sound+hallucinated vision).
We inherit and adapt to our multimodal datasets
the gold standard annotation collected by Pezzelle
et al. (2018a): Human participants were asked
to select, out of nine quantifiers (‘none’, ‘almost
none’, ‘few’, ‘the smaller part’, ‘some’, ‘many’,
‘most’, ‘almost all’, ‘all’), the one that best re-
ferred to the set of animals depicted in a briefly-
presented visual scene (these scenes were similar,
but not identical to those in Figure 2). Each quanti-
fier turned out to be used to refer to various propor-
tions of animals. For instance, ‘most’ could apply
when animals corresponded to 57%, 60%, 67%,
75% and 80% of the objects. At the same time,
various proportions had different probabilities to
be referred by a given quantifier. With a propor-
tion of 60% animals, for example, the probability
to choose ‘most’, ‘many’ and ‘some’ is 0.52, 0.20
and 0.18, respectively. The models have to learn
the probability distribution associated with each
proportion. Intuitively, ‘none’ and ‘all’ are almost
exclusively used with, respectively, 0% and 100%
animals.

3.2 Datasets

Following Pezzelle et al. (2018a), our datasets
consist of scenes containing animals and artifacts
with a minimum of 3 and a maximum of 20 enti-
ties in total. There are in total 17 proportions, out
of which 8 contain more animals than artifacts, 8
contain more artifacts than animals, and 1 contains
an equal number of them.1 For each proportion

1The proportions obtained by having min. 3 max 20 ob-
jects are: 0%, 10%, 17%, 20%, 25%, 33%, 40%, 43%, 50%,
57%, 60%, 67%, 75%, 80%, 83%, 90%, 100%.
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Figure 2: Visual dataset. Left: ‘most’ (60%) of the
objects are animals, viz. 3:2. Right: ‘few’ (20%) of the
objects are animals, viz. 1:4.

we generated scenes containing all possible com-
binations of cardinalities: For the proportion 0%,
for example, 17 combinations were built, ranging
from 0:3 (0 animals, 3 artifacts) to 0:20.

We built visual and auditory datasets aligned
at the entity level: For each image, we created
the corresponding auditory datapoint containing
the sound of each entity in the image. By so do-
ing, using the terminology of (Aytar et al., 2018),
we obtained strongly aligned visual and auditory
datasets. In total, we used 55 unique animals and
55 unique artifacts. We only used those entities for
which we could have whole-depicting images (not
just parts) and for which we had a corresponding
sound. Furthermore, for each audio-visual input
we created a corresponding linguistic caption de-
scribing the quantities of the entities in it. Details
on the three datasets are provided below.

Visual Dataset Similarly to Pezzelle et al.
(2018b), we built a large dataset of synthetic vi-
sual scenes depicting a variable number of ani-
mals and artifacts on top of a neutral grey back-
ground (see Figure 2). The scenes were auto-
matically generated using the following pipeline:
(a) Natural images depicting target objects (e.g.,
a dog) or distractors (e.g., a car) were randomly
picked up from the 110 entities pre-selected from
the dataset by Kiani et al. (2007). As opposed
to the synthetic dataset of Pezzelle et al. (2018a),
where multiple copies of the same animal/artifact
were reproduced in the scene, we have different
target/distractor instances in each scenario (e.g,
different instances of ‘car’ as in Figure 2 (right)).
However, we do not vary the size and orien-
tation of entities; (b) The proportion of targets
in the scene was chosen by selecting only those
matching the 17 pre-defined proportions men-
tioned above. We generated 17K scenes balanced
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Figure 3: Histogram representing the number of to-
tal objects in the scene for the 17 different proportions
(training set). On top the 17 proportions.

per proportion (1K scenes/proportion), and split
them into train (70%), validation (10%), and test
(20%) sets. The distribution of proportions per to-
tal number of objects in the training set is illus-
trated in Figure 3.

Auditory Dataset We followed a similar pro-
cedure to build the auditory scenes. We took
Audioset (Gemmeke et al., 2017) as our starting
point to obtain sounds corresponding to the enti-
ties since it contains a huge collection of human-
labeled 10-sec sound clips. It is organized as a
hierarchical graph of event categories, covering a
wide range of human and animal sounds, musi-
cal instruments and genres, and common every-
day environmental sounds. We took sounds be-
longing to the categories of ‘animals’ and ‘tools’.
We built our auditory dataset starting from the vi-
sual one described above and obtained the strongly
aligned auditory version. Hence, as in the case
of the visual datapoint, an auditory datapoint can
contain different instances of the same type of
animal/artifact. The auditory dataset consists of
17K scenes again balanced per proportion (1K
scenes/proportion), with the same split as the vi-
sual one and each ‘scene’ containing min 3 max
20 entities out of 110 entities.

Linguistic Dataset For each aligned visual and
auditory input pair, we built a linguistic cap-
tion describing the exact quantities of the entities
present in it (for instance, for the image in Figure 2
(left), we obtain ‘There are one butterfly, two au-
tomobiles and two mammals’). The procedure, il-
lustrated in Figure 4, is as following: (a) We man-
ually annotated each of the 110 entities used to
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Figure 4: Linguistic dataset construction. In red: ran-
domly selected nouns for each entity. Bottom: gener-
ated caption.

build the dataset (55 animals and 55 artifacts) with
3 nouns expressing different levels of an ontologi-
cal hierarchy (e.g., ‘cat’, ‘feline’, ‘mammal’).2 (b)
For each entity present in the audio-visual scene,
we randomly picked one of the three nouns. (c)
For each noun, we counted the number of enti-
ties present in the audio-visual input, assigned that
number to the noun and pluralized it, if necessary.
(d) In order to account for more variability, we
started the linguistic caption by choosing one of
six possible starting phrases.3 We obtained cap-
tions with on average 10.5 nouns (standard devia-
tion: 4.53).

Sensory Representations The vector represen-
tation of the visual scene is extracted using Incep-
tion v3 CNN (Szegedy et al., 2016) pretrained on
ImageNet (Deng et al., 2009) from the last aver-
age pooling layer which consists of 2048-d visual
vectors.

For the auditory dataset, we built the repre-
sentation of each entity and the scenes contain-
ing them as following. We started from the au-
dio features computed with the VGG-inspired au-
ditory model described in Hershey et al. (2017)
which has been trained on a preliminary version
of YouTube-8M.4 For each second of a sound clip,
the model produces a 128-d vector; hence each 10-
sec sound clip of the Audioset dataset (Gemmeke
et al., 2017) would be represented by a 1280-d

2Note that in the case of animals, this hierarchy is much
more easier to build (e.g. Linnaean taxonomy) while for the
artifacts the 3 nouns are generally more often synonyms and
often do not represent a real hierarchy/taxonomy.

3 ‘There are . . . ’ , ‘It seems to me that there are . . . ’, ‘I’m
thinking of . . . ’, ‘I can spot . . . ’, ‘There exists . . . ’, ‘I can
spot . . . ’).

4https://research.google.com/
youtube8m/

vector. To work with smaller and more representa-
tive vectors, we selected the two central seconds of
each 10-sec audio clip (the 5th and 6th) and used
the resulting 256-d vector as the representation of
the corresponding entity. Out of these entity repre-
sentations we built the representation of the scene
by concatenating the entity vectors. Scenes can
contain min 3 and max 20 entities, hence we use
vectors of 20 ‘cells’. When there are less than
20 entities, there are ‘empty cells’ which are visu-
ally represented by the grey background. We rep-
resented their auditory counterpart with a ‘silent
sound’ computed as following: we recorded a 10-
sec sound clip of silence, picked the 5th and 6th
seconds and obtained the 256-d auditory vector us-
ing the model of Hershey et al. (2017). The 20 to-
tal ‘cells’ are then shuffled, resulting in a 5120-d
auditory vector.

As for the linguistic scenes, for each caption we
extracted the features through the Universal Sen-
tence Encoder (USE) (Cer et al., 2018) producing
512 dimensional vectors for each sentence. Al-
ternatively, we could have used LSTM modules to
process from scratch both the linguistic and acous-
tic inputs exploiting their sequential nature. We
rejected this alternative mainly to avoid that, dur-
ing the training process, the neural network learns
task-dependent representations and arbitrary asso-
ciations. It has been shown (e.g., in Cer et al.
(2018)) that USE provides sentence-level embed-
dings with strong transfer performance on several
NLP tasks. We consider this point as a strong mo-
tivation for our choice: in this way, we get more
consistent representations across different modal-
ities and the overall architecture turns out to be
easier, more scalable and less prone to learn task-
specific representations.

The semantic spaces containing the entity rep-
resentations of the three modalities are rather dif-
ferent. It is interesting to note that the auditory
dataset is much more dense than either the visual
or the linguistic one: The average cosine similar-
ity between entity pairs is 0.73 for sound vs. 0.44
for vision and 0.43 for language. In other words,
entities are visually and linguistically much more
distinct than auditorily. This could be possibly
due to the fact that, as highlighted by Owens et al.
(2018), sound undergoes less transformations than
vision, which is affected by, for instance, lighting,
scene composition, and viewing angle. In other
words, sound could be denser than vision since it
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‘abstracts’ from all the possible visual transforma-
tions that we encounter in the other modality. It
follows that integrating these modalities requires
some degree of generalization over a variety of
transformations, which is intuitively not trivial.

4 Models and Test Settings

Below we describe the ‘Hub and Spoke’ model
(H&S) that takes as input strongly aligned audi-
tory and visual inputs, and the ‘Predictive Code
Model’ (PCM) which differs from the former only
at testing time, when it takes as input the vector
processed by the auditory spoke and the visual
representation obtained by prior knowledge, viz.
through an external mapping. We take as base-
lines the single-modality (visual, auditory inputs)
versions of the model.

Hub and Spoke model (H&S) As illustrated in
Figure 5 (up), this model takes the 2048-d and
5120-d visual and auditory vectors, reduces them
to vectors of the same dimensions (512-d) and
merges them in the Hub through multiplication.
The multimodal output is reduced to 128-d via a
ReLU hidden layer, then a softmax layer is applied
to output a 9-d vector with the probabilities to as-
sign each of the 9 quantifiers.

Unimodal model The three layers of the hub de-
scribed above are trained to perform the quantifi-
cation task from either the visual or auditory rep-
resentations alone.

Predictive Code Model (PCM) We take the hub
trained using the representations produced by the
visual and auditory spokes (namely the hub of the
H&S) and evaluate it on new types of audio-visual
inputs: the auditory vectors are produced by the
auditory spoke as for the H&S, while the visual
vectors are obtained via a linear mapping func-
tion that simulates prior knowledge which ‘hallu-
cinates’ the visual perception. The mapping func-
tion takes as input either (a) the auditory input it-
self (auditory prior) or (b) the corresponding lin-
guistic caption (language prior), as illustrated in
Figure 5 (bottom, (a) left vs. (b) right). For sake of
simplicity, the mapping function is trained outside
the model. It is implemented as a linear neural
network which is exposed to the aligned data of
the training and validation sets used for the H&S.
Hence, when used in the PCM setting it is applied
to data that was never seen before. The mapping
is trained using Mean Squared Error (MSE).

We only experimented with hallucinated visual
representations and left for the future the other di-
rection – a visual experience facilitated by the cor-
responding imagined auditory. Since the semantic
space of the auditory input is rather dense, we ex-
pect that a non-linear mapping might be necessary
to obtain the latter.

Implementation details We used ReLU activa-
tion function for all the hidden layers, and Adam
optimizer (Kingma and Ba, 2015) with learning
rate = 0.0001 and default weight decay. All mod-
els were trained for no more than 150 epochs (us-
ing early stopping) by minimizing the Kullback-
Leibler (KL) divergence loss between the activa-
tions by softmax and the probability distribution of
human responses for each proportion by Pezzelle
et al. (2018a). All models were implemented in
PyTorch v0.4.

5 Experiments and Results

Evaluation All models are evaluated by com-
puting the Pearson product-moment correlation
coefficient between the Softmax probabilities and
the 9-d vectors from Pezzelle et al. (2018a), which
encode the probability of each quantifier to be
used with respect to a given proportion based on
human choices.

5.1 Experiments

Unimodal vs. multimodal models Testing the
models on the unimodal and multimodal data
might lead to results that are influenced by the dif-
ferent sizes of data seen during training. To rule
out this possibility, we use unimodal and multi-
modal datasets of equal size. We take 11,900 dat-
apoints for each single modality; and in the mul-
timodal model, we use 5950 instances for each
modality which sum up to 11,900 datapoints.

Incongruent visual-auditory inputs In order to
test the effectiveness of the integration of the two
modalities, we take the H&S trained on aligned
(congruent) visual-auditory data and we test it
with incongruent data, viz. inputs that do not have
the same proportion of animals. Given a visual in-
put containing, e.g., 3 animals and 2 artifacts (as
in Figure 2 left), we pair it with an auditory input
having 3 artifacts and 2 animals. This way, the cor-
responding probability distributions are different,
hence we refer to these pairs as incongruent audi-
tory input. Similarly, we generate incongruent vi-
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Figure 5: Up: H&S To learn quantifiers, the hub learns to integrate the auditory and visual sensory inputs; Bottom:
PCM The hub trained to perform audio-visual integration can quantify the animals present in the auditory inputs
by exploiting the ‘hallucinated’ visual representation obtained either from (a) the auditory input it self (left corner)
or (b) the the language input (right corner).

sual inputs by pairing an auditory input with, e.g,
a 3:2 proportion with a visual input with a propor-
tion of 2:3, and consider as the correct probability
distribution the one corresponding to the 3:2 pro-
portion encoded by the auditory input. To ensure
that the difference between the two modalities is
high, we avoid pairing proportions with extremely
similar probability distributions. Rather, we focus
on a subset of proportion pairs, namely 0-100%,
10-90%, and 17-83%. If the hub exploits the align-
ment between the modalities, we expect the model
to perform poorly in this setting (lower is better).

Unseen combinations We evaluate the general-
ization power of the models by testing them on un-
seen data. We want to study how well the model
generalizes from (a) small cardinalities to larger
ones and (b) vice versa. To this end, we divide the
training and test sets as following: For each of the
17 proportions, we use as the test set the scenes
containing (a) the largest possible number of ob-
jects (e.g., for proportion 0%, we test on 0:20 and
train on all the other combinations); (b) the small-
est possible number of objects (e.g., for proportion
0%, we test on 0:3 and train on all the other com-
binations).

Pearson’s r
Sound 0.68
Vision 0.72
H&S 0.86
PCM: auditory prior 0.78
PCM: language prior 0.81
H&S on incongruent visual inputs -0.25
H&S on incongruent auditory inputs 0.02

Table 1: Pearson’s r correlation results - human judg-
ments used as target results. Unimodal vs. multimodal
model trained and tested on datasets of equal size.

5.2 Quantitative Results

Unimodal vs. multimodal models Table 1 re-
ports the Pearson’s r correlation results compar-
ing the unimodal and multimodal models. As we
can see, the visual data is slightly more informa-
tive than the auditory one for learning the quan-
tification task (0.68 vs. 0.72). The first main re-
sult is that the multimodal model outperforms the
unimodal ones to a large extent. The H&S ob-
tains 0.18 and 0.14 higher correlation than the au-
ditory and visual model, respectively. This result
shows that the multimodal data provide comple-
mentary information that the model manages to
exploit. Regarding the effect of prior knowledge,
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Figure 6: A: Density plot reporting the frequency of human responses for the 9 quantifiers (y-axis) against the
proportion of targets in the scene (x-axis). B-F: Average probabilities predicted by models in test set (same axes).

Pearson’s r
large→ small small→ large

Sound 0.55 0.73
Vision 0.64 0.76
H&S 0.74 0.85

Table 2: Unimodal vs. multimodal models tested
on unseen combinations which have smaller or larger
number of entities than the seen data.

we see that hallucinating the visual representations
improves over processing only the auditory in-
put. Using the latter to hallucinate the visual scene
leads to an increase of 0.10 in correlation, and an
even higher increase (+0.13) is obtained when the
hallucination is induced by a linguistic description
of the scene. It is worth noticing, however, that
the correlation values obtained by the PCMs are
slightly lower than the one obtained by the H&S.
This is intuitive since the latter can capitalize on
first-hand information from both modalities.

To better understand the behavior of the multi-
modal model, we scrutinize its results by investi-
gating whether the absolute difference between the
animals and artifacts sets has an impact on the per-
formance of the model. Figure 7 reports Pearson’s
r obtained by the H&S model for the smallest and
highest combination of each proportion (we do not
plot proportion 0.5 since the distance is 0 for all its
combinations). For instance, for proportion 67%,
the smallest combination is 2/3 (2 targets, 1 non-
targets), the largest combination is 12/18 (12, 6),
and their absolute difference is equal to 1 and 6,
respectively. As can be seen from the plot, smaller
absolute differences are always harder than higher
ones.

Incongruent sensory pairs As the results in Ta-
ble 1 show, the model is strongly sensitive to these
incongruent data, suggesting that cross-modal in-
tegration is actually part of the models.
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Figure 7: H&S Pearson’s r obtained for the smallest (blue) and biggest (red) combination of each proportion. Note
that numbers in white at the bottom of each bar refer to the absolute difference between animals and artifacts sets.

Unseen combinations Table 2 shows that mod-
els are able to generalize to unseen combinations
quite well. In particular, they turn out to be al-
ways better in generalization when they learn from
small combinations and are tested on large ones.
This pattern of results reflects the findings illus-
trated in Figure 7, assuming that a model trained
on hard cases and tested on easier ones would lead
to higher results compared to the opposite ‘direc-
tion’.

5.3 Qualitative Results
Figure 6 compares the probability distributions
learned by the tested models (panels B-F) against
the distribution of responses by humans (panel A)
from Pezzelle et al. (2018a). As can be clearly
seen, both unimodal models (B-C) show a much
lower correlation with human data compared to
either H&S (D) or PCMs (E-F). In particular,
the unimodal models tend to produce very simi-
lar curves for all quantifiers, thus predicting them
with a similar probability at any proportion (i.e.,
there are no clear ‘peaks’). Both the H&S and
the PCMs, in contrast, output a distribution that is
very similar to that by humans (mirrored in the re-
sults of Table 1). While plots D-F are almost iden-
tical, it can be noted that the H&S is slightly better
than both PCMs at the ‘extreme’ proportions, par-
ticularly 0% and 100%. We conjecture this ability
is responsible of the slightly higher correlation ob-
tained by this model compared to the PCMs.

6 Conclusion

In this paper, we show that concurrent multi-
sensory information bootstraps models perfor-
mance in a semantic task, namely grounding quan-
tifiers, in line with the results on human percep-
tion. Also, we provide computational evidence
that the predicting code hypothesis advocated in
the cognitive literature is an interesting and use-
ful source of inspiration for computational mod-
els. We plan to further investigate how predictions
from prior knowledge can be compared with those
obtained through sensory experience to further im-
prove the performance on semantic tasks.
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David Harwath, Adrià Recasens, Dı́dac Surı́s, Galen
Chuang, Antonio Torralba, and James Glass. 2018.
Jointly discovering visual objects and spoken words
from raw sensory input. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV),
pages 649–665.
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Abstract

A usage-based Construction Grammar (CxG)
posits that slot-constraints generalize from
common exemplar constructions. But what is
the best model of constraint generalization?
This paper evaluates competing frequency-
based and association-based models across
eight languages using a metric derived from
the Minimum Description Length paradigm.
The experiments show that association-based
models produce better generalizations across
all languages by a significant margin.

1 Learning Slot-Constraints

The Construction Grammar paradigm (CxG: Lan-
gacker, 2008; Goldberg, 2006) represents gram-
mar using a hierarchical inventory of constraint-
based constructions. In computational terms,
a construction is a possibly non-continuous se-
quence in which each unit satisfies some com-
bination of lexical, syntactic, and semantic con-
straints (e.g., Chang, et al., 2012; Steels, 2004,
2012, 2017). This paper uses computational
modelling to approach the problem of how slot-
constraints are learned: do frequency-based or
association-based models produce better slot-
constraints? How can we evaluate the quality of
slot-constraints across an entire grammar in order
to make such a comparison possible?

Implementations of CxG such as Fluid Con-
struction Grammar (FCG) and Embodied Con-
struction Grammar (ECG) require the manual
specification of constraints using a knowledge rep-
resentation framework like FrameNet (e.g., Lavi-
ola, et al., 2017; Matos, et al., 2017; van Trijp,
2017; Ziem & Boas, 2017; Dodge, et al., 2017).
While these approaches can provide high-quality
representations, they cannot model the emergence
of slot-constraints because their constraints are
defined rather than learned. We instead follow

work that models CxG from a usage-based per-
spective: first, generating potential constructions
given a corpus (Wible & Tsao, 2010; Forsberg, et
al., 2014); second, selecting the optimal set of con-
structions, where optimality is measured against a
test corpus (Dunn, 2017, 2018a). This provides a
model of how syntactic constraints are learned.

Recent work has used the Minimum Descrip-
tion Length paradigm (MDL: Rissanen, 1978,
1986; Goldsmith, 2001, 2006) to model the in-
teraction between slot-constraints across an entire
grammar as a trade-off between memory and com-
putation. The grammar which selects the best con-
straints will optimize the balance between mem-
ory (the encoding size of all constructions) and
computation (the encoding size of a test corpus
given the grammar). This operationalizes the idea
within usage-based theories of grammar that any
representation can be stored in memory but that
not all representations are worth storing (c.f., Jack-
endoff, 2002; O’Donnell, et al., 2011). From a dif-
ferent perspective, some constructions prevent the
learning of other constructions (Goldberg, 2011;
Goldberg, 2016; Perek & Goldberg, 2017).

This paper first considers how constructions and
slot-constraints can be represented computation-
ally using a data-driven pipeline (Sections 2 &
3). After describing the data used for the exper-
iments (Section 4), we motivate the contrast be-
tween frequency and association (Section 5). The
frequency-based and association-based models are
described (Sections 6 & 7), along with a construc-
tion extraction algorithm (Section 8). Finally, an
MDL approach to grammar quality is motivated
(Section 9) and used to evaluate the grammars pro-
duced by the two extraction algorithms (Section
10). The experiments show that an association-
based model produces better generalizatons for
each language, although the degree of difference
between the two models varies across languages.
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(1a) [SYN:NOUN — SEM-SYN:TRANSFER[V] — SEM-SYN:ANIMATE[N] — SYN:NOUN]
(1b) “He gave Bill coffee.”
(1c) “He gave Bill trouble.”
(1d) “Bill sent him letters.”
(2a) [SYN:NOUN — LEX:“give” — SEM-SYN:ANIMATE[N] — LEX:“a hand”]
(2b) “Bill gave me a hand.”

Table 1: Construction Notation and Examples

2 Representing Constructions

Following previous work (Dunn, 2017, 2018a),
constructions are represented as a sequence of
slot-constraints, as in (1a). Slots are separated by
dashes and constraints are defined by both type
(Syntactic, Joint Semantic-Syntactic, Lexical) and
filler (for example: NOUN, a part-of-speech or AN-
IMATE, a semantic domain).

The construction in (1a) contains four slots: two
with joint semantic-syntactic constraints and two
with simple syntactic constraints. The examples
in (1b) to (1d) are tokens of the construction in
(1a). Lexical constraints, as in (2a), represent id-
iomatic sentences like (2b). These constructions
are context-free because any sequence that satis-
fies the slot-constraints becomes a token or in-
stance of that construction.

The difficulty of modelling slot-constraints is
that constructions can overlap: multiple construc-
tions in the grammar are allowed to represent a
single phrase. For example, (2b) is actually a to-
ken of both (1a) and (2a). This makes identifying
constructions more difficult because reaching the
representation in (1a) does not rule out also reach-
ing the representation in (2a). Both could be part
of a single speaker’s grammar. For this reason we
will use the term extraction rather than parsing to
describe the syntactic analysis that is performed
by the algorithms described in this paper.

To illustrate the problem of construction extrac-
tion, we can view each slot as a node, with the be-
ginning of a construction the root node (c.f., tran-
sition parsing for dependency grammars: Zhang &
Nivre, 2012; Goldberg, et al., 2013). A construc-
tion’s root can occur anywhere in a sentence. Each
slot-constraint is a state, as visualized in Figure 1
with two forms of the ditransitive. There are four
possible transitions: LEX, SYN, SEM-SYN, STOP.
In the first example, the slot-constraints are gen-
eralized to any transfer verb and any object noun.
In the second example, the verb and object slots
require idiomatic lexical items. The problem is to
find the sequence of slot-constraints that best rep-
resents the construction. Here, the best represen-
tation is the most efficient trade-off between mem-
ory and computation across an entire grammar.

We first have to develop a pipeline for represent-
ing all the possible constraints shown in Figure
1. Such a pipeline provides our hypothesis space:
any sequence of constraints that is observed in the
training data is a potential construction.

3 Representing Slot-Constraints

This section describes the pipeline that is used to
represent the hypothesis space of potential con-
structions. While it is important to take an em-
pirical approach and evaluate aspects of this rep-
resentation pipeline, the purpose of this paper is
not to provide a counter-factual for each compo-

 1  2  3  4 

LEX “he”  “mailed”  “George”  “a package” 

SYN Noun  Verb  Noun  Noun 

SEM-SYN ANIMATE[N]  TRANSFER[V]  PERSON[N]  OBJECT[N] 

        

 1  2  3  4 

LEX “he”  “gave”  “George”  “a hand” 

SYN Noun  Verb  Noun  Noun 

SEM-SYN ANIMATE[N]  TRANSFER[V]  PERSON[N]  OBJECT[N] 

Figure 1: General vs. Idiomatic Ditransitive
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nent individually (e.g., what type of embeddings
or which part-of-speech tags to use). Instead, the
two competing approaches are evaluated using the
same representation pipeline in order to put such
development decisions in the background. With-
out a pre-defined ontology of concepts and frames,
as in knowledge-based CxG, the representation of
slot-constraints becomes a difficult problem.

First, lexical constraints use word-forms sepa-
rated at whitespace; no morphological analysis is
included in the pipeline. The lexicon of allowed
word-forms is drawn from a background corpus
(Section 4), with a frequency threshold to deter-
mine inclusion (500 occurrences in corpora of ap-
proximately 1 billion words). An example of a
lexical slot-constraint is given in (2a), where this
particular construction requires the specific words
“give” and “a hand”, as in (2b).

Second, syntactic representations are drawn
from the part-of-speech categories in the Univer-
sal POS tagset using the RDRPOS tagger (Petrov,
et al., 2012; Nguyen, et al., 2016); this is a pre-
defined syntactic ontology. An unsupervised in-
ventory of syntactic units is outside the scope of
this paper, although ideally this would also be
part of the representation pipeline. An example
of a syntactically-defined slot-constraint is given
in (2a), in which any noun can fill the subject po-
sition. The problem of recursion within slots is
discussed further in Section 11.

Third, semantic constraints are defined using a
domain dictionary in which each word-form is as-
signed to a cluster of word-forms. Clusters are
based on word embeddings. First, a background
corpus for each language is pos-tagged. No word
sense disambiguation is used but word-forms are
separated by syntactic category (i.e., table verb is
distinct from table noun). A skip-gram embed-
ding with 500 dimensions is trained for each lan-
guage (R̆ehůr̆ek & Sojka, 2010). Clusters are then
formed by applying x-means to these embeddings
(Pelleg & Moore, 2000). While previous work
used k-means to create a fixed number of domains
across languages (Dunn, 2018a), x-means gener-
alizes the number of clusters per language.

These clusters are heterogenous syntactically.
Each output cluster is further divided by syntactic
category so that each semantic cluster only con-
tains words from a single part-of-speech, allowing
joint semantic-syntactic constraints. The number
of clusters for each language, shown in Table 2,

Language Lexicon Size N. Clusters
ara 57,216 315
deu 43,080 305
eng 47,723 385
fra 46,876 326
por 65,173 487
rus 49,616 324
spa 51,683 438
zho 59,127 236

Table 2: Semantic Clusters by Language

ranges from 236 (zho) to 487 (por). This variation
shows the importance of using x-means for defin-
ing semantic constraints instead of k-means with a
fixed k across languages.

4 Corpora and Data Divisions

This paper evaluates models on eight languages:
Arabic (ara), German (deu), English (eng), French
(fra), Portuguese (por), Russian (rus), Spanish
(spa), and Chinese (zho). Each language is repre-
sented by a large background corpus that is used
to (i) train word embeddings, (ii) determine the
word-form lexicon, (iii) calculate association mea-
sures, and (iv) learn and evaluate CxGs. This sec-
tion discusses data sources and preparation.

A large portion of the corpus for each lan-
guage comes from web-crawled data (Baroni, et
al., 2009; Majli̧s & Z̧abokrtský, 2012; Benko,
2014; and data from the CoNLL 2017 Shared
Task: Ginter, et al., 2017). Because the goal is
to provide a wide representation of each language,
this is augmented by legislative texts from the EU
and UN (Tiedemann, 2012; Skadiņŝ, et al., 2014),
the OpenSubtitles corpus (Tiedemann, 2012), and
newspaper texts. The only language-specific pre-
processing used is Chinese text segmentation1.

All punctuation is removed and text converted
to lowercase. In order to avoid language-specific
assumptions, no sentence splitting is performed.
Instead, the corpus is divided into sequences of
100 words that form the main unit of analysis. The
corpus is further divided into chunks of 100k sam-
ples (for a total of 10 million words per chunk).
These chunks are important because the data is
randomly divided by chunk as shown in Table 3.

We perform CxG learning across four indepen-
dent folds. Each fold retains the same lexicon
and semantic domains, but every other part of the

1Jeiba: https://github.com/fxsjy/jieba
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Function Num. Words
Word embeddings Entire dataset
Background statistics 200 million words
Generating potentials 50 million words
Optimizing CxGs 10 million words
Evaluation 10 million words (x5)

Table 3: Data Divisions

pipeline is repeated: (i) calculating frequency and
association statistics for evaluating potential con-
structions, (ii) generating potential constructions,
(iii) searching through the potential constructions
using a tabu search (Dunn, 2018a) to optimize the
MDL metric (Section 9).

Each fold produces a single CxG. These CxGs
are then merged by concatenation into a single
grammar. The idea is that any construction which
is productive on a sub-set of the corpus belongs in
the final grammar. This final CxG is reduced using
horizontal pruning (c.f., Wible & Tsao, 2010) to
remove constructions that are wholly or partially
contained within larger constructions. The code
for this process is provided as an external resource.

5 Frequency and Association

The representation pipeline provides a rich hy-
pothesis space from which to formulate slot-
constraints. A usage-based grammar expects that
constructions will emerge as common exemplars
become entrenched via repeated production and
perception. But how do we model emergence?

One approach uses frequency: the most com-
mon templates (i.e., sequences of constraints) will
become a part of the grammar (Bybee, 2006;
Arnon & Snider, 2010; Siyanova-Chanturia, et al.,
2011). On the other hand, frequency alone will
over-represent very common phrases and we know
that less common and even rare constructions re-
main perfectly grammatical. How do learners ac-
quire rare constructions if they learn using fre-
quency information? A second approach uses
association: slot-constraints that occur together
more frequently than expected indicate an en-
trenched construction (Wible & Tsao, 2010; Fors-
berg, et al., 2014; c.f., Ellis & Larsen-Freemen,
2009). An association-based model focuses on
frequency relative to specific contexts rather than
overall frequency in all contexts.

On the one hand, frequency and association as
measures of entrenchment do not need to be mu-

tually exclusive. For example, association mea-
sures explicitly depend on frequency information.
On the other hand, the purpose of the experiments
in this paper is to evaluate competing models of
the emergence of slot-constraints against corpus
data in order to better understand how CxGs are
acquired. It should also be noted that it is not pos-
sible to design an association-based algorithm that
has no frequency thresholds whatsoever: we need
at least a bound on which transitions need to be
assigned association values. In the same way, the
frequency-based algorithm references some asso-
ciation information; otherwise the number of can-
didates either will be intractibly large or will in-
clude no infrequent forms. Regardless, the algo-
rithms described in Sections 6 and 7 represent im-
plementations of competing hypotheses about the
emergence of slot-constraints.

For association, we use the bi-directional ∆P
(Gries, 2013; Dunn, 2018b), with both left-to-right
and right-to-left variants. For any two slot-fillers,
X and Y , XP indicates that X is present and
XA that X is absent, providing the two direction-
specific measures below.

∆PLR = p(XP |YP )− p(XP |YA)

∆PRL = p(YP |XP )− p(YP |XA)

Why not other measures of association? First,
the ∆P was developed for precisely this sort of
problem (Ellis, 2007). Second, the ∆P is bi-
directional while other common measures like
pointwise mutual information (PMI) average both
directions together, thus disguising directional
asymmetries. It has been shown that directional
association is necessary to describe many linguis-
tic patterns (Gries, 2013). Here we use the maxi-
mum directional ∆P to represent each transition.
While a PMI disguises directional differences, this
max ∆P allows each possible transition to be rep-
resented by its strongest association value.

6 Frequency-Based Constraints

The frequency-based algorithm works in two
stages: First, it greedily selects slot-constraints for
each sentence by iterating over all adjacent pairs
and adding the pair with the highest ∆P (Table
4). Once all slot-constraints are filled, the sec-
ond stage extracts constraint n-grams from this
sequence (n = 3–6). This approach posits many
different boundaries and uses overall frequency
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Variables
line = sequence of units
unit = possible slot-constraints: (lex, syn, sem)
ui, ui+1 = two adjacent units
ci, ci+1 = constraint types for ui, ui+1

RS = one slot-constraint per unit in line
Algorithm
while RS not complete:

for ui, ui+1 in line:
for all possible transitions ci, ci+1:

if ∆P (ci, ci+1) is highest available:
add ci, ci+1 to RS

Table 4: Frequency-Based Selection Algorithm

across the corpus to prune candidates. RS in Table
4 refers to a sequence of slot-constraints that rep-
resents the input sentence; this sequence is com-
plete when every slot in the sentence is represented
by a hypothesized constraint.

This is similar to a template-based view of CxG:
each n-gram of slot-constraints is a template. Only
the most frequent templates are considered in the
MDL stage. On the other hand, it is not tractable
to include every sequence of slot-constraints; past
work that took such an approach (Dunn, 2017) had
to operate on much less data or enforce a series of
intermediate frequency thresholds (i.e., per-chunk
thresholds). For practical reasons the algorithm in
Table 4 references local association between slot-
constraints; at its core, however, this is an opera-
tionalization of a frequency-centered model of the
emergence of slot-constraints.

This frequency-based algorithm uses a fixed fre-
quency threshold. After all candidates are ex-
tracted from a corpus, those candidates with an
overall frequency below the threshold are pruned.
It is difficult to evaluate different thresholds using
a grid search approach (as done below with asso-
ciation) because many thresholds produce candi-
date sets that are too large to evaluate. For purely
practical reasons, then, the frequency threshold is
fixed. Along these same lines, horizontal pruning
removes any candidate that is entirely contained
within another candidate, with the larger candi-
date always remaining and the smaller candidate
always pruned. This type of pruning is essential
for a frequency-based model because a frequent
sequence A−B −C −D will have frequent sub-
sequences like A−B − C and B − C −D. This
nesting is not produced by an association-based

model, and so a different pruning strategy is re-
quired, as described in Section 7.

7 Association-Based Constraints

The association-based algorithm (Table 5) uses
the total directional ∆P (a sum across all transi-
tions) to evaluate potential sequences. To imple-
ment this idea, the search follows transitions from
one slot-constraint to the next, proceeding left-to-
right through the sentence. Any transition below a
threshold ∆P stops that line of the search. This al-
gorithm references local association values when
choosing a transition from the current state. It also
references global (i.e., construction-wide) associa-
tion for selecting different paths, rather than using
the frequency of specific templates.

Any series of constraints identified by this
search whose transitions exceed the ∆P threshold
is added to the candidate stack. At the end of the
search, this stack is scored using each candidate’s
total ∆P across all transitions. While primarily a
transition-based extraction, this approach thus in-
corporates some global evaluation methods (c.f.,
Nivre & McDonald, 2008; Zhang & Clark, 2008).
A grid search for the best ∆P threshold per lan-
guage is performed using independent test data.

This association-based algorithm is less influ-
enced by the assumption that co-located slots gov-
ern one another’s constraints. For example, in ref-
erence to Figure 1, the slot filled by a NOUN in
3 and the slot filled by “a hand” in 4 have a lo-
cal transition that is measured using the associa-
tion between these two representations. Should
we instead ignore the relationship between these
two objects and focus on the relationship between
each object and the verb slot? This algorithm tries
to avoid specifying particular templates like this
(i.e., a verb-centered frame) by using the global
∆P evaluation and the thread of associations to
draw out these relationships.

But this raises an interesting empirical question:
does the entrenchment of the ditransitive construc-
tion predict a higher association between the two
object slots whether or not the verb itself is in-
cluded? Is there a shared effect across all double-
object constructions? A beam-search dependency
parser could resolve this in a practical sense by
simply evaluating more non-local relationships.
But does CxG itself predict that such local rela-
tionships will be more entrenched because they are
present within a single construction?
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Variables
node = unit (i.e., word) in line
startingNode = start of potential construction
state = type of slot-constraint for node
path = route from root to successor states
[c] = list of immediate successor states
ci, ci+1 = transition to successor constraint
candidateStack = plausible constructions
evaluate = maximize

∑
∆P for ci, ci+1 in path

Main Loop
for each possible startingNode in line:

RecursiveSearch(path = startingNode)
evaluate candidateStack
Recursive Function
RecursiveSearch(path):

for ci, ci+1 in [c] from path:
if ∆P of ci, ci+1 > threshold:

add ci+1 to path
RecursiveSearch(path)

else if path is long enough:
add to candidateStack

Table 5: Association-Based Selection Algorithm

8 Extracting Constructions

Given a set of candidates (i.e., a possible CxG), we
use an additional algorithm to extract those candi-
dates from a corpus in order to evaluate that gram-
mar. The algorithm proceeds left-to-right across
each word in the input. For each word, the ex-
tractor checks for constructions whose first slot-
constraint is satisfied by the current word. Because
there are three types of slot-constraints, the extrac-
tor must check each constraint type. If the cur-
rent word satisfies the first slot-constraint, the ex-
tractor looks-ahead and tests each successive word
until either (i) all slot-constraints are satisfied and
a construction match is identified or (ii) a slot-
constraint is not satisfied and this portion of the
search is terminated. If there is no match, then
a particular construction is not present. This al-
gorithm extracts all candidates identified by the
above algorithms so that the competing grammars
can be evaluated.

9 Modeling Constraint Quality

We now have frequency-based and assocation-
based models of how slot-constraints emerge from
usage. How can we measure the quality of both
(i) a set of potential slot-constraints and (ii) an
entire CxG? The process of searching over se-

lected slot-constraints using a tabu search (Glover,
1989, 1990) is adopted from previous work (Dunn,
2018a). A tabu search is a meta-level heuristic
search that evaluates a number of possible local
moves for each turn and then makes the move
which produces the best grammar. Importantly, a
tabu search allows moves which make the gram-
mar worse in the short-term (with a restricted set
of tabu moves) so that the learner can climb out
of local optima. Here, each state is a grammar
that contains a specific set of constructions. A
move changes the current state by adding or re-
moving some constructions. As before, the pur-
pose is not to evaluate counter-factuals for every
step in the pipeline because both the frequency-
based and association-based models use exactly
the same tabu search algorithm.

The MDL metric quantifies the trade-off be-
tween memory (operationalized as the encoding
size of a grammar) and computation (operational-
ized as the encoding size of a test corpus given that
grammar). A grammar that provides better gener-
alizations will allow the test corpus to be encoded
using a smaller number of bits. The metric com-
bines three encoding-based terms: L1 (the cost of
encoding the grammar), L2{C} (the cost of en-
coding pointers to constructions in the grammar),
and L2{R} (the cost of encoding linguistic ma-
terial that is not in the grammar and thus cannot
be encoded using a pointer). A pointer here is a
partial parse of an utterance that refers to a con-
struction that is already contained in the grammar.

These terms represent the grammar, the data as
described by the grammar, and the data that is not
described by the grammar; note that both L2 terms
are combined below. In other words, L2(D | G)
is the sum of both L2{C} and L2{R}. D in this
equation refers to the dataset which is used to eval-
uate the model. The relationship between these
three encoding terms across languages is exam-
ined further in Table 7.

MDL = min
G
{L1(G) + L2(D | G)}

Encoding size, in turn, is based on probability: the
encoding size of an item, X , is measured in bits,
below, using the negative log of its probability. We
describe how probabilities are estimated later in
this section. The basic idea is that more probable
constraints should have smaller encoding sizes.

LC(X) = −log2P (X)
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According to this model, a construction is only
worth remembering if its contribution to decreas-
ing the overall encoding size of the test corpus is
smaller than its contribution to the encoding size
of the grammar. This is important for CxGs be-
cause similar constructions overlap, describing the
same sentences in the corpus. Each overlapping
construction must be individually represented in
the grammar, adding to the L1 term: similar con-
structions must be encoded separately in L1 but
do not improve the encoding of L2. For example,
the two constructions in (1a) and (2a) describe the
same utterance in (2b). Both of these construc-
tions need to be encoded in the grammar, increas-
ing L1. But encoding only one of them would not
increase the regret portion of L2 because the utter-
ance itself can still be encoded using a pointer to
the construction that is in the grammar.

The encoding size of a grammar, L1, is the sum
of the encoding size of all constructions in that
grammar. Each construction is a series of slot-
constraints that must be satisfied for a linguistic
utterance to be an instance of that construction.
For each constraint, two items must be encoded:
(i) the constraint type (lexical, semantic, syntactic)
and (ii) the filler which defines that constraint. As
shown in Table 7, this portion of the MDL metric
is quite small given a large dataset.

The cost of (i) is fixed because each represen-
tation is considered equally probable: the gram-
mar is not explicitly biased towards syntactic con-
straints. But the cost of (ii) depends on the type
of representation: syntactic units come out of a
much smaller inventory, so that any given part-
of-speech is more probable and thus easier to en-
code. For example, if there are 14 parts-of-speech,
then the probability of observing one of them is
1/14 = 0.0714 bits. On the other hand, because
there are more lexical items, each word is less
probable and thus more expensive to encode.

For example, if there are 50k lexical items,
then the probability is 1/50, 000 = 0.00002. In
this way, the grammar is allowed to employ item-
specific slot-constraints, but doing so increases the
encoding cost of the grammar. Here, a syntactic
constraint contributes 3.8 bits but a lexical con-
straint contributes 15.6 bits. Future work will
evaluate the impact of probability estimation for
slot-fillers, currently done only at the contruction
level. The total encoding size of a construction
is the accumulated bits required to encode each

slot-constraint, where NR represents the number
of representation types (here, 3) and TR represents
the number of possible slot-fillers for that type.

NSLOTS∑

i

−log2(
1

NRi

) +−log2(
1

TR
)

The encoding size of the test corpus, L2, contains
two quantities: first, the cost of encoding pointers
to constructions in the grammar; second, the cost
of encoding on-the-fly any parts of the corpus that
cannot be described by the grammar. The cost of
encoding pointers is also based on probabilities,
so that more probable or common constructions
require fewer bits to encode. For example, a con-
struction that occurs 100 times in a corpus of 500k
words has a pointer encoding size of 12.28 bits,
but a construction that occurs 1,000 times costs
only 8.96 bits per use. In this way, the probabil-
ity of potential constructions influences encoding
size. The regret portion of the L2 term is the cost
of words which are not covered by constructions
in the current grammar. Each of these is encoded
on-the-fly (i.e., not remembered): the more unen-
coded words accumulate, the more each one costs.

There is a close relationship between MDL and
Bayesian inference methods (c.f., Barak, et al.,
2016; Barak & Goldberg, 2017; Goldwater, et al.,
2009). Information theory describes the relation-
ship between the log probabilities of representa-
tions and their encoding size. But it does not esti-
mate the probability of the grammar itself, which
here is handled in two ways: First, there is a choice
in CxG between different types of representa-
tion (LEX, SYN, SEM). This model does not en-
force one type, but syntactic constraints are more
likely because there are fewer categories. Second,
pointers to constructions are assigned probabilities
based on their observed frequency; this means that
more likely constructions are cheaper to encode
and implicitly favored by the model.

The MDL paradigm has previously been ap-
plied to phonological structure (Rasin & Katzir,
2016), to morphological structure (Goldsmith,
2001; 2006), to grammar induction in other con-
texts (c.f., Solomonoff, 1964; Grünwald, 1996; de
Marcken, 1996; c.f., Stolcke, 1994), and even to
semantics (c.f., Piantadosi, et al., 2016). This ap-
plication to CxG incorporates two important prop-
erties of usage-based constructions (multiple con-
straint types and overlapping representations) for
which an MDL approach is a good fit.
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Frequency Association P
ara 44.08% 29.45% 0.0001
deu 52.49% 18.69% 0.0001
eng 51.80% 23.11% 0.0001
fra 43.28% 40.52% 0.0037
por 45.13% 38.91% 0.0137
rus 54.14% 13.93% 0.0001
spa 60.34% 26.36% 0.0001
zho 57.01% 37.96% 0.0030

Table 6: Compression Rates by Language with
Significance of Difference Between Models

10 Does Frequency or Association
Produce Better Slot-Constraints?

We evaluate the frequency-based and association-
based models on the same test sets, with the same
hypothesis spaces derived from the same represen-
tation pipeline, using the same implementation of
the MDL metric. While we have not evaluated
counter-factuals for every development decision
made within the pipeline, both competing models
rely on the same decisions.2

MDL provides a single metric of a grammar’s
fit relative to a particular dataset. This met-
ric itself is dependent on each dataset; we thus
calculate a baseline encoding score that repre-
sents the encoding of the dataset without a gram-
mar and use this to derive a compression metric:
MDLCxG/MDLBase. The lower this compres-
sion metric, the greater the generalizations pro-
vided by the CxG. Compression as used in MDL
is similar to perplexity within language modelling;
the connection is not explored further here except
to note that some language models include CxG-
like templates (e.g., Gimpel & Smith, 2011).

The evaluation uses all eight languages in order
to provide a cross-linguistic counter-factual: do
the generalizations agree across languages? Ad-
ditionally, we evaluate the models against five in-
dependent sets of 10 million words for each lan-
guage. Table 6 shows the average compression
by model for each language across these five test
sets. We also report the p-values for a paired t-test
(paired by dataset) to ensure that the difference in
compression between models is significant.

2The exact data used is available for download
here: https://labbcat.canterbury.ac.
nz/download/?jonathandunn/CxG_Data_
FixedSize. In addition, the code for the implemen-
tation and the grammars themselves are available here:
https://github.com/jonathandunn/c2xg/.

Lower compression scores reflect better gener-
alizations; as shown in Table 6, the association-
based model out-performs the frequency-based
model for every language. In each case the dif-
ference between models is significant. The gap
and the significance level, however, vary widely
across languages. For Russian, there is a gap of
40.21% compression that is significant below the p
= 0.0001 level. But for French and Portuguese that
gap is only 2.76% and 6.22%, with much larger p-
values to match. Association always provides a
better model of the emergence of slot-constraints,
but for French and Portuguese the two models are
much closer together than for other languages.

The frequency-based model represents what
Goldberg calls conservatism via entrenchment,
the idea that learners are more willing to over-
generalize infrequent forms (Goldberg, 2016). In
other words, the problem with a frequency-based
model is that it does not allow for creative (and
thus infrequent) uses of common forms. The
more frequent a particular form is, the less likely
that form will allow competing representations to
emerge. But language is infinitely creative and this
model blocks too many emerging constructions.

The association-based model, on the other hand,
allows for the emergence of less familiar con-
structions: a series of transitions between slot-
constraints is permitted if it is relatively highly as-
sociated, and infrequent forms are more open to
forming new associations. This is the advantage of
a directional measure like the ∆P . Assume there
are two constraints, A and B, in which A is very
common but B is rare. The PMI, by averaging,
would disguise any association from B to A. But
the ∆P allows such new associations to emerge
from a limited number of observations. Frequency
alone pre-empts less common representations.

We take a closer look at cross-linguistic patterns
in Table 7 by breaking down the MDL metric into
its three terms: L1, or the contribution of the com-
plexity of the grammar; L2{C}, or the contribu-
tion of encoded constructions to the final encoding
cost; and L2{R}, or the contribution of missing
constructions to the final encoding cost. Each term
is represented by its percentage of the MDL metric
for that dataset. Thus, while the frequency-based
models have a higher MDL score overall, Table
7 focuses on how that score is distributed across
terms. These percentages are averaged across all
five test sets for each language for each model.
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L1 (F ) L1 (∆P ) L2{C} (F ) L2{C} (∆P ) L2{R} (F ) L2{R} (∆P )
ara 0.43% 1.25% 82.14% 68.65% 17.43% 30.10%
deu 0.50% 1.56% 89.32% 93.42% 10.17% 05.01%
eng 0.57% 1.44% 93.22% 98.04% 06.21% 00.53%
fra 0.44% 0.77% 93.08% 64.09% 06.48% 35.14%
por 0.39% 0.27% 96.72% 25.00% 02.89% 74.73%
rus 0.42% 1.35% 66.37% 94.87% 33.21% 03.78%
spa 0.36% 0.81% 99.59% 82.24% 00.06% 16.95%
zho 0.25% 0.37% 92.24% 96.92% 07.51% 02.71%

Table 7: Break-down of MDL metric by relative proportion of the overall score

First, we see that the grammars themselves (L1)
account for a small percentage of the overall met-
ric. The great majority of the MDL score comes
from the encoding of pointers or references of con-
structions in the grammar in order to represent the
dataset. A smaller percentage comes from encod-
ing errors (i.e., parts of the dataset that cannot be
represented using known constructions).

Second, however, there are important variations
across languages and model-types. For French and
Portuguese, the two languages with the least dif-
ference between frequency-based and association-
based models, the association-based models have
significantly higher regret encodings (L2{R}). In
other words, the overall fit of the association-
based models for these languages is not nearly as
good: only 64.09% (fra) and 25.00% (por) of the
association-based model’s MDL score comes from
correctly encoded constructions. This suggests
that the association-based model provides rela-
tively poor grammars for French and Portuguese,
rather than that the frequency-based model pro-
vides relatively good grammars. At the same time,
this relative distribution of the MDL metric dis-
guises the fact that the overall compression of the
association-based model remains better for these
two languages than the frequency-based model.

Could we evaluate usage-based grammars with-
out relying on MDL? An alternate approach to
evaluating the balance of memory and computa-
tion when learning syntactic structures involves
psycholinguistically-annotated datasets (c.f., Lu-
ong, et al., 2015) or qualitative distinctions such as
optional/obligatory arguments (c.f., Bergen, et al.,
2013). These approaches are not as comprehen-
sive as the work described in this paper because
they cover, in effect, a small sub-set of possible
constructions. Yet their interpretation in respect to
individual cognition is more straight-forward.

11 Remaining Problems

This section offers a brief discussion of an impor-
tant remaining challenge: how does a grammar
treat non-contiguous constructions? A first option
is that a CxG assumes a CFG that provides a no-
tion of constituency: a noun phrase, for example,
could be taken as a single slot-filler regardless of
its internal structure. From a usage-based perspec-
tive, this is potentially problematic: Is there a sep-
arate syntactic mechanism for constituents that is
based on different capabilities than the mechanism
for learning slot-constraints?

A second option is that constituents are a form
of purely-syntactic construction that can fill slots
within larger constructions. This simpler type
of construction would be learned using the same
mechanisms as other constructions, but restricted
to only syntactic constraints. Two difficulties
arise: First, a constituent has a head which catego-
rizes it. Thus, if a constituent were categorized as
a NOUN, it could fill any slot in a larger construc-
tion that was categorized to accept a NOUN. But
how do we categorize a construction? Does one
single slot in a construction act as the head? The
second difficulty is that constructions can overlap
within a sentence, as with (1a) and (2a) above.
But a constituency grammar cannot allow such ill-
defined segmentations.

A third option, taken here implicitly, is to al-
low partially-filled slots or unfilled slots: rather
than posit a constituent with a categorized head as
a slot-filler, we could allow a specific head along
with unspecified material to fill a slot. For exam-
ple, assume that the ditransitive in (1a) has “my
uncle’s wife” in the recipient slot. We could use
a constituency grammar to treat this whole phrase
as a single NP; but we could also allow “wife” to
satisfy the slot-constraint on its own and treat its
modifiers as under-specified material.
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Skadiņŝ, R.; Tiedemann, J.; Rozis, R.; & Deksne,
D. 2014. Billions of Parallel Words for Free.
In Proceedings of the International Conference on
Language Resources and Evaluation (LREC 2014).
http://opus.lingfil.uu.se/EUbookshop.php

Solomonoff, R. 1964. A Formal Theory of Inductive
Inference, Parts I and II. Information and Control,
7(1 & 2):1–22, 224–254.

Steels, L. 2004. Constructivist development of
grounded construction grammar. In Proceedings of
the 42nd Meeting of the Association for Computa-
tional Linguistics: 9-16.

Steels, L. 2012. Design methods for fluid construction
grammar. In Steels, L. (ed), Computational Issues
in Fluid Construction Grammar. Berlin: Springer.
3-36.

Steels, L. 2017. Requirements for Computational Con-
struction Grammars. Proceedings of AAAI 2017
Spring Symposium on Computational Construction
Grammar and Natural Language Understanding.
251-257.

127



Stolcke, A. 1994. Bayesian Learning of Probabilistic
Language Models. PhD thesis, University of Cali-
fornia at Berkeley. Berkeley, California.

Tiedemann, J. 2012. Parallel Data, Tools and Inter-
faces in OPUS. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC 2012). http://opus.lingfil.uu.se

van Trijp, R. 2017. A Computational Construction
Grammar for English. Proceedings of AAAI 2017
Spring Symposium on Computational Construction
Grammar and Natural Language Understanding.
266-273.

Wible, D. and Tsao, N. 2010. StringNet as a Com-
putational Resource for Discovering and Investigat-
ing Linguistic Constructions. In Proceedings of the
Workshop on Extracting and Using Constructions in
Computational Linguistics (NAACL-HTL): 25-31.

Zhang, Y. and Clark, S. 2008. A Tale of Two
Parsers: Investigating and Combining Graph-based
and Transition-based Dependency Parsing using
Beam-search. Proceedings of the Conference on
Empirical Methods in NLP. 562-571.

Zhang, Y. and Nivre, J. 2012. Analyzing the Effect
of Global Learning and Beam-search on Transition-
based Dependency Parsing. Proceedings of COL-
ING. 1391-1400.

Ziem, A. and Boas, H. 2017. Towards a Constructicon
for German. Proceedings of AAAI 2017 Spring Sym-
posium on Computational Construction Grammar
and Natural Language Understanding. 274-277.

128



Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 129–133
Minneapolis, USA, June 7, 2019. c©2019 Association for Computational Linguistics

The Development of Abstract Concepts in Children’s Early Lexical
Networks

Abdellah Fourtassi * Isaac L. Scheinfeld * Michael C. Frank
{afourtas, ischeinfeld, mcfrank}@stanford.edu

Department of Psychology
Stanford University

Abstract

How do children learn abstract concepts
such as animal vs. artifact? Previous re-
search has suggested that such concepts
can partly be derived using cues from
the language children hear around them.
Following this suggestion, we propose a
model where we represent the children’s
developing lexicon as an evolving net-
work. The nodes of this network are based
on vocabulary knowledge as reported by
parents, and the edges between pairs of
nodes are based on the probability of their
co-occurrence in a corpus of child-directed
speech. We found that several abstract
categories can be identified as the dense
regions in such networks. In addition,
our simulations suggest that these cate-
gories develop simultaneously, rather than
sequentially, thanks to the children’s word
learning trajectory which favors the explo-
ration of the global conceptual space.

1 Introduction:

One of the central challenges in cognitive devel-
opment is to understand how concepts develop
(Carey, 2009; Keil, 1992; Gopnik and Meltzoff,
1997). Of particular interest is the case of abstract
concepts which have non-obvious shared proper-
ties such as “animal” and “artifact”. For exam-
ple, a cat and a bird are perceptually quite different
but they share some fundamental properties (e.g.,
breathing, feeding, and reproducing) which make
them animals (as opposed to artifacts). In such
cases, learning requires in part cultural/linguistic
cues which provide information beyond what can
be obtained through the senses (Gelman, 2009;
Harris, 2012; Csibra and Gergely, 2009).

One way children’s conceptual learning can

benefit from the language they hear around them
is through word co-occurrence. For example, one
can learn an abstract concept (e.g., animal) sim-
ply by observing how its instances (e.g., “cat” and
“bird”) go together in speech. Indeed, previous
work has shown that the caregiver’s input con-
tains rich co-occurrence information about vari-
ous abstract concepts (Huebner and Willits, 2018).
This work, however, has explored the conceptual
space from an adult perspective (using the words
uttered by the caregivers). Here we explore how
abstract concepts may develop from the children’s
perspective, investigating how their word learning
trajectory influences the higher-level organization
of their developing lexicon.

We study the real conceptual development
(i.e. as induced by the real trajectory of word
learning) in comparison to two hypothetical de-
velopmental scenarios induced by two possible
mechanisms of word learning. On the first mech-
anism, past lexical knowledge facilitates the fu-
ture learning of related words, e.g., the word “cat”
is more likely to be followed by another animal
name than it is to be followed by a food name
(Steyvers and Tenenbaum, 2005; Borovsky et al.,
2016). On the second mechanism, past lexical
knowledge does not influence future learning, e.g.,
learning the word “cat” does not necessarily in-
crease the odds that the next word will be another
animal name (Hills et al., 2009; Sizemore et al.,
2018).

The paper is organized as follows. First, we
describe the research strategy. In brief, we repre-
sented the developing lexicon as an evolving net-
work and we used word co-occurrence in parent
speech as a measure of words’ relatedness. We op-
erationalized abstract concepts as the highly inter-
connected regions of the network. Second, we ex-
plore how the pattern of children’s word learning
influences higher-level conceptual development,
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and whether this development corresponds to si-
multaneous or sequential conceptual growth.

2 Data and Methods

2.1 Constructing Lexical Networks

The networks’ nodes were nouns from Word-
bank (Frank et al., 2017), an open repository
aggregating cross-linguistic developmental data
of the MacArthur-Bates Communicative Develop-
ment Inventory (CDI), Toddler version (Fenson et
al., 1994). Pairs of nouns were linked by weighted
edges representing their semantic similarity de-
rived based on co-occurrence in the corpus of
child-directed speech CHILDES (MacWhinney,
2014), using the Word2Vec algorithm (Mikolov et
al., 2013).

First, we constructed the end-state network
based on all nouns learned by the last age of acqui-
sition. We used a subset of CDI nouns for which
cross-linguistic translations are present, allowing
us to explore cross-linguistic variability. We used
data from the following ten languages: Croatian,
Danish, English, French, Italian, Norwegian, Rus-
sian, Spanish, Swedish, and Turkish. The size
of this subset varied from 314 in Russian (repre-
senting 100% of total nouns present in the CDI
data of this language) to 176 in Turkish (represent-
ing 59.26% of total nouns). Second, in order to
study development towards the end-state, we con-
structed a different network at each month, based
on the nouns that have been learned by that month.

2.2 Identifying Abstract Concepts in a
Network

We assume that abstract concepts correspond to
clusters of highly interconnected nodes in the net-
works. We identified such clusters using Walk-
Trap (Pons and Latapy, 2006), an unsupervised
community detection algorithm based on the fact
that a random walker tends to be trapped in dense
parts of a network. Figure 1 shows the outcome
of cluster identification in the end-state network
in English. The algorithm obtained four major
clusters corresponding to the categories of clothes,
food, animal and artifacts. We refer to this end-
state clustering as C⇤. To examine developmental
change in the conceptual organization, we ran the
cluster identification algorithm at each month of
acquisition t, and we compared the resulting clus-
tering, noted Ct, to that of the end-state C⇤. The
method of this comparison is detailed below.

2.3 Measuring Conceptual Development
We measure conceptual development by compar-
ing Ct to C⇤ across time. We used a standard
method in clustering comparison, which is based
on word pairs on which the two clusterings agree
or disagree (Rand, 1971; Hubert and Arabie,
1985). We quantify clustering comparison using
precision P (Ct) and recall R(Ct), defined as fol-
lows:

P (Ct) =
|tp(Ct)|

|tp(Ct)| + |fp(Ct)|

R(Ct) =
|tp(Ct)|

|tp(Ct)| + |fn(Ct)|
Where tp(Ct) are the true positives, defined as the
word pairs that are placed in the same cluster un-
der Ct and in the same cluster under C⇤. fp(Ct) are
the false positives, defined as the pairs placed in
the same cluster under Ct and in different clusters
under C⇤. Finally, fn(Ct) are the false negatives,
defined as the pairs placed in different clusters un-
der Ct and in the same cluster under C⇤.

We made this comparison using different de-
grees of clustering granularity. More precisely,
we fixed the same number of clusters for both
Ct and C⇤, and we varied this number from two
to four clusters. We did not use the trivial case
of one cluster, nor did we use more than four
clusters, since this number was optimal for the
largest network (i.e., the end-state network) based
on the modularity maximization criterion (New-
man, 2006).

2.4 Learning Mechanisms
We examined how abstract concepts develop un-
der an average word learning trajectory derived
from real developmental data. To construct this
trajectory, we used the normative age of acqui-
sition, that is, the age at which a word is pro-
duced by at least 50% of children in each language
(Goodman et al., 2008). As mentioned above,
we compared this development to the development
induced by a first hypothetical trajectory where
known words influence future word learning and a
second hypothetical trajectory where learning pro-
ceeds regardless of what words are already known.

We instantiated the first trajectory through sam-
pling from one conceptual category at a time: the
first word is selected randomly from one cluster,
subsequent words are sampled from the same clus-
ter. After all words from this cluster are used, a
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Figure 1: Network obtained using a sample of nouns in CDI data (nodes), and co-
occurrence-based similarity from a corpus of child-directed speech (edges). Colors
indicate highly interconnected clusters identified using unsupervised network com-
munity detection. The clusters correspond, overall, to four higher-level concepts:
animal, food, clothes, and artifacts.

word from a different cluster is chosen, and the
same process is repeated until all clusters are cov-
ered. We call this sampling procedure the sequen-
tial model. We instantiated the second trajectory
through a uniform sampling across time from the
end-state vocabulary. We call this sampling proce-
dure the simultaneous model.

3 Results

Figure 2 shows the scores obtained through com-
paring C⇤ to Ct at different points in time t. For
the real word learning trajectory, both precision
and recall start relatively low, indicating that the
induced conceptual organization is initially quite
different from that of the end-state. Both measures
converge towards 1 (i.e., perfect score) as Ct be-
comes more and more similar to C⇤.

The simultaneous model mimics closely the
patterns of real conceptual development, explain-
ing almost all the variance in mean precision
(R2 = 0.94) and recall (R2 = 0.99). In contrast,
the sequential model had generally a higher preci-
sion, i.e., it induced fewer false positive pairs. This
result is due to the fact that we sampled instances
from the same category. However, the same model
had generally lower recall scores, i.e., it induced
more false negative pairs. This second result was
due to the fact that sampling from the same cate-
gory leads to clusterings that are finer in their con-

ceptual granularity than the end-state. As a con-
sequence of this discrepancy with respect to real
development, the sequential model explained less
variance than the simultaneous model did in both
its mean precision (R2 = 0.44) and recall (R2 =
0.96).

4 Discussion

Can children learn abstract concepts based on
word co-occurrence in the language they hear
around them? Previous work has shown that child-
directed speech contains information about sev-
eral abstract concepts (Huebner and Willits, 2018).
Here we investigated when and how this informa-
tion becomes available to children as their lexi-
cal network grows. We found that even with a
small lexicon, several high-level concepts such as
“animal”, “artifact”, “food” and “clothes” emerge
bottom-up as clusters of highly interconnected
nodes in the network. Furthermore, compared
with a model that posited sequential learning, we
found that these categories tended to emerge in
concert with one another.

The development of the higher-level conceptual
structure seems to be unaffected by the order with
which words are acquired (as long as this order ap-
proximates a uniform sampling from the end-state
lexicon), suggesting that the process of concep-
tual development can accommodate a wide range

131



Precision Recall

15 20 25 30 35 15 20 25 30 35

0.25

0.50

0.75

1.00

Age

M
ea

n 
sc

or
e

Real Simultaneous Sequential

Figure 2: Mean precision and recall scores obtained through comparing the end-
state clustering to clusterings at different months of acquisition, averaged across
languages and numbers of clusters. Colors indicates real and hypothetical word
sampling mechanisms. Errors bars represent 95% confidence intervals.

of word learning trajectories without a qualitative
change in the higher-level organization. For exam-
ple, whether acquisition starts first with the words
“cat” and “banana” or with the words “cow” and
“potato” does not qualitatively affect the higher-
level organization involving “animal” and “food”.
This property is important as it suggests, for in-
stance, that development is resilient to variabil-
ity in the children’s linguistic input (Slobin, 2014;
Hart and Risley, 1995).

Developmental changes were captured by pre-
cision and recall. The increase in precision means
that false positives decrease over time: some word
pairs that are initially lumped together in a same
category, are eventually differentiated. Similarly,
the increase in recall means that false negatives de-
crease, that is, some word pairs that are initially
distinct, become eventually subsumed by a same
category. These patterns suggest a process of con-
ceptual reorganization involving both “differentia-
tion” and “coalescence” as has been suggested in
the developmental literature (Carey, 2009).

That said, these developmental changes were
not necessarily related to specific concepts (since
the patterns were similar in the simultaneous
model where we randomized the order of word
learning). Instead, this finding suggests that differ-
entiation and coalescence of word pairs in our data
are related to the change in the vocabulary size
across development: As more words are added to
their lexical network, learners may approximate

better the underlying conceptual organization of
the mature lexicon and would make fewer catego-
rization errors. Indeed, research in network sci-
ence indicates that properties of a real network
become more distorted as the size of a sampled
sub-network decreases (Leskovec and Faloutsos,
2006).

One limitation of this study is that we used the
normative age of acquisition, computed using dif-
ferent children at different age groups. This choice
was due to the cross-sectional nature of available
CDI data. Though such a measure has been widely
used to study important aspects of the early lexi-
cal networks (Hills et al., 2009; Stella et al., 2017;
Storkel, 2009), it only applies at the population
level. In our case, though we found that concepts
develop simultaneously, individual children may
display, at least locally, a sequential-like behav-
ior. For example, prior knowledge about dinosaurs
may enable the learning of new dinosaur-related
words more easily (Chi and Koeske, 1983).

In sum, this work provided a quantitative ac-
count of how abstract concepts can emerge from
the interaction of the children’s emerging vocab-
ulary and the properties of their linguistic input.
One important direction for future work is to in-
vestigate the extent to which the correlational find-
ings obtained in this study (e.g., the identity of cat-
egories formed across development or the fact that
categorization errors decrease with the size of the
lexicon) can be corroborated by controlled behav-
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ioral experiments.

All data and code are available at
https://github.com/afourtassi/conceptNet
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Abstract
Sentences like Every child climbed a tree have
at least two interpretations depending on the
precedence order of the universal quantifier
and the indefinite. Previous experimental work
explores the role that different mechanisms
such as semantic reanalysis and world knowl-
edge may have in enabling each interpreta-
tion. This paper discusses a web-based task
that uses the verb-second characteristic of Ger-
man main clauses to estimate the influence of
word order variation over world knowledge.

1 Introduction

In this paper, we present results from an online
cloze (fill-in-the-blank) experiment in German de-
signed to exploit the verb-second syntax of Ger-
man main clauses in order to understand the re-
lationship between factors involved in quantifier
scope ambiguity resolution. An example of quan-
tifier scope ambiguity in English is the sentence
“Everybody loves somebody”, which has at least
two readings: either that (a) every person in the
universe of discourse loves some person, but there
are possibly different people being loved (linear
scope), or (b) that there is exactly one person who
is loved by everyone in the universe of discourse1

(inverse scope).
Humans are both able to perceive scope am-

biguities and resolve them in context with rela-
tive ease—such that reading (a) is quickly pre-
ferred, even though it is a seemingly “out-of-
context” example. Potential ambiguities are actu-
ally relatively common (Koller et al., 2010), even
if example sentences used to understand their for-
mal properties seem rather contrived. Indeed, the

1Taken in a narrowly logical way, reading (b) permits
(a) to be true. Pragmatically speaking, however, reading (a)
suggests that there are likely multiple/different people being
loved. See Radó and Bott (2018) for an argument that the
fine-grained logical implication is important from a process-
ing point of view.

study of the formal properties of scope-ambiguous
sentences has a long history in formal semantics
(Ruys and Winter, 2011), especially as it pertains
to the conditions under which ambiguous readings
are available. However, psycholinguistic mod-
els of how scope ambiguities are resolved (as op-
posed to merely being made formally available) is
a much less developed area of research, but whose
development is necessary for, e.g., better compu-
tational models of language understanding.

The key issue is the integration of multiple fac-
tors: local context, background world-knowledge,
“classical” syntax-semantics interface constraints,
and so on. For example, in the two readings of
Every child climbed a tree, common sense gener-
ally suggests that the children are climbing mul-
tiple trees, which may come from general overall
experience of tree-climbing, the affordances (Gib-
son, 1977) of trees, and so on. Nevertheless, sim-
ilar sentences have more easily available inverse
scope readings, such as Every jeweler appraised
a diamond. When, if at all, does the human pro-
cessor “activate” the knowledge that both readings
are available (from formal syntactic and semantic
structure), and how does this formal knowledge
interact with lexical-pragmatic knowledge about
trees or diamonds?

2 Background

Early work (e.g., Fodor, 1982) suggested that
quantifiers and word order interact, such that when
an existential quantifier precedes a universal quan-
tifier, the processor must act to reverse the linear
order in order to get a plural reading for the ex-
istential quantifier, and vice versa. Various psy-
cholinguistic techniques have been brought to bear
on the question, especially using the English lan-
guage as the experimental medium, among them
judgement studies, eye-tracking, self-paced read-
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(1) Jeder
Every

Spion
spyNOM

hat
has

diesen/einen/diese
this/a/these

Auftrag/Aufträge
order(s)ACC

erhalten.
received.

[Der/die
[The

Auftrag/Aufträge
order(s)

war(en)]
was/were]

gefährlich
dangerous

und
and

riskant.
risky.

‘Every spy received this/a/these order(s). [The order(s) was/were] dangerous and risky.’

(2) Diesen/Einen/Diese
This/A/These

Auftrag/Aufträge
order(s)ACC

hat
has

jeder
every

Spion
spyNOM

erhalten.
received.

[Der/die
[The

Auftrag/Aufträge
order(s)

war(en)]
was/were]

gefährlich
dangerous

und
and

riskant.
risky.

‘Every spy received this/a/these order(s). [The order(s) was/were] dangerous and risky.’

Figure 1: Stimulus example.

ing, and event-related potentials (ERP). Kurtz-
man and MacDonald (1993) performed a founda-
tional judgement study in English with a “context-
continuation” experimental paradigm, where an
ambiguously quantified (universal-existential or
existential-universal) sentence (the “context”) is
followed by another sentence (the “continuation”)
that contains a singular or plural reference to the
existentially quantified noun phrase in the context.

(3) Context: Every gardener watered a plant.
Continuation: The plant was tall and sturdy.

Example (3) illustrates the context-continuation
paradigm. In this case, the singular subject of the
continuation requires an inverse scope interpreta-
tion of the context.

Testing the acceptability of these sentence pairs
is more sensitive to online processing than ask-
ing for explicit interpretation outright, and Kurtz-
man and MacDonald used judgement tasks of this
nature and found no single principle under which
a preference for particular interpretation could be
identified. They tested swapping the linear or-
der of quantifiers (e.g., “A gardener watered ev-
ery plant”), and found no effect of linear order.
One problem with such a study is that the quanti-
fiers are swapped while keeping the semantic roles
filled by the same nouns, so that it is not pos-
sible to separate the effect of linear order from
common-sense interpretation.

Filik et al. (2004) performed judgement and
eye-tracking studies on English sentences by us-
ing double object constructions where the direct
and indirect objects had ambiguous universal and
existential quantifier scopes. It is possible to swap
these in English. This is under a theory where
a grammatical hierarchy of constituents (Ioup,
1975) conflicts with linear order. They found that

the linear order effect interacts with the grammati-
cal hierarchy effects in both experimental modali-
ties. However, double object constructions involve
either an optional argument or one of a subset of
verbs representing events that obligatorily require
indirect objects, restricting the ability of this type
of study to explore the role of world knowledge2.

Dwivedi (2013) performed a reading-time study
based on stimuli similar to those of Kurtzman
and MacDonald, with universal-existential order
only for the context sentence and found no sig-
nificant effects reflecting an online reanalysis pro-
cess or a competition process in the manner of
Kurtzman and MacDonald (1993) or Filik et al.
(2004). On the contrary, in a question-answering
task after each sentence pair, participants remem-
bered and identified singular continuations at be-
low chance level, being strongly guided by prag-
matic intuitions. Dwivedi takes this to reflect
a “heuristic first, algorithmic second” theory of
scope processing—that the human processor may
be able to reanalyze ambiguous quantifiers, but
does not do so unless very strongly provoked to
do so, and instead relies almost entirely on back-
ground and contextual knowledge.

Subject-verb-object (SVO) transitive construc-
tions present a greater opportunity to explore the
role of semantic events and associated knowl-
edge than double object constructions, but use of
the English language presents some limitations.
A better exploration of the roles of algorithmic
knowledge, linear order, and reanalysis processes
in quantifier scope ambiguity processing could be
performed in a language that allows for variation
of order of the quantifiers without a fundamen-
tal change to the semantics of the situation be-

2See Dwivedi (2013) for further discussion of Filik et al.’s
stimuli.
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Figure 2: Correlation plot of the probability of plural interpretations given SVO order vs. OVS order, for indefinite,
definite singular, and definite plural conditions. Data ellipses illustrate means and standard deviations for each
condition in two dimensions (Friendly et al., 2013).

ing represented. Simply swapping object and sub-
ject in simple declarative clauses is unacceptable
in English, but much less so in verb-second, case-
marking languages like German.

Radó and Bott (2018) investigate the role of
quantifier distributivity relative to linear order us-
ing a series of context-continuation judgement
tasks in German. Part of their manipulation
is main-clause SVO order vs OSV given Ger-
man’s verb-second characteristic; in German main
clauses, quantifier scope ambiguities are possible.
However, they use visual aids to explicitly dis-
ambiguate the intended interpretation of the sen-
tence, so that the judgement task is about match-
ing the appropriateness of the sentence to the im-
age. Thus, world knowledge effects are factored
out of their experiment.

In this work, we instead exploit the SVO/OVS
flexibility of German main clauses to better char-
acterise how linear order, formal semantic struc-
ture, and world knowledge work together to
produce interpretations. We hypothesize that
Dwivedi’s manipulation yields her result for En-
glish because English-speakers rarely, if ever, ex-
pect to see linear order variation. The low ac-
ceptability of an OVS order in declarative sen-
tences in English means that English users have
a much lower expectation of having to reverse
the observed linear scope order in order to align
their pragmatically-driven interpretation with the
observed sentence. Correspondingly, English-

speakers only infrequently invoke “algorithmic”
processing mechanisms. German-speakers find
OVS order much more acceptable than English-
speakers. This means that German-speakers are
more likely to confront variation in word order,
leading to mismatches between world knowledge
and linear order. Since German-speakers expect to
confront mismatches more often, syntactic and se-
mantic structure, including word order, will have
a more visible effect on number interpretation,
providing more visible resistance to the influence
of background knowledge. In order to test this,
we make use of a web-based cloze task under
the context-continuation paradigm, giving partic-
ipants a free choice of interpretation.

3 Methods and Materials

We translated the English stimuli from Dwivedi
(2013) to German, making adjustments or replace-
ments where the syntax or semantics did not work
with normal German usage. For the German con-
text sentences, we varied the word order from
SVO to OVS order3 and we had three conditions
for the object article: definite singular, indefinite,
and definite plural, for six total conditions. The

3A reviewer points out that our experiment could work,
in theory, for any language where the object can optionally
precede the subject in a declarative main clause, not merely
for verb-second languages. We consider this highly plausible,
but we chose not to commit to a more ambitious hypothesis
without further analysis of the associated linguistic phenom-
ena beyond Germanic verb-second.
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b Std. Error z Pr(> |z|)
Intercept -1.1176 0.3732 -2.994 0.00275 **

Linearity(SVO) 0.9260 0.2844 3.256 0.00113 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Table 1: Fitted mixed-effects model of word order on plural interpretation for objects with the indefinite article.

continuation sentences were supplied with a blank
space for the subject and verb, with a final com-
plement describing the targeted subject.

Examples (1) and (2) represent the stimuli we
used. The italicized portions are the intended
cloze fillers: participants are expected to fill in the
subject and the verb, which would thereby reveal
their intuitions about number.

The stimuli were randomized into six lists, and
24 fillers were created and added to each list. The
stimuli were presented using Lingoturk4, a work-
bench for developing and hosting web-based ex-
periments (Pusse et al., 2016), one stimulus per
screen, after two training exercises. A mix of par-
ticipants were recruited, both native-speaker un-
dergraduate students at a university in a German-
speaking country and online via Prolific5, which
permits selection by native language.

The collected data (filled blanks) were then
coded by a native speaker for whether they repre-
sented an unambiguously singular or plural judge-
ment, were ambiguous (e.g., the participant substi-
tuted a subject-verb combination that did not refer
to the object of the context sentence), or were un-
interpretable.

4 Results and Discussion

There were a total of 66 participants, of which 31
were students and 35 were Prolific participants.
The student participants were collected first, upon
which we discovered that two items had errors.
We discarded the data for those items, corrected
the errors, and ran the full set with the Prolific par-
ticipants. This yielded 1546 responses, 1236 of
which were unambiguous references to the object
of the context sentence with interpretable num-
ber6.

We expected from their semantic interpretations
that singular and plural definite articles would pro-
duce strong singular and plural interpretations re-

4https://github.com/FlorianPusse/
Lingoturk

5https://www.prolific.ac
6The data are available upon request to first author.

spectively, regardless of any underlying pragmatic
bias of the item. We plotted the probability of
plural interpretation per item given SVO order vs.
OVS order (figure 2). It illustrated that singular
and plural interpretations are, as expected, little
affected by order when the determiner is definite:
they tend to agree with the number of the deter-
miner, and items in the plot cluster near zero prob-
ability of plural interpretation for the singular def-
inite condition and high probability of plural inter-
pretation in the plural definite condition. With the
indefinite article, however, we obtain nearly the
full range of plural biases, with some items hav-
ing low plural probability with either word order
and some high.

We fitted a binomial logit regression model with
mixed effects for the indefinite article condition
under the hypothesis Plurality ∼ Linearity +
(1|Item) + (1 + Linearity |Participant); that is,
the plural response has a fixed effect of linearity
with a random intercept per item (given variation
in the overall semantic plural bias of the item) and
a correlated random intercept and slope for linear-
ity relative to participant, reflecting overall indi-
vidual tendencies to give plural interpretations and
individual effects of linear order. This was per-
formed in R under the lme4 package (Bates et al.,
2014). The fixed-effects model output is presented
in table 1. This model produces a significant ef-
fect on plural interpretation in indefinite order sen-
tences, with log-odds ratio b = 0.926 in favour of
a plural interpretation when the context sentence
is in SVO order.

While the plurality of each item is highly pre-
served in either order, OVS items are indeed less
likely to be interpreted as plural, resulting in a
slope of the fitted line for the indefinite condition
in figure 2 that is visibly less than 1 and reflecting
the outcome of the binomial logit regression.

Dwivedi’s self-paced reading results in English
present a picture of a system that employs reanal-
ysis on ambiguous scopes mostly in extremis, but
otherwise relies principally on lexical-pragmatic
associations in interpretation. Our results do not
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Fronted objects (OVS)
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correlated between
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World-knowledge
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Syntactic/linear
order effect
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             TRUE
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              TRUE
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Syntax-mediated
formal sem.-prag.

interaction

Syntax-pragmatics
interaction

Figure 3: Possible outcomes of the experiment relative
to hypothesis over dominant mechanisms of ambiguous
quantifier scope processing.

challenge the centrality of background world and
lexical knowledge, but instead, reflect a some-
what stronger role for the “algorithmic” compo-
nent of scope processing. Specifically, German
speakers’ syntactic expectations admit OVS orders
more naturally than English speakers, so that when
an OVS order is encountered, it creates a “head-
wind”, triggered by an initial indefinite article, that
the powerful force of world knowledge must over-
come. This mechanism is specifically invoked by
the appearance of an indefinite object noun phrase
in the initial position, while singular definite arti-
cles totally override world knowledge regardless
of order.

Dwivedi measured plural bias for her origi-
nal 2013 stimuli using a forced choice singu-
lar/plural interpretation task. We instead opted for
a cloze task, which we believe has higher ecolog-
ical validity—the task avoids forcing participants
to choose among options when they may not feel
that any of them are suitable or natural. A poten-
tial disadvantage of free completions is that par-
ticipants sometimes filled the subject/verb field in
a manner that would not let us determine whether
they intended a singular or a plural reference to the
object phrase or with a nonsense response; these
responses had to be discarded before analysis. In
our case, this happened in 20% of the data, still

leaving us with a sufficient amount of interpretable
data. The advantage of this approach in the in-
vestigation of quantifier scope processing is that
it does not explicitly call on participants to think
about and judge plurality as a concept, but rather
to come up with a phrase that makes sense to them
in context.

5 Conclusions and Future Work

Figure 3 provides a visual description of the hy-
pothesis space we considered for this experiment.
To the proposition that world knowledge is overly
dominant, we found that our result pushes the
needle back in the direction of competition-based
hypotheses. The specific role of indefinite arti-
cles triggering these ambiguities over word order
points once again to a complex interaction at the
interface between syntax, semantics, and pragmat-
ics. We also demonstrated the experimental value
of free(r) word order languages with case marking.

Our cloze task illustrates an aspect of the role
of syntactic variation in quantifier interpretation.
In order to investigate its specific time course, the
most immediate future work is to take our stimuli
to other experimental modalities, including self-
paced reading and eyetracking.

In the longer run, we plan to use corpus (Say-
eed, 2017) and machine learning investigations to
determine the empirical basis of plurality judge-
ments in ambiguously scoped events.
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Abstract

How are the meanings of linguistic expres-
sions related to their use in concrete cognitive
tasks? Visual identification tasks show human
speakers can exhibit considerable variation in
their understanding, representation and verifi-
cation of certain quantifiers. This paper ini-
tiates an investigation into neural models of
these psycho-semantic tasks. We trained two
types of network – a convolutional neural net-
work (CNN) model and a recurrent model of
visual attention (RAM) – on the “most” verifi-
cation task from Pietroski et al. (2009), manip-
ulating the visual scene and novel notions of
task duration. Our results qualitatively mirror
certain features of human performance (such
as sensitivity to the ratio of set sizes, indicat-
ing a reliance on approximate number) while
differing in interesting ways (such as exhibit-
ing a subtly different pattern for the effect of
image type). We conclude by discussing the
prospects for using neural models as cognitive
models of this and other psychosemantic tasks.

1 Introduction

Semantics – the scientific study of meaning – has
traditionally studied the truth-conditions of sen-
tences and how the meanings of sub-sentential ex-
pressions combine to generate them. How ex-
actly truth-conditions are represented and then de-
ployed in concrete acts of production and compre-
hension has often not been seen as belonging to
the purview of semantics properly.

A recent line of work, however, has argued
that the mental representation of the meanings
of expressions bias behavior in cognitive tasks
in ways that allow us to adjudicate between
truth-conditionally equivalent but representation-
ally distinct semantic theories. In particular, Piet-
roski et al. (2009) considered the verification of
the sentence “Most of the dots are yellow”. The
meaning of ‘most’ can be expressed in distinct, but

truth-conditionally equivalent ways. For instance
(where, in the running example, A is the set of
dots, and B the set of yellow things):

• JmostK(A)(B) = 1 iff |A ∩B| > |A \B|

• JmostK(A)(B) = 1 iff there is f : A \ B →
A ∩B that is one-to-one, but not onto

The former says that the number of dots which are
yellow is larger than the number of non-yellow
dots, while the latter says that the former can be
paired off with the latter, with some yellow dots
remaining. Whilst these representations are truth
conditionally equivalent, each is associated with a
distinct verification strategy to evaluate those truth
conditions. When deciding whether most of the
dots are yellow: the former representation is asso-
ciated with an algorithm for computing and com-
paring two cardinalities, while the latter represen-
tation is associated with an algorithm for checking
whether a certain correspondence between yellow
and non-yellow dots exists. Whilst a speaker may
be capable of implementing many possible strate-
gies, Pietroski et al. (2009)’s claim is that, all other
things being equal, speakers are biased towards us-
ing the default strategy associated with their rep-
resentation.

Pietroski et al. (2009) sought to determine
whether speakers prefer one of the above repre-
sentations by testing which verification strategy
they typically use. By manipulating the arrange-
ment of the dots in images against which ‘most’
was verified, they created conditions which should
ease the implementation of one of the strategies
(e.g. dots arranged in pairs should favour corre-
spondence). They found no difference in verifi-
cation accuracy between three of the four image
types used. Participants were significantly more
accurate on the remaining image type, which con-
sisted of two paired columns of colour sorted dots.
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Their analysis suggested that the participants used
the columns’ lengths as a proxy for set cardinality,
rather than using a correspondence strategy. The
results of the remaining three image types were
explaind very well by a psychophyiscal model of
approximate number. Given that this system can-
not be used to implement a correspondence strat-
egy, they concluded that the meaning of ‘most’ is
best represented in the former way.1

In this paper, we begin to develop robust mech-
anistic cognitive models of their sentence verifica-
tion task to help elucidate the factors underlying
the psychosemantics of ‘most’. In particular, we
are interested in the following question: do var-
ious neural models show the potential to be de-
veloped into good cognitive models of the mean-
ing of ‘most’? A good cognitive model does at
least two things: (i) fits human data well and (ii)
has movable parameters that enable new predic-
tions to be made. To address this question, we
subjected two different classes of models – convo-
lutional networks and recurrent models of visual
attention – to the experimental design from Piet-
roski et al. (2009), together with an additional and
novel manipulation for ‘task duration’ (inspired by
Register et al. (2018)). This allows us to assess the
models along both dimensions (i) and (ii). Our key
contributions are:

• Subjecting neural models to prominent tasks
from the psychosemantics literature.

• Operationalizing ‘task duration’ in two dis-
tinct ways: depth of a convolutional network,
and the number of glimpses in a model of vi-
sual attention.

The key findings from our experiments are:

• Both models exhibit patterns of behavior
qualitatively similar to humans, including
sensitivity to dot ratio.

• The psychophysical model of approximate
number fits model data well, with parameters
not too far from human participants.

• Model performance is effected by the image
type in a subtly different way than human
performance.

1See Lidz et al. (2011) for further research in this direc-
tion, distinguishing between more candidate representations.

• The effect of task duration is more robust for
the convolutional networks than for visual at-
tention.

After discussing related work in the next sec-
tion, we outline the hypotheses of our experiment,
before a full explanation of our methods and re-
sults. We conclude by discussing the results and
outlining future work.

2 Related Work

2.1 “Most” and the Visual Identification Task
As discussed in the introduction, different rep-
resentations of a quantifier’s meaning may re-
flect different default verification strategies. This
raises the question: given the many psychologi-
cally plausible verification strategies, can we de-
termine whether any are favoured by speakers?
Pietroski et al. (2009) addressed this question us-
ing the methods described above. Consequently,
by identifying where speakers were most accurate,
they were able to determine which strategy speak-
ers favour and, thus, how ‘most’ is represented.

Their results suggested that speakers favour
a cardinality comparison strategy, computed via
the approximate number system (ANS) (Dehaene,
1997). The ANS is a cognitive system for
representing magnitudes. Instead of relying on
discrete symbols, such as precise cardinalities,
the ANS’s representations are imprecise and dis-
tributed. They can be described using a series
of overlapping Gaussian curves across a continu-
ous ‘number line’: each curve’s mean is the car-
dinality which it corresponds to and the standard
deviations increase linearly with the cardinality.
Thus, the greater the magnitude of a cardinality,
the less precise is its ANS representation. Be-
cause the ANS follows what’s known as Weber’s
law (Feigenson et al., 2004), the discriminability
of any two ANS representations is determined by
the extent of their overlap. Consequently, the diffi-
cultly of a cardinality comparison made using the
ANS is dependent upon the ratio of the cardinali-
ties. For instance, 6:12 is equally as discriminable
as 12:24, or 30:60 or 1:2. This is because the dis-
tributions of the ANS representations used to de-
scribe these ratios overlap by an equal amount —
they each have a Weber ratio of 2. The depen-
dence of accuracy on ratio follows a psychophys-
ical model that generates what are called Weber
curves (to be described precisely in our Results
section).
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Pietroski et al. (2009) found that these curves
fit participant data very well (in three of four im-
age types) and thus suggest that speakers may em-
ploy the ANS as a “numeralising waystation” to
interface with precise cardinal values. This would
allow speakers to understand ‘most’ as a cardi-
nality comparison, but to implement it using the
imprecise representations of the ANS. Thus, they
claim the semantics for “most” is specified in a
way that includes cardinality comparison. We will
subject neural models to the same experiment, to
see whether they exhibit the same reliance on car-
dinality and approximation behavior.

Register et al. (2018) argued that it is likely that
the participants in Pietroski et al. (2009) were im-
plementing a speed-accuracy trade off due to the
number (360) and duration (200ms) of the trials.
As such, rather than the preferred semantics for
“most”, they suggest ANS usage may be a result
of task-based strategising: participants relied on
the speed and the low cognitive effort of an ANS-
based strategy in order to cope with unrealisti-
cally high demands resulting from the brevity and
quantity of the trials. They tested this by running
several variations of the experiments from Piet-
roski et al. (2009). One experiment asked partic-
ipants to verify a single trial with unconstrained
response time (RT). Participants’ RT and accuracy
were negatively correlated, as would be expected
were they implementing a speed accuracy trade-
off. Nonetheless, their self-reports indicated that
most participants used a cardinality comparison
based strategy (i.e. either counting or estimating).
A second experiment also manipulated the num-
ber of trials. Participants who completed more tri-
als were more likely to report using an estimation-
based strategy. Additionally, participants’ RTs for
individual trials decreased as they completed tri-
als. Both of these findings suggest that use of the
ANS in Pietroski et al. (2009) was in fact due to
task-based strategising. These two findings show
that while cardinality comparison is the preferred
strategy, it may be computed by different means,
depending upon the particular context. As such,
the semantics of “most” are, to a degree, context
dependent.2 Our model(s) will incorporate an el-
ement of this context-sensitivity, by manipulating
a variable not yet tested on humans: task duration,
i.e. how long each trial takes.

2In a similar vein, Steinert-Threlkeld et al. (2015) show
that ‘most’ and ‘more than half’ are differently effected by
context under working memory load.

2.2 Quantifiers and Neural Networks

Steinert-Threlkeld and Szymanik (2018) investi-
gated the hypothesis that semantic universals for
quantifiers arise because expressions that satisfy
a universal are easier to learn than those that do
not. By treating the verification and falsification
of quantified sentences as a sequence classifica-
tion task, they trained long short-term memory
networks (LSTMs) to learn the meaning of var-
ious quantifiers. These quantifiers corresponded
to one of three universals (quantity, monotonic-
ity or conservativity), and came in pairs: a real
one satisfying the universal and a hypothetical one
that does not. By observing whether the LSTMs
could learn the expressions satisfying the univer-
sals faster (and by extension, more easily), they
were able to test this hypothesis. They found that
the LSTMs were able to learn to verify expressions
which satisfied the quantity and monotonicity uni-
versals faster than those which did not, confirm-
ing their hypothesis. Not only does this show neu-
ral networks are capable of verifying quantifiers,
but it suggests that they may do so in a similar
way to human speakers. Nevertheless, their moti-
vation was of a more abstract and theoretical na-
ture; consequently, the networks are not tested on
a concrete psycholinguistic task and compared to
human performance, as we do here.

Kuhnle and Copestake (2018) aimed to show
how psycholinguistic tasks may provide more in-
formative methods for evaluating how neural net-
works solve natural language tasks. They trained
the FiLM visual question-answering model from
Perez et al. (2018) (a CNN + GRU hybrid) to com-
plete a version of the VIT. Using the Shape World
framework (Kuhnle and Copestake, 2017), they
generated stimuli consisting of images containing
coloured shape objects, a corresponding quantifier
statement and a truth value for that statement. The
objects were either entirely one colour but from
two different shape sets (e.g. red squares and cir-
cles) or vice versa (e.g. red and blue squares). The
ratio and arrangement of the objects was manip-
ulated. The object set ratios ranged linearly from
1:2 to 7:8, and no image contained more than 15
objects. The objects were either randomly dis-
tributed, sorted into contrasting pairs which were
randomly distributed, or partitioned by contrast-
ing feature. They trained two instances of the net-
work. The “Q-half” network trained on stimuli
with “less/more than half” statements, whereas the
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“Q-full” network trained on stimuli with a broader
range of quantifier statements (e.g. “some” and
modified numerals such as “at least 4”). Both
networks’ test phases exclusively used “less/more
than half” statements.

Although they found differences in perfor-
mance according to object arrangement, these did
not indicate that the networks favoured any one
verification strategy. They suggest the networks
may have learned an “adaptive strategy” to op-
timise performance across trial types. Both net-
works attained high accuracy (100-72% between
ratios 1:2 and 7:8) and became less accurate as
the object set ratios became more balanced. The
Q-full network was also tested on an evaluation
set including the object ratios 8:9, 9:10 and 10:11
(and consequently 17-21 objects). By fitting We-
ber curves to these data, they found the network’s
Weber fraction was similar to human speakers’.
They interpreted these last two findings as evi-
dence that the network learned an ANS-like sys-
tem. While these are promising results, because of
different motivations, their stimuli differ in certain
ways from those used by Pietroski et al. (2009),
which prevents their models from being cognitive
models of the latter task. Moreover, they have no
operationalisation of task duration, to see in what
way that affects performance.

3 Hypotheses

In the present experiment, we trained two types of
neural network to complete a close replica of the
VIT in Pietroski et al. (2009), with one major ad-
dition: we also manipulate task duration (as oper-
ationalised by parameters of our neural networks).
Based on the VIT research with human speak-
ers discussed in the previous section, we selected
three ‘behavioural traces’ which neural networks
ought to exhibit if they verify “most” in an algo-
rithmically similar manner to human speakers. As
such, replicating these behavioural traces is essen-
tial for the models to be candidate cognitive mod-
els. Note that we do not assume these traces cor-
respond to, or are necessary evidence of under-
lying algorithmic similarity between neural net-
works and human speakers. However, such sim-
ilarities would be sufficient causes of these traces.
The behavioural traces and their associated hy-
potheses are:

1. ANS usage: Network accuracy is negatively
correlated with the stimulus dot ratio size.

2. Verification strategy preference: Network ac-
curacy is dependent upon the arrangement of
the stimulus.

3. Speed-accuracy trade-off: Network accuracy
is positively correlated with an appropriate
operationalisation of task duration.

4 Methods

We generated a range of dot matrix stimuli, each
of which consisted two dot sets in a particular ra-
tio and spatial arrangement. Like Pietroski et al.
(2009), we used up to 22 total dots per image,
in ratios from 1:2 to 9:10 in one of four arrange-
ments. These were: column pairs sorted (paral-
lel columns of colour sorted dots), column pairs
mixed (unsorted parallel columns), scattered pairs
(randomly distributed colour-contrast dot pairs)
and scattered random (randomly distributed dots).
Figure 1 contains an example of each. Each image
was labelled with a truth value for the statement
“Most of the dots are blue”. The stimuli were split
into a training set (18000 images), a validation set,
and a test set (3600 images each). All three sets
were balanced to contain equal proportions of each
ratio/image type/truth-value combination. While
we refer to our dot sets as blue and yellow for con-
sistency with the existing literature, we made the
input to the networks grayscale in order to reduce
dimensionality.

We used two types of neural network and as
such, ran two adjacent experiments. The first
of these was an off-the-shelf convolutional neural
network (CNN) architecture: the VGG networks
from Simonyan and Zisserman (2014).

The second was a variation of the recurrent
model of visual attention (RAM) from Mnih et al.
(2014).3 This model processes its input serially in
a manner that aims to replicate the saccades and
fixations of human visual attention. It does this
by taking a series of retina-like samples (called
‘glimpses’) of its ‘environment’ in order to extract
the information needed to determine the best lo-
cation for future glimpses and to solve its task.
This process of visual search and attention reflects
a core component of human visual scene represen-
tation (Rensink, 2000; Hayhoe and Ballard, 2005;
Wolfe and Horowitz, 2017).

3In particular, the glimpse network described below did
not have convolutional layers and used vector addition in-
stead of component-wise multiplication in Mnih et al. (2014).
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Figure 1: Example stimuli. All four have a ratio of 5:4, have a positive truth value (i.e. most of the dots are blue).
From left to right, image types are: column pairs sorted, column pairs mixed, scattered pairs and scattered random.

The network processes an image by using sev-
eral ‘sub-networks’ operating across a number of
time steps (t), as depicted in Figure 2:

Figure 2: One time-step of the RAM model.

• The glimpse network. It takes the environ-
ment (which in the current experiment is the
image stimulus) and a location co-ordinate as
its inputs. At t0, the location co-ordinate is
randomly generated. At all subsequent ts, it
is selected by the location network (described
below) at t− 1. The network takes a series of

samples centred around the co-ordinate and
concatenates them into a glimpse. Each con-
secutive sample is larger than the previous,
but at a lower resolution. We used 2 sam-
ples, the second of which was twice as large
and at half the resolution of the first. These
are then processed by 3 convolutional layers
and one fully-connected ReLU layer to gen-
erate a “what” vector. In parallel, the co-
ordinate is processed by a ReLU layer out-
putting a “where” vector. The “what” and
“where” vectors are point-wise multiplied to
generate the glimpse feature vector.

• The core network. An LSTM cell, which
takes the glimpse feature vector at t and its
own internal state at the previous time-step
as its inputs.

• The location network. A fully connected
layer which takes the core network’s internal
state at t as its input, and outputs two val-
ues ranging between −1 and 1 (via tanh) as
its output. These are the means of Gaussians
(we fixed the standard deviation at 0.03), one
for the x coordinate and one for the y. Ac-
tual coordinates are samples from them and
are fed in to the glimpse network at t+ 1.

• The action network. A fully connected layer
which takes the core network’s internal state
at t as its input and outputs a binary image
classification. The action network produces
a classification at every t, but we only record
the classification decision that occurs at the
final t.

Neural networks are not bound by ‘wall clock
time’, so it is not possible to directly manipulate
the amount of time they use to do a task. To op-
erationalise trial duration, we use the networks’
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architectures to implement processing constraints
which reflect those faced by human subjects oper-
ating under urgency. The operationalisations re-
flect two complementary ideas about the effect
that task duration will have on human speakers:
as duration increases, (i) the amount of informa-
tion processing and (ii) the number of saccades
and fixations possible increases. For CNNs, we
manipulate network depth (thus manipulating the
amount of information processing possible) and
for the RAM model, we manipulate the number
of glimpses made by the network. Each experi-
ment used four levels of task duration: we use the
VGG7, 9, 11 and 13 architectures and RAM net-
works with 4, 8, 16 and 24 glimpses.

The VGG models are trained using the Adam
optimizer (Kingma and Ba, 2015). For the
RAM models, we adopted the hybrid super-
vised learning approach described in Mnih et al.
(2014), where cross-entropy is back-propagated
to train the action, core, and glimpse networks,
and the REINFORCE rule (Williams, 1992; Sut-
ton et al., 1999) is used for the location net-
work. Complete hyper-parameters and training
details are included in the Supplementary Mate-
rials section. The source code and data may be
found at https://github.com/shanest/
neural-vision-most.

5 Results

5.1 Descriptive

Figure 3 shows the accuracy of all networks by
dot ratio, averaged across all image types. In both
network types, there is a clear trend of decreasing
accuracy as ratios become more balanced. There
is a notable clustering of the three VGG9+ net-
works: they appear to have very similar accuracies
across all ratios, and follow a pattern that differs
dramatically from VGG7, which is significantly
less accurate. Notably, VGG7 is the only CNN
network not to attain 100% accuracy at any ratio.
Moreover, its performance collapses much more
rapidly than the other CNNs as the ratios become
more balanced. Whilst the RAM networks appear
to cluster together a bit, their performance at each
ratio shows a broader degree of variability at each
ratio than the CNNs.

Figure 4 shows the accuracy of all networks by
image type, averaged across all ratios. As above,
there are easily observable differences in the per-
formance of the VGG7 and VGG9+ networks.

Figure 3: Accuracy by ratio, across image type.

The former performed more poorly on the scat-
tered type images than the column types, whereas
the latter attained near-or-at-ceiling accuracy on
all but the scattered random trials. The RAM net-
works’ response pattern was similar to VGG7’s,
albeit somewhat more pronounced. With the ex-
ception of instances where near-or-at-ceiling re-
sponses make the data less legible, for the column
and scattered image sets, all networks performed
more accurately on the image types that contained
paired dots than their unpaired equivalent.

Figure 4: Accuracy by trial type, averaged across ratio.

Figure 5 shows the learning curves for both
model types. The VGG7 model hits peak perfor-
mance quickly, and does not improve thereafter.
The VGG13 hits near-ceiling performance very
quickly. VGG9 and 11 show more involved learn-
ing patterns, with significant decreases in accuracy
before hitting their ceilings. These results reflect
the VGG7’s limited computational capacity rela-
tive to the other three.

The RAM models show an interesting pattern:
the two models with fewer glimpses (4 and 8)
have very similar learning trajectories, as do the
two models with more glimpses (16 and 24). And
while all four end up at roughly the same accuracy,
the former models begin improving much earlier.
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Figure 5: Learning curves for VGG (left) and RAM (right) models.

This suggests that learning how to choose a large
number of glimpse location choices is a difficult
reinforcement problem. A more detailed analysis
of model behavior throughout learning will be left
for future work.

5.2 Regression Analysis

To test the significance of these apparent trends,
we fit separate multiple logistic regression models
to the data from each network type.4 Correct pre-
diction was the outcome variable. Three predictor
variables relating to the hypotheses were included:
image type, a categorical variable; operationalised
task duration, an ordinal variable; and dot ratio
(converted to real numbers), a continuous variable.
Dot ratio was ordered from least balanced (1/2)
to most balanced (9/10). We also included two
control predictor variables to verify whether dot
ratio is the primary explanatory variable for dif-
ferences in performance following manipulations
of dot ratio sizes, rather than related or potentially
confounding factors. These were: absolute set size
difference, a continuous variable; and total dots,
a continuous variable. The model also included
one interaction term, between dot ratio and net-
work type. The CNN model could not produce re-
liable statistical estimates for some variable levels
due to response invariance (i.e. when performance
was at-or-near-ceiling, there were not enough in-
correct predictions to reliably estimate paramters).
As such, these were excluded from the analysis.
These were the data corresponding to column-type
images and VGG13. Of the variables included in
each analysis, the network with the greatest opera-
tionalised task duration (i.e. VGG11 and RAM24)

4See, among others, Kotek et al. (2011) (§3.3.2) for a
multiple logistic regression analysis of experimental data on
truth-value judgments of ‘most’ sentences.

and the ‘most organised’ image type (i.e. scat-
tered pairs in the CNN analysis and column pairs
sorted in the RAM analysis) acted as the compari-
son class.

Variable Estimate Std. Error z value Pr(> |z|)
Image: Scattered pairs (Intercept) 16,20 4,15 3,91 9.42e-05 ***
Image: Scattered random -0,79 0,09 -8,63 <2e-16 ***
Network: VGG9 -0,73 3,47 -0,21 0,83
Network: VGG7 -12,22 2,45 -4,98 6.37e-07 ***
Dot ratio -14,90 4,93 -3,02 0.00253 **
Absolute difference 0,17 0,37 0,46 0,64
Total dots -0,03 0,04 -0,87 0,39
Ratio * Network: VGG9 1,09 4,00 0,27 0,78
Ratio * Network: VGG7 11,81 2,83 4,18 2.97e-05 ***

Table 1: Multiple logistic regression of the CNN trials.
Significance: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

The output of the CNN logistic regression can
be seen in Table 1. The model shows that the
log-odds of the VGG7-11 networks correctly pre-
dicting a stimulus’ label are significantly reduced
as the stimulus’ dot set ratio becomes more bal-
anced. We found no significant effect for either of
our control variables (absolute difference and to-
tal number). These findings strongly support Hy-
pothesis 1. Holding all other variables constant,
VGG7-11 were significantly less likely to predict
the correct label of scattered random images than
scattered pairs images. Given that the lack of dif-
ference between the images types that could not
be included in the analysis appears to be due to
ceiling effects, we interpret these findings as sup-
porting Hypothesis 2. Holding all other variables
constant, VGG7 was significantly less likely than
VGG11 to make a correct classification. No dif-
ference was found between VGG9 and 11. Again,
as the lack of difference between the VGG9+ net-
works appears to be best explained by response
invariance due to ceiling effects, we cautiously in-
terpret these findings as supporting Hypothesis 3.
Finally, we found a significant positive interaction
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between dot ratio and VGG7. Together with the
negative coefficient for VGG7, the result is that
the predicted log-odds for a correct prediction by
VGG7 are robustly lower across ratios than for
VGG9 and VGG11, as expected. The positive in-
teraction term means that the log-odds decrease at
a slower rate for more balanced ratios for VGG7
than the other two; this is due to the at-or-near-
ceiling performance of the other two at many of
the less-balanced ratios.

Variable Estimate Std. Error z value Pr(> |z|)
Image: Column pairs sorted (Intercept) 9,57 1,52 6,28 3.41e-10 ***
Image: Column pairs mixed -1,18 0,16 -7,55 4.37e-14 ***
Image: Scattered pairs -3,54 0,14 -25,15 < 2e-16 ***
Image: Scattered random -3,75 0,14 -26,73 < 2e-16 ***
Glimpses: RAM16 -0,32 0,51 -0,63 0,53
Glimpses: RAM8 -0,97 0,51 -1,91 0,06
Glimpses: RAM4 -0,77 0,50 -1,54 0,12
Dot ratio -6,91 1,84 -3,75 0.000179 ***
Absolute difference -0,25 0,15 -1,64 0,10
Total dots 0,04 0,02 2,24 0.025427 *
Ratio * Glimpses: RAM16 0,33 0,63 0,52 0,60
Ratio * Glimpses: RAM8 1,34 0,62 2,14 0.032372 *
Ratio * Glimpses: RAM4 0,81 0,62 1,31 0,19

Table 2: Multiple logistic regression on RAM trials.

The output of the RAM logistic regression can
be seen in Table 2. According to the model, the log
odds of a RAM network correctly labelling stimuli
is significantly reduced as set ratios become more
balanced. We also found a small but significant ef-
fect of total dots, indicating that the likelihood of a
correct prediction increases with total dots. This is
unsurprising, as increasing total dots reduces im-
age sparseness, increasing the odds that glimpses
will contain dots. This can be especially important
for the initial glimpse, which has a random loca-
tion. This does not invalidate the dot ratio finding,
given their comparative effect sizes. No significant
effect was found for absolute difference. These
findings support Hypothesis 1. The log odds of
a RAM network predicting the correct labels for
column pairs mixed, scattered pairs or scattered
random images was significantly lower (by vary-
ing degrees) than for column sorted pairs images.
This strongly supports Hypothesis 2. We found no
significant difference in the likelihood of the 4-16
glimpse RAM networks correctly labelling stimuli
than their comparison class, the 24 glimpse RAM
network. These findings do not support Hypoth-
esis 3. Finally, we found a small but significant
positive interaction between dot ratio and RAM8,
suggesting that the increase in log-odds of correct
prediction per unit increase in dot ratio is stronger
for RAM8 than for RAM24. Because the effect
size is small, we caution against over-interpreting

this result. And, as before, this effect is somewhat
offset by a negative coefficient for RAM8, lower-
ing the intercept in this case.

5.3 ANS Model Fitting

For each model, we also fit a psychophysical
model of the Approximate Number System (ANS)
to the mean accuracy data, broken down by ratio
and by image type (Pica et al., 2004; Nieder and
Miller, 2004; Halberda and Feigenson, 2008). For
this model, ratio is ordered from most balanced
(10/9) to least balanced (2/1). The model repre-
sents numerosities as Gaussians, and comparisons
between numerosities via the difference in Gaus-
sians. In particular, there is one free parameter w
– the Weber fraction – which represents increase
in accuracy with increase in ratio. More precisely,
we fit the following model:

acc = 1− 1

2
erfc

(
n1 − n2

w
√
2
√
n2
1 + n2

2

)

where n1 represents the larger number and n2 the
smaller. Figure 6 shows the fit curves for the
VGG7 and RAM24 networks, which exhibited the
most human-like behavior. An Appendix includes
these for all eight models.

Figure 6: Accuracy by trial type and ratio for VGG7
(top) and RAM24 (bottom), with Weber curves.
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For both networks, both column image types
have a significantly higher degree of accuracy than
both scattered types, with scattered pairs being a
bit easier than scattered random. The psychophys-
ical model provides a good fit to the data: Table 3
provides the Weber fractions and R2 for these
cases. For human participants, Pietroski et al.
(2009) found w to be roughly 0.3 on all but the col-
umn sorted trials, where w was 0.04. Our models
are not too far off of these Weber fractions, with
one noticeable difference: our models treat col-
umn mixed trials much more similarly to column
sorted trials, whereas for humans column mixed
trials pattern with the two scattered trial types.

VGG7 RAM24
type w R2 w R2

scattered random 0.363 0.843 0.524 0.801
scattered pairs 0.256 0.581 0.340 0.913
column mixed 0.047 0.979 0.078 0.975
column sorted 0.012 1.0 0.051 0.984

Table 3: Weber fractions and R2 for the ANS model.

6 Discussion

We subjected convolutional networks of varying
depths and recurrent models of visual attention
with varying number of glimpses to the psychose-
mantic experiment of Pietroski et al. (2009). Our
first two hypotheses are confirmed: all networks
show decreased accuracy with decreasing dot ra-
tio as well as a strong sensitivity to image type.
The third hypothesis is partially confirmed: in-
creasingly deep CNNs do show increased perfor-
mance (with all VGG9+ networks being near ceil-
ing), while increasing the number of glimpses for
a RAM model has little effect on overall accu-
racy. The psychophysical model of approximate
number fits network data well, with some Weber
fractions being near those found for human par-
ticipants. For the RAM models, this suggests that
visual attention and search may be a causal mech-
anism underlying some ANS-like responses. The
primary qualitative difference between model per-
formance and human performance is that the mod-
els do roughly equally well on both column im-
age types, whereas humans are significantly better
on column sorted as opposed to column mixed tri-
als. This suggests that the strategies learned by the
models differ in some interesting ways from those
employed by human participants.

These results exhibit initial promise in using
neural models as cognitive models in psychose-
mantics. In particular, while the fit with existing
human data is good (criterion (i) above), it is not
quite strong enough to warrant generating robust
predictions about manipulations like task duration
(criterion (ii) above). Nevertheless, these initially
promising results also suggest interesting avenues
for future work.

(1) More detailed hyper-parameter searches
may improve fit with the human data, thus allow-
ing us to use the models to generate predictions.
(2) RAM model performance could be improved
by giving the network a low-resolution version of
the whole image to help it make location choices
(Ba et al., 2014). (3) While our depth manipula-
tion for CNNs was designed to reflect increased
information processing capacity as duration in-
creases, one could control for capacity (number
of parameters in the model) by making the deeper
networks narrower or the shallow networks wider,
and seeing if depth still has an effect. (4) To better
understand what strategies the models are using to
solve the task, techniques such as transfer learn-
ing and diagnostic classifiers (Hupkes et al., 2018;
Giulianelli et al., 2018) could be applied to our
models. (5) Similarly, one can investigate whether
any neurons or groups thereof in the models ex-
hibit activation curves consistent with Weber’s law
(Nieder and Miller, 2004). (6) Independent neural
models that exhibit ANS-like behavior—or, more
generally, that are trained on other image process-
ing tasks—could be used in this task (Stoianov and
Zorzi, 2012); a key challenge here will be opera-
tionalizing task duration. (7) The models could
be used to model performance against more im-
age manipulations, such as the number of colors
in a scence (Lidz et al., 2011). We leave these and
other avenues for improving neural models of psy-
chosemantic tasks to future work.
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A Supplementary Material

Images were 128x128 pixels, converted to
grayscale. The TensorFlow Python library (Abadi
et al., 2016) was used to implement everything.
The networks were trained and tested on an
NVIDIA GeForce 1080Ti GPU. The source code
and data may be found at https://github.
com/shanest/neural-vision-most.

The RAM models had the following hyper-
parameters (found by a small grid search):

• Number of patches: 2

• Size of patches: 12, 24 pixels

• Glimpse network:

– three convolutional layers with 64, 64,
and 128 filters and kernel size 5, 3, and
3, respectively

– Output vector size: 512

• Core network: LSTM with hidden state di-
mension 1024

We trained using the Adam optimizer with learn-
ing rate 1e-5. The RAM models were trained for
up to 200 epochs, with early stopping with a pa-
tience of 10 epochs (i.e. training was stopped when
loss did not improve over a ten epoch time-frame,
as measured every 2 epochs).

The CNN models were trained using 0.25
dropout (on the final fully-connected layers) and
the Adam optimizer, with learning rate 1e-4. We
used early stopping with a patience of 10 epochs,
with maximum training length of 40 epochs. For
each model, we saved the best version, as mea-
sured by loss on the validation set.

B Appendix

Here we include results of fitting the psychophys-
ical model of approximate number to all 8 of our
models. Figure 7 shows the VGG models, and Fig-
ure 8 shows the RAM models.

As can be seen, VGG9-13 look very similar,
with the only non-ceiling performance coming on
scattered random trials, which it still learns per-
fectly for large enough (imbalanced enough ra-
tios). VGG7 shows highly ratio-dependent per-
formance for both scattered random and scattered
pairs trials.

Figure 7: Fit Weber curves for all VGG models.

Figure 8: Fit Weber curves for all RAM models.

The RAM models show subtle patterns. The
model with 8 glimpses (RAM8) was very slightly
the best overall performer, but this looks due to the
two column trial types. RAM24 appears to have
the best performance on the scattered trial types, at
the expense of the column types. For the scattered
types, performance is approaching human levels
of accuracy (roughly 89%, compared to the model
being roughly 85%).

As mentioned in the paper, all models perform
similarly on both column trial types, in contrast to
human participants, who are significantly better on
column sorted than column mixed trials.

Table 4 provides the results of fitting the psy-
chophysical model to mean accuracy for each
model and trial type. In particular, we report the
one parameter of the model (Weber fraction, w),
and the goodness of fit of each model (R2).
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scattered random scattered pairs column mixed column sorted
model w R2 w R2 w R2 w R2

VGG7 0.363 0.843 0.256 0.581 0.047 0.978 0.012 1.0
VGG9 0.085 0.985 0.085 0.997 0.015 0.999 0.012 1.0

VGG11 0.093 0.971 0.045 0.994 0.015 0.999 0.012 1.0
VGG13 0.081 0.973 0.038 0.999 0.012 1.0 0.012 1.0
RAM4 0.0650 0.929 0.503 0.845 0.071 0.917 0.043 0.998
RAM8 0.522 0.593 0.420 0.592 0.042 0.998 0.033 0.999
RAM16 0.646 0.574 0.384 0.912 0.049 0.986 0.049 0.986
RAM24 0.524 0.801 0.340 0.913 0.078 0.975 0.051 0.984

Table 4: Weber fractions (w) and correlations (R2) for all models and all trial types.
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Abstract

In this study, we address the problem of part-
of-speech (or syntactic category) learning dur-
ing language acquisition through distributional
analysis of utterances. A model based on
Redington et al.’s (1998) distributional learner
is used to investigate the informativeness of
distributional information in Brazilian Por-
tuguese (BP). The data provided to the learner
comes from two publicly available corpora of
child directed speech. We present preliminary
results from two experiments. The first one
investigates the effects of different assump-
tions about utterance boundaries when pre-
senting the input data to the learner. The sec-
ond experiment compares the learner’s perfor-
mance when counting contextual words’ fre-
quencies versus just acknowledging their co-
occurrence with a given target word. In gen-
eral, our results indicate that explicit bound-
aries are more informative, frequencies are im-
portant, and that distributional information is
useful to the child as a source of categorial
information. These results are in accordance
with Redington et al.’s findings for English.

1 Introduction

Complementary to more standard methods of in-
vestigation in the field of language acquisition
(such as manual corpora analysis and experimen-
tal studies), computational approaches aim to pro-
vide models that incorporate what is currently
known about acquisition, language, and human
cognition. In this way, they can be taken as psy-
chologically plausible simulations that may throw
light onto early aspects of language acquisition
which are otherwise empirically difficult to ob-
serve. In the study described below, we devel-
oped a computational model to address the prob-
lem of learning the syntactic categories of words
during language acquisition through the distribu-
tional analysis of utterances. In the present ap-

proach, this problem may be seen as a more spe-
cific instance of the general problem of finding
associations between words through distributional
analysis (Turney and Pantel, 2010; Lenci, 2018).

Although it is primarily meant to inform lan-
guage acquisition theories, we expect that the
present work may be of relevance for the general
task of categorizing and grouping words through
the use of distributional information. Particularly,
as we apply the method to Brazilian Portuguese
(BP) input data, it may help comprehending cross-
linguistic differences between languages, which is
a central goal of language acquisition theories and
also an important one for the development of NLP
techniques. Given that BP has a relatively fixed
word order, we expect distributional information
to have an important role in signaling the syntactic
category of words.

Our model is a (local) reimplementation of the
distributional learner described in Redington et al.
(1998).1 We present preliminary results from two
experiments, originally, experiments 5 and 6 of the
nine experiments carried out in Redington et al.’s
study. We decided to reimplement their algorithm
as both a way of achieving a deeper understand-
ing of their method and also to assess its repli-
cability, given the description found in their pa-
per. Although being relatively old, Redington et
al.’s study was chosen for being – to our knowl-
edge – the first and most comprehensive compu-
tational study on the distributional properties of
child directed speech. It investigates many aspects
of the problem, such as the effects of distinct con-
text windows, corpus sizes, number of target and
context words, etc. In this sense, the present work
contribution is very specific: aside from attesting
the replicability of Redington et al.’s study, it also
shows that distributional information is useful for

1The source code of the present model will be available at
https://gitlab.com/pablofaria/dlearner.
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a child learning BP, a picture that will become
fully clear as we publish results of the remaining
experiments.

The paper is organized as follows. We first sit-
uate the present study regarding the field of lan-
guage acquisition (section 2). Next, the corpus
used and its preparation are described, along with
a presentation of the distributional learner imple-
mented (section 3). In section 4, we describe the
two experiments and conduct a discussion on their
quantitative and some qualitative results, focusing
on a comparison with Redington et al. (1998). Fi-
nal remarks come in section 5.

2 Language Acquisition and the Role of
the Input

As a natural part of a typical human child de-
velopment, learning a language - whether oral
or gestual - emerges as a spontaneous, effort-
less, rapid, and ultimately successful process. In
the field of language acquisition studies, theorists
diverge on the actual explanations for this phe-
nomenon, some arguing for mainly inductive pro-
cesses based on qualities of the linguistic experi-
ence the child is exposed to and general cognitive
capabilities (Tomasello, 1995; Pullum, 1996, and
others), while other theorists minimize the role of
the input, arguing that a specialized biological ba-
sis is necessary for language to be acquired (Yang,
2002; Berwick et al., 2011, and others). As one
can see, at the core of such debate is the need for
precise and exhaustive investigations of the infor-
mativeness of the input the child receives. Sur-
prisingly, comprehensive computational and cor-
pora studies are still restricted and scarce. For
instance, although there are many studies about
distributional properties of words in the litera-
ture (Clark, 2003; Turney and Pantel, 2010; Lenci,
2018, for instance), the study presented here is the
first to our knowledge to investigate the distribu-
tional properties of a language other than English,
in the context of computational modelings of lan-
guage acquisition.

Acting on this gap, our study investigates the
informativeness of distributional information to
the task of syntactically categorizing words, also
termed part-of-speech learning. As Harris (1954)
points out, the “distribution” of an element can
be described as “the sum of all its environments”,
where by “environment” Harris means an array of
co-occurring elements and their positions in re-

spect to a given (target) word. There are plenty
of evidence showing that not only a distributional
structure exists in language data, but also that
speakers are sensitive to it (Brown, 1957; Lan-
dau and Gleitman, 1985; Bernal et al., 2007, to
cite some). Although distributional information is
broadly known to be insufficient for correctly cat-
egorizing words, it is important to investigate how
much information it can contribute to the success
of this task and that is precisely what the experi-
ments shown below help understand.

Finally, we would like to emphasize that the
problem dealt with here is similar but not the same
as the problem of finding (semantic) associations
between words, as seen in the long tradition of
distributed semantic models (DSMs) developed in
the last 30 years (Turney and Pantel, 2010; Lenci,
2018). For instance, here it is fundamental that
the model categorizes function words correctly,
while in DSMs they are in general left aside. Cer-
tainly, syntactically categorizing words involves,
in part, detecting semantic associations between
them. However, in order to detect the abstract
syntactic nature of words we need to move be-
yond purely semantic association to find out what
level of similarity allows us to cluster words to-
gether that behave syntactically the same. This is
not a simple task and, of course, distributional in-
formation is surely not sufficient for fully solving
the problem, in particular, because syntactic cat-
egories may differ substantially in their distribu-
tional properties and in their number of elements.
For this reason, we expect to find many overlap-
pings between our study and DSMs in general,
without nonetheless taking into account important
distinctions between these related tasks.

3 Methodology

For simulations, it was necessary to prepare a cor-
pus of child directed speech (CDS) in Brazilian
Portuguese, partially obtained from the CHILDES
Database (MacWhinney, 2000) and partially ob-
tained from the “Projeto de Aquisição da Lin-
guagem Oral”2. The preprocessing of this mate-
rial included the removal of metadata, children’s
utterances, and all kinds of annotation and com-
mentaries made by those who built these cor-
pora. There was also the need for a normal-

2Available online (in Portuguese) for visualization at
https://bit.ly/2sx0KBi. Last accessed on January
17th, 2019.
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ization of the orthography of transcriptions (e.g.,
“nene/baby” to “nenê”), specially for the second
corpus mentioned above. It was carried out in a
semi-automatic way in order to cover the most re-
current cases. No lemmatization was carried out.

Besides speech data, it is also necessary a
“benchmark classification” against which the per-
formance of the learner is evaluated. For this, we
use the tagged version of the Tycho Brahe Cor-
pus of Historical Portuguese (TBC)3, consisting of
part-of-speech annotated text from various authors
and centuries. For some uncovered target words in
the experiments, we manually assigned their most
common tag for all non-ambiguous cases, such as
proper nouns and diminutive forms of nouns (e.g.,
“menininho” which means “little boy”). Ambigu-
ous and other idiosyncratic forms were left unclas-
sified. In general, we basically followed the pro-
cedures found in Redington et al. (1998).

It is worth mentioning a distinction between En-
glish and Portuguese which posed a methodologi-
cal and conceptual problem not faced in Reding-
ton et al. (1998). In Portuguese, nouns can be
inflected in many ways, such as diminutive, aug-
mentative, for grammatical gender, and so on. We
first thought that all inflected forms could be re-
placed by a default form, in all cases where there is
no change in the class of the word. However, there
are inflected forms that exhibits specialized mean-
ings, such as “calcinha” (literally “small pants”)
which means (woman) underwear. Thus, inflected
forms were kept in the corpus for the model must
reflect the ability of the child to learn both the reg-
ular behavior of inflected forms and also the ex-
ceptions (when distributively distinct). Further-
more, we aim to model the lexical acquisition pro-
cess from its first steps, when morphological de-
composition of words is not yet available.

Finally, punctuation is treated as in the origi-
nal study: all intermediary punctuation is removed
and all final punctuations (where present) are re-
placed by single end points. After all these proce-
dures, our CDS corpus comprises approximately

3Available at http://www.tycho.iel.unicamp.
br/~tycho/corpus/texts/pos.zip. Last accessed
on January 17th, 2019. The choice for TBC over other avail-
able corpora (such as Universal Dependencies) was for mere
convenience (easy of access). The fact that it is historical data
is not to be seen as a problem, given that we are targeting the
most frequent words in our study, for which it is hardly the
case that there was any historical change in their syntactic
category. Nonetheless, ideally we would like to annotate the
CDS data itself and use it as the gold standard for generated
clusters.

1.4 million tokens, including punctuation. In Red-
ington et al.’s study, they used a corpus of 2.5 mil-
lion tokens.

3.1 The Distributional Learner

Our method is a local implementation of Reding-
ton et al.’s (1998) learner. Therefore, only a very
brief description of the method is presented here.
The learner goes through three stages in accom-
plishing the task: (i) measuring the distributional
contexts for each target word; (ii) comparing dis-
tributional contexts for pairs of words; and (iii)
grouping words based on distributional context
similarity. The first stage produces a contingency
table (a co-occurrence matrix) in which each line
represents a context vector for a given target word.
Each column corresponds to a context word in a
particular position in respect to the word. Thus,
if only the preceding word is used as context and
150 contextual words are considered, the vector
will be of size 150. If two contextual positions are
considered, then the vector will be of size 300, and
so on.

Once the table is built, the second stage gener-
ates similarity measures for all possible pairs of
target words. Although cosine similarity is cur-
rently a standard for comparing word vectors (Tur-
ney and Pantel, 2010; Lenci, 2018), for replication
purposes, we use the Spearman rank correlation
coefficient, ρ, which Redington et al. argue as the
most successful measure in their study.4 In the last
stage, target words must be grouped together. This
is carried out using a standard hierarchical cluster
analysis, known as average link clustering. Once
the hierarchy is produced – which can be repre-
sented as a dendrogram – the method identifies
the optimum cut level which maximizes the per-
formance of the learner in classifying words rela-
tive to the “benchmark classification” provided by
the tagged corpus.

In order to demonstrate the relevance of the dis-
tributional information, that is, that the method
produces results above chance classification, a
“baseline classification” is calculated for each cut
level analyzed. It goes as follows: for each cut
level, the number of clusters obtained is kept con-
stant but words are randomly distributed across
these clusters and then performance is calculated.
This is done ten times and the baseline derived for

4Of course, it leaves opened the question of whether
cosine similarity would improve the model’s performance,
something we will address in the near future.
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that cut level is the mean performance obtained.

3.2 Benchmark Classification

As a result of choosing the TBC as the tagged cor-
pus of reference and in order to use the same cat-
egories assumed in the original study, a conver-
sion between the two systems of classification was
necessary. We have basically stripped off subtags
from the TBC and established equivalence rela-
tions between the resultant tag system and Reding-
ton et al.’s classes. Table 1 summarizes the conver-
sion schema.

3.3 Measuring Performance

The performance of the learner is evaluated
through three measures, here applied across cat-
egories.5 The first two are the traditional preci-
sion and recall measures. A third integrated mea-
sure is necessary in order to balance these two.
In Redington et al. (1998), a measure called in-
formativeness is proposed along with its justifi-
cation. Although following the description given
by the authors, we were still unable to obtain a
satisfactory measure6, reason why we decided to
use the traditional F -measure, combined with a
β = 0.3 coefficient to favor precision over re-
call. This (still tentative) option seemed in our
simulations to compensate for the unbalanced na-
ture of grammatical categories, in the sense that
some are open-ended, that is, might in principle
cover an unlimited number of elements, while oth-
ers, such as “article” or “preposition”, are “closed
classes” with a fixed (and often small) number of
elements. This fact tends to favor the recall mea-
sure over precision, because less clusters covering
the largest categories will compensate for lower
precision, something we would like to avoid.

4 Results and Discussion

In their original study, Redington et al. (1998) con-
duct nine experiments. From these, the authors
established a “standard analysis”, used as a refer-
ence in the analysis of other experimental condi-
tions. Our standard analysis here follows the same
settings: the 1000 most frequent words were used
as target words for categorization, along with the

5One specific experiment, not reported here, assess per-
formances for each category.

6Our implementation of this measure for some reason pro-
duced useless (i.e., non-discriminating) values for finding the
best cut level for dendrograms. We are pretty sure it is our
misunderstanding of it.

Figure 1: Performance of the learner for the standard
analysis. For a similarity level of 0.5 (cut level), 25
clusters are obtained, with F = 0.64 (prec. = 0.71,
recall = 0.30).

150 most frequent words as (relevant) contextual
words. The context window included both the two
immediately preceding and the two immediately
succeeding words. Thus, each context vector con-
sisted of 600 elements – four contextual positions
for 150 words – each consisting of the frequency
of a given context word in a specific position re-
garding the target. All final punctuations are re-
moved and the data is treated as single long utter-
ance.

Figure 1 shows that the learner’s performance
is significantly above the baseline. As expected,
categorization is much easier for the open-ended
categories, specially nouns and verbs, with some
clusters coming close to be “pure” (e.g., a cluster
of infinitival verbs). For other categories, however,
clusters tend to be mixed and more sensitive to
syntactic function than to morphosyntactic proper-
ties. Thus, one of the clusters seems to capture the
distribution of elements that may appear as heads7

of noun phrases (articles, adjectives, nouns, pro-
nouns, etc.), while another includes elements that
appear in a predicative context, such as Y in “X is
Y”. An interesting feature observed is that many
pairs of elements that vary only in gender, such as
“do/da” (“of the”, masculine and feminine), were
very close to each other. This is an indication that
distributional information can be of much help for
the child to extract the grammatical gender feature

7For instance, in Portuguese one may say “o do Pedro”
(“the of Peter”), with “o” playing the role of the head of the
noun phrase. Something even more complex happens in “o
vermelho do Pedro” (“the red of Peter”), where “do Pedro”
can be seen as the modifier of “o”, of “vermelho”, or of both.
The common property here is the absence of the noun itself,
which impacts the distributional categorization of words. Of
course, the actual syntactic analysis of such phrases will de-
pend on the theory assumed.
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Category TBC tags Examples n
Noun N, NPR ademir, adriana, ajuda/help 375
Adjective ADJ, OUTRO alto/tall, amarelo/yellow, baixo/low 82
Numeral NUM cinco/five, dez/ten, duas/two 14
Verb VB, HV, ET, TR, SR abre/opens, abrir/to open, abriu/opened 331
Article D a/the, aquele/that, os/the 45
Pronoun CL, SE, DEM, PRO, PRO$,

SENAO, QUE, WADV, WPRO,
WD, WPRO$, WQ

aonde/whither, aquilo/that, cadê/where 53

Adverb ADV, Q, NEG, FP agora/now, ainda/still, algum/any 62
Preposition P até/until, com/with, de/of 11
Conjunction CONJ, CONJS, C como/how, e/and, enquanto/while 11
Interjection INTJ ah, ahn, ai 16

Table 1: Categories, examples, and quantities for the 1000 most frequent words of the CDS corpus.

in the acquisition of Portuguese as well as for other
similar alternations such as diminutive forms, plu-
rals, etc. This is only a summary of some core
aspects of a qualitative analysis of the clusters and
categorizations obtained.

4.1 Utterance Boundaries: Testing Different
Assumptions

Figure 2: Comparison of performances (F -scores)
when different assumptions about utterance boundaries
are evaluated. Baselines for each are also shown.

In the standard analysis, all data is treated as
a single long utterance, with punctuation marks
removed. This is unrealistic, of course, because
a child is surely sensitive to the beginning and
end of utterances as well as to interruptions in
speech, alternation of speakers, and so on. Thus,
in order to investigate this issue, Redington et al.
(1998) designed two specific conditions. First, ut-
terances were taken one at a time, with contex-
tual information limited to the boundaries of each
utterance (“within utterance only”). This seems
more realistic, although one-word utterances, be-

ing “contextless”, become useless for the method.
A second condition tests whether the addition of
explicit boundary markers (i.e., final punctuation
marks) helps the learner. In this case, punctuation
marks are expressing the speaker’s sensitiveness to
phonological properties of speech, such as phono-
logical phrase or utterance boundaries.

Figure 2 shows the distinct performances ob-
tained for each condition. In general, curves are
alike, although both alternative conditions have
their peaks on a lower level of similarity. More
specifically, in condition “within utterances only”,
the best F = 0.67 is obtained for the cut level
0.41, producing 17 clusters with precision 0.7 and
recall 0.48. Recall is substantially higher (60%)
than in the standard analysis, while keeping basi-
cally the same precision. Furthermore, the number
of clusters decrease to 17, which is much closer
to the benchmark. Considering only these general
results, it seems that utterances boundaries bene-
fit the learner. If this is indeed the case, explicit
markers should help even more and that is what
the condition “explicit markers” shows.

As we can see, its F = 0.69 is the highest ob-
tained so far. Although recall decreases a bit, to
0.44, precision increases to 0.72, and the number
of clusters is 18 (for cut level 0.45). The main
difference between this and the previous condi-
tion is the use of one-word utterances, which now
has an explicit boundary marker functioning as a
minimum contextual information. Given these re-
sults, we can more confidently claim that utterance
boundary information indeed helps the learner.
This is, of course, compatible with what language
acquisition theory says, specially the advocates
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of the important role phonology plays in the ac-
quisition by helping the child segment the speech
stream (Christophe et al., 2008, for instance).

4.2 Context Words: Attesting Occurrence
Instead of Frequency

In this experiment, the goal is to observe how the
learner behaves when, instead of the frequency of
each context word, only the occurrence (or not) of
it is recorded. Although children do extract statis-
tics from input data (Romberg and Saffran, 2010),
it may be the case that the actual learning proce-
dure is in between mere occurrence and precise
statistics about context words. This experiment
allows us to explore this radical alternative learn-
ing strategy, see how it plays out, and hopefully
learn something from it. In order to do that, after
collecting statistics about context words, all con-
text vector values greater than zero are converted
to 1. And, because rank correlation is not well
suited to binary vectors, following Redington et
al., the “cityblock” metric is used in the “Occur-
rence” condition. A third condition, “Cityblock”,
uses frequencies and the “cityblock” metric, al-
lowing for a better comparison with the standard
analysis.

Figure 3: Comparison of performances (F -scores) for
different ways of counting context words (i.e., fre-
quency or binary context vectors). Baselines for each
are also shown.

As one can see in Figure 3, the learner’s per-
formance drops significantly for both “Cityblock”
and “Occurrence” conditions, when compared to
the standard analysis. The “Cityblock” condi-
tion, with F = 0.3, precision 0.29, recall 0.91,
and 9 clusters, demonstrates the inappropriateness
of the “cityblock” metric when actual frequen-
cies are taken into account, as Redington et al.
(1998) point out. Its very low precision shows

that it poorly categorizes words, basically creating
large clusters, which explains its high recall. In-
stead, when binary vectors are used with the city-
block metric, performance increases, as the “Oc-
currence” condition shows. It obtains F = 0.43,
with precision 0.53, recall 0.14, and 48 clusters.
While still being a low performance, it demon-
strates some ability to categorize (precision 0.53),
although its high number of clusters prevents it
from reaching a good recall. A possible interpreta-
tion is that it performs better in recognizing differ-
ences among categories than similarities between
elements of the same category. Finally, these re-
sults, in general, indicate that some tracking of fre-
quencies of contextual elements is necessary for
the learner to extract the full potential of distribu-
tional information.

4.3 Related Work

In their original study, Redington et al. (1998)
evaluate the effects of different assumptions about
utterance boundaries. In Mintz et al. (2002), this
aspect is also investigated, but they move a step
further to investigate the effects of intrasentential
boundaries. This is a study we plan to conduct
in the near future. When we consider Reding-
ton et al.’s results on this issue (p.457-458), we
find the same tendency observed in our experi-
ment. Both conditions, within utterance and ex-
plicit markers, help improve the learner’s perfor-
mance, with the latter producing the best perfor-
mance overall. As Redington et al. point out,
“information recorded across utterance boundaries
effectively act as noise.”

In our second experiment, we have found that
collecting actual frequencies of contextual ele-
ments improves the learner’s performance. In
Redington et al.’s study (p.458-459), results show
similar tendencies, but with some key differences
worth emphasizing. First, in the “Cityblock” con-
dition, in which our learner performs very poorly,
their learner performs quite well, although worse
than for the standard analysis. This opposite be-
havior is puzzling to us and we cannot find rea-
sonable explanations for it, apart from some unno-
ticed technical misunderstanding in our replication
of their study or, in part, due to the distinct per-
formance measures applied in each study. For the
“Occurrence” condition, however, although it per-
forms second in our study, both here and there we
observe a significant decline in performance and a
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very small advantage of the method over the ran-
dom baseline.

In general, a precise comparison of these stud-
ies is not totally straightforward. First, as already
pointed out, because each uses its specific per-
formance measure. In the future, we expect to
overcome this limitation through appropriate im-
plementations of the measures used in Reding-
ton et al. (1998) and Mintz et al. (2002). Fur-
thermore, with these in hand, we will be able to
compare measures and try to understand whether
they are complementary or substitutes. Second,
and more subtle, are the way values for similarity
are obtained. We cannot claim our method pro-
duces equivalent similarity values, particularly in
the sense that, in our study, similarity values do
not generalize across experiments, as they appear
to do in Redington et al.’s study. Consequently,
they are able to consider a cut level of 0.8 as an
“optimum” cut level for all experiments, while this
is not possible in our study. We are also working
on this issue.

5 Conclusions

In this paper, distributional properties of Brazil-
ian Portuguese are investigated through the repli-
cation of the study in Redington et al. (1998).
Two aspects were analyzed here: the effects on
performance of different assumptions about utter-
ance boundaries and the effects of distinct learn-
ing strategies regarding the use of statistical infor-
mation about contextual items. Our results tend
to support the original study, although we have
pointed out some differences that deserve more
investigation. In sum, results support the claims
that distributional information is informative to the
task of learning word categories, that explicit ut-
terance boundaries help the learner in this task,
and that frequency of contextual elements, instead
of merely attesting their occurrence, is necessary
in order to extract the full potential of this source
of information.

Many issues remain open for future work. Some
are already under investigation, such as the re-
maining experiments in Redington et al. (1998),
the first of them (evaluation of different context
windows) reported in Faria and Ohashi (to ap-
pear). A central goal of ours is to provide a
more in-depth comparison between English and
Brazilian Portuguese regarding the role of distri-
butional information, specially in terms of how

morphological and word ordering differences be-
tween these two languages affect category identi-
fication. Aside from completing the set of exper-
iments, we will also expand it by evaluating the
suitability and plausibility of more recent models
(Baroni and Lenci, 2010; Mikolov et al., 2013;
Pennington et al., 2014) to this task. In addi-
tion, other relevant factors must also be studied,
as indicated in Turney and Pantel (2010) and in
Lenci (2018), such as using cosine and other vec-
tor similarity measures, as well as trying mathe-
matical techniques to deal with lower frequencies
and noise, weighting, sparsity, and optimizations.8

Given that BP has rich morphology, exploring also
how such information may help the learner, as in
(Clark, 2003), is also something in our sight.

Finally, it is important to note that although the
present study strongly relates with DSMs and all
its literature, the distributional learning of syntac-
tic categories is approached here as part of the lan-
guage acquisition process of a child learning her
native language. Consequently, matters of psycho-
logical, developmental, and empirical plausibil-
ity strongly applies to the computer model which
aims to increasingly approximate what we observe
in real life. Moving towards a gradual presenta-
tion of input data, for instance, is a condition for
psychological plausibility we aim to meet in the
future and which may be in conflict with other
DSMs found in the literature, primarily conceived
for massive NLP tasks with manipulation of the
whole set of data. Nonetheless, assessing the suit-
ability of the various models is the kind of ques-
tion we hope to be able to answer as our research
moves forward.

Acknowledgments

We would like to thank the reviewers for their
thoughtful feedbacks on the present study. Their
comments and suggestions not only helped im-
proving the present paper, but also indicated in-
teresting directions for future work.

8All reviewers stressed the fact that these are important is-
sues to explore, not only to better understand the phenomenon
per se but also as a way approximating the state-of-the-art in
this topic. We have good reasons to expect that as we gather
the results of the full collection of experiments while expand-
ing to new ones, we will be able to provide some interesting
reflections on these.

158



References
Marco Baroni and Alessandro Lenci. 2010. Dis-

tributional memory: A general framework for
corpus-based semantics. Computational Linguis-
tics, 36(4):673–721.

Savita Bernal, Jeffrey Lidz, Séverine Millotte, and
Anne Christophe. 2007. Syntax constrains the ac-
quisition of verb meaning. Language Learning and
Development, 3:325–341.

Robert C. Berwick, Paul Pietroski, Beracah Yankama,
and Noam Chomsky. 2011. Poverty of the stimulus
revisited. Cognitive Science, 35:1207–1242.

Roger W. Brown. 1957. Linguistic determinism and
the part of speech. Journal of Abnormal & Social
Psychology, 55(1):1–5.

Anne Christophe, Séverine Millotte, Savita Bernal, and
Jeffrey Lidz. 2008. Bootstrapping lexical and syn-
tactic acquisition. Language and Speech, 51(1-
2):61–75.

Alexander Clark. 2003. Combining distributional and
morphological information for part of speech induc-
tion. In Proceedings of the Tenth Conference on
European Chapter of the Association for Computa-
tional Linguistics - Volume 1, EACL ’03, pages 59–
66, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.

Pablo Faria and Giulia Osaka Ohashi. to ap-
pear. A aprendizagem distribucional no português
brasileiro: um estudo computacional. Revista Lin-
guíStica, 14(3).

Zellig Sabbetai Harris. 1954. Distributional structure.
Word, 10(2-3):146–162.

Barbara Landau and Lila R. Gleitman. 1985. Language
and experience: evidence from the blind child. Har-
vard University Press, Cambridge, MA.

Alessandro Lenci. 2018. Distributional models of word
meaning. Annu. Rev. Linguist., 4:151–171.

B MacWhinney. 2000. The CHILDES Project: Tools
for analyzing talk, third edition edition. Lawrence
Erlbaum Associates, Mahwah, NJ.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -
Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Toben H. Mintz, Elissa L. Newport, and Thomas G.
Bever. 2002. The distributional structure of gram-
matical categories in speech to young children. Cog-
nitive Science, 26:393–424.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In In EMNLP.

Geoffrey K. Pullum. 1996. Learnability, hyperlearn-
ing, and the poverty of the stimulus. In Proceed-
ings of the Twenty-Second Annual Meeting of the
Berkeley Linguistics Society: General Session and
Parasession on The Role of Learnability in Gram-
matical Theory, pages 498–513. Berkeley, Califor-
nia: Berkeley Linguistics Society.

Martin Redington, Nick Chater, and Steven Finch.
1998. Distributional information: A powerful cue
for acquiring syntactic categories. Cognitive Sci-
ence, 22(4):425–469.

Alexa R. Romberg and Jenny R. Saffran. 2010. Statis-
tical learning and language acquisition. Wiley inter-
disciplinary reviews. Cognitive science, 1(6):906–
914.

Michael Tomasello. 1995. Language is not an instinct.
Cognitive Development, (10):131–156.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of Artificial Intelligence Research,
37(1):141–188.

Charles Yang. 2002. Knowledge and learning in natu-
ral language. Oxford University Press.

159



Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics, pages 160–169
Minneapolis, USA, June 7, 2019. c©2019 Association for Computational Linguistics

Using Grounded Word Representations to Study Theories of Lexical
Concepts

Dylan Ebert
Brown University

dylan ebert@brown.edu

Ellie Pavlick
Brown University

ellie pavlick@brown.edu

Abstract

The fields of cognitive science and philoso-
phy have proposed many different theories for
how humans represent “concepts”. Multiple
such theories are compatible with state-of-the-
art NLP methods, and could in principle be op-
erationalized using neural networks. We fo-
cus on two particularly prominent theories–
Classical Theory and Prototype Theory–in the
context of visually-grounded lexical represen-
tations. We compare when and how the behav-
ior of models based on these theories differs in
terms of categorization and entailment tasks.
Our preliminary results suggest that Classical-
based representations perform better for en-
tailment and Prototype-based representations
perform better for categorization. We dis-
cuss plans for additional experiments needed
to confirm these initial observations.

1 Introduction

There are many theories and proposed definitions
for what exactly constitutes a “concept”. Which
definition is the right one is a hotly debated topic
in philosophy and psychology, which has involved
a wide range of in-principle as well as empirical
arguments (Laurence and Margolis, 1999). De-
spite the lack of consensus as to their definition,
it’s generally agreed that representations of con-
cepts play a key role in natural language under-
standing, as the meaning of natural language ex-
pressions are necessarily defined in terms of their
denotations–i.e. the aspects of the grounded (non-
linguistic) world to which the expression refers.
For example, reasoning about how the word “owl”
relates to the word “bird” requires consideration
of how the thing or things referred to by “owl” re-
lates to the thing or things referred to by “bird”.
Thus, representations of the concepts to which lan-
guage refers is a key part of general language un-
derstanding.

It is not obvious, however, how one should
chose to represent concepts computationally, es-
pecially given that current state-of-the-art neural
models of grounded language can be seen as com-
patible with a number of theories for concepts, de-
pending on how the architectures and algorithms
are constructed. Thus, in this paper, we focus
in particular on lexical concepts, and study two
prominent theories which have both wide support–
as well as substantial criticism–within the psy-
chology and philosophy communities (Laurence
and Margolis, 1999). The first, Classical Theory,
represents concepts as the set of necessary-and-
sufficient conditions which define the extension of
the concept. For example, the representation of
owl is the set of conditions such that, if and only if
some entity meets every condition, that entity is an
owl. Classical Theory is the most frequently cited
in linguistics and NLP– it is the theory underlying
traditional formal semantics–and is often formal-
ized in terms of set theory, i.e. the extension of
“owl” is the set of all owls. The second theory
we explore is Prototype Theory, which represents
concepts as a single, prototypical instance of that
concept. For example, the representation of owl
would be a particular instance of owl that captures
the most characteristic, salient, typical, or other-
wise important properties associated with owls.
The degree to which some entity falls within the
extension of owl is then a function of how “sim-
ilar” that entity is to the prototype of owl. Thus,
unlike Classical Theory, there is no clear notion
of what is required in order to be an owl, and an
entity may be judged to be an owl on the basis of
“resemblance” despite having few definable prop-
erties in common with the prototype.

There are many points of differentiation that one
might make between Classical Theory and Proto-
type Theory. In particular, Classical Theory is typ-
ically associated with discreteness and binary-ness
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(e.g. an entity either is an owl or it is not) while
Prototype Theory is associated with graded judge-
ments. By this distinction, it seems that Classical
Theory is at odds with the state-of-the-art in NLP,
which hinges on continuous representations and
probabilistic judgements. However, in this paper
we highlight a different distinction between Clas-
sical and Prototype Theory, which enables both
theories to be operationalized in terms of contin-
uous representations. Specifically, we frame Clas-
sical Theory as concerned primarily with repre-
senting boundaries between classes and Prototype
Theory as concerned primarily with representing
the centers of classes. That is, Classical Theory
strives to determine the line that separates the least
owl-like owl from most owl-like non-owl, while
Prototype Theory strives to determine the proper-
ties that are most likely true of owls in general.

We conduct an empirical comparison of these
two theories by providing computational instanti-
ations of each in the context of visually-grounded
word representations. Specifically, we use im-
ages with a given label (i.e. images of owls) to
represent observed instances of each concept, and
encode all images into a shared space using a
Variational Autoencoder (VAE). We then build a
Classical-based representation by computing the
boundary which encompasses all instances of a
given concept, and build a Prototype-basesd repre-
sentation by computing the center of mass among
all instances of a given concept. We compare
these two models in terms of their performance
on two tasks: 1) categorization (i.e. determining
whether an instance falls within the extension of
the concept) and 2) entailment (deciding whether
one concept subsumes another). Our initial re-
sults suggest that the Classical-based representa-
tion consistently outperforms the Prototype-based
representation on tasks related to entailment, even
when we take into account the gradability of hu-
man entailment judgments. However, our results
also suggest that the Prototype-based representa-
tion is better suited to perform the categorization
task, although further investigation is needed to
draw a complete comparison.

2 Definitions

2.1 Notation

We will use C to represent a concept and x to rep-
resent a potential “instance” of the concept. Intu-
itively, we can think of x as an entity when C is a

concept corresponding to a noun like “cat”, but x
might also be an event, property, or any other more
abstract possible referent which might be consid-
ered to fall within the extension of C. C and X
represent the space of concepts and of instances,
respectively. We assume that a representation of
a concept must support the tasks of categorization
and entailment, as follows:

Categorization: A function fC : X → [0, 1]
which returns the probability that x falls within the
extension of C.

Entailment: A function entail : C × C → [0, 1]
which returns the probability that C2 can be in-
ferred from C1.

2.2 Classical Theory
In Classical Theory, a concept is represented as
a set of conditions which are necessary and suffi-
cient in order for an entity to fall within the exten-
sion of the concept. Typically, in formal linguis-
tics, this is discussed in terms of set theory: i.e.
the denotation of a word is the set of instances in
JCK ⊆ X which forms the extension of that word.
Thus, fC is simply the characteristic function of
this set. As classical theory is primarily concerned
with defining clear boundaries between what can
and can not be considered a member of the con-
cept, this is best captured as a binary function (in-
stances either are in the set or they are not):

fC(x) =

{
1 if x ∈ JCK
0 otherwise

(1)

Then, C1 is said to entail C2 if JC1K ⊆ JC2K:

entail(C1, C2) =

{
1 if ∀x(fC1(x) ≤ fC2(x))

0 otherwise
(2)

That is, whenever fC1(x) = 1, we must also have
fC2(x) = 1. We also can consider a relaxed def-
inition that supports graded (probabilistic) judg-
ments of entailment. Specifically, we can say that
the degree to which C1 entails C2 is determined
by the degree of overlap between these sets:

entail(C1, C2) =

∑
x∈X fC1(x)× fC2(x)∑

x∈X fC1(x)
(3)

That is, the probability that C1 entails C2 is ex-
actly the probability that a given instances of C1
is also an instance of C2.
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2.3 Prototype Theory
In Prototype Theory, a concept is represented as
a single “prototype”–i.e. an instance that falls
within the extension of the concept and captures
the most relevant, salient, or important properties
of the concept. In contrast to Classical Theory, the
features of the prototype do not represent neces-
sary criteria–it is possible for an instance to fall
within the extension of the concept despite hav-
ing few features in common with the prototype.
Concepts, then, are represented as a tuple con-
taining an exemplar xC and a distance function
d : X × X → R which specifies how similar an
arbitrary instance is to the exemplar. While there
is no crisp definition of the extension of the con-
cept, it is generally accepted that the criteria for
inclusion in the extension must be proportional to
the distance function (Osherson and Smith, 1981;
Kamp and Partee, 1995):

fC(x) ∝ d(x, xC) (4)

That is, for any pair of instances x, y, if
d(x, xC) < d(y, xC), it cannot be the case that
y is in the extension of C but x is not.

Traditional descriptions of Prototype Theory–
i.e. those described in Rosch and Lloyd (1978);
Kamp and Partee (1995)–do not explicitly define
how to reason about entailment under Prototype
Theory. Osherson and Smith (1981) proposed
the use of fuzzy set theory (Zadeh et al., 1996)
as a means for incorporating Prototype Theory
within the familiar logical framework for reason-
ing about entailment. However, this approach has
received significant criticism regarding the predic-
tions it makes about compositionality (Osherson
and Smith, 1981). Thus, we consider an alterna-
tive, simple definition of entailment which simply
says that C1 entails C2 to the extent that the exem-
plar of C1 falls within the extension of C2:

entail(C1, C2) = fC2(xC1) (5)

We begin with this definition as it is straightfor-
ward and reflects the basic spirit of Prototype The-
ory, without forcing it to look like set theory. We
will consider alternative definitions in future work.

3 Instantiation

We focus on lexical concepts, specifically those
corresponding to common nouns. We instantiate
the definitions given in Section 3.1 using images

to represent “instances”. That is, our X is the
space of all images and our C maps one-to-one
onto English nouns. A similar approach, using im-
ages as a representation of “the world”, has been
used previously (Young et al., 2014). We adopt
this approach as it enables a fairly direct way to
instantiate abstract formal theories using represen-
tations (pixels) which can be handled straightfor-
wardly by current computational models. We do
not make the claim that visual attributes are the
only relevant attributes which factor into represen-
tations of concepts. Rather, our focus is on test-
ing in general how the choice of representation af-
fects the predictions made by models, assuming
that some representation of “the world” is given
a priori. In other words, our choice to use only
visual attributes is a methodologically-motivated
choice, not a theoretically-motivated one.

3.1 Models

VAE. We encode all of our images into a shared
space using a standard variational autoencoder
(VAE) (Kingma and Welling, 2013). An advan-
tage of using a VAE in this research is that la-
tent features are encouraged to match a normal
distribution, enforcing a structure on the latent
space that allows euclidean geometric manipula-
tions such as interpolation. This allows us to
instantiate simple and intuitive euclidean eval-
uations when comparing theories. We train a
VAE to reconstruct image encodings from a pre-
tained CNN. In the following descriptions, ~x =
V AE(CNN(x)), i.e. the d-dimensional encod-
ing of an image obtained by applying a pertained
image classifier followed by our VAE encoder.

Classical-Based Method. Our definition of
Classical Theory requires only that we can define
the boundary for each concept. Given a set XC of
instances of a concept C–i.e. the set of images x
observed with label C–we define this boundary to
be the convex hull HC computed over ~x for ev-
ery x ∈ XC . That is, we compute the literal
boundary surrounding a set of encoded instances
(shown as solid lines in Figure 1). We can then
evaluate whether an arbitrary new instance x is a
member of C by computing whether ~x falls within
this boundary (Eq. 6). We can then produce en-
tailment judgments using Eq. 2 or 3 exactly.

fC(x) =

{
1 if ~x · HC ≤ 0

0 otherwise
(6)
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When evaluating on the entailment tasks (Sec-
tion 5.2) we consider two variants of this
Classical-based representation. First, we con-
sider a “strict” interpretation of entailment, where
C1 → C2 iff every instance in C1 is also in C2.
Second, we consider a soft representation in which
which C1 → C2 if the proportion instances from
C2 that are in C1 (i.e. Eq. 3) is at least τ . When
we use this soft representation, we set τ using per-
formance on a held-out validation set.

Prototype-Based Method. Our definition of
Prototype Theory requires that we can define a
prototype instance and a distance function for each
concept. Again, given XC , the set of images x ob-
served with label C, we approximate a probability
density function φC - in this case, as a multivariate
normal distribution. We then define the prototype
~xC to be the mode of φC . The distance function d

can then be defined as:

d(~x, ~xC) =
φC(~x)

φC( ~xC)
(7)

or the density at point ~x in φC . Because the den-
sity may evaluate to a value greater than 1, we nor-
malize by density at the prototype φC( ~xC). This
results in values in the range [0, 1], which are more
interpretable and comparable across scenarios. We
parameterize density function φC as a multivariate
normal distribution with mean µC and covariance
σ2C , resulting in prototype ~xC = µC . We chose
this distance function as it is arguably the simplest
way to compute “distance to the prototype” which
still allows asymmetry. That is, pure euclidean
distance would be simpler, but would lose the abil-
ity to represent directionality, meaning e.g. “owl”
would be as prototypical of “bird” as “bird” is of
“owl”. In future work, we will consider differ-
ent definitions of prototype and/or more complex
distance functions, as well as alternative, i.e. non-
Gaussian, representations.

When evaluating on the categorization tasks
(Section 5.2), we must use this distance function
to make a binary decision about whether or not
an instance falls within the extension of the con-
cept. Thus, analagous to how we softened the
Classical-based representation, which stricten our
Prototype-based representation by defining thresh-
old τ , and saying that fC(x) = 1 iff d(~x, ~xC) ≤ τ .
Again, when used, we set τ empirically based on
performance on a validation set.

Figure 1: Encodings of “bird of prey” and “owl” as
black and white dots respectively. The convex hull
(Classical-based representation) is represented by the
black lines. Colored gradients show multivariate nor-
mal distributions (Prototype-based representation).

3.2 Training

We train our VAE on IMAGENET (Deng et al.,
2009), which consists of approximately 1,000
images for each of 1,000 fine-grained, mutu-
ally exclusive categories corresponding to com-
mon nouns/noun phrases (e.g. “great grey owl”,
“knee pad”). These class labels have been
mapped onto the WORDNET (Miller et al., 1990)
ontology, which provides a tree structure of
hypernym-hyponym relationships. Since we want
representations for both fine-grained concepts as
well as higher-level concepts (in order to evaluate
entailment), we compose data of high-level con-
cepts from their lower-level hyponyms. For ex-
ample, for the high-level concept “bird of prey”,
we take all hyponyms of “bird of prey” according
to WORDNET (e.g. “great grey owl”, “kite”). Of
these, we identify those in IMAGENET and gather
instances of these subclasses to comprise the set
for the superclass “bird of prey”.

We hold out 100 instances of each low-level
class to keep for testing. We split our data evenly
between hypernym/hyponym labels and between
train/test sets to ensure that, e.g., if a particular
image of an owl is used as a “bird of prey” dur-
ing training, then that same instance is not seen as
an “owl” nor as a “bird of prey” during test. The
same image might be seen as both an “owl” and a
“bird of prey” during training.
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We feed each image through a pretrained im-
age classifier (Inception v3) (Szegedy et al., 2016),
and extract the 2048-dimensional output of the fi-
nal hidden layer, to be treated as the representa-
tion of that image. We use these data to train sev-
eral different configurations for the VAE. Our VAE
consists of a feed-forward encoder and decoder
network, each with two dense hidden layers with
ReLU activation. We define the hyperparameter d,
the dimensionality of the latent space. We experi-
ment with d ∈ 2, 3, 4, 8, 16, 32, 64, 128, 256. Hid-
den layers are scaled proportionally to the size of
the latent space, while input/reconstruction layer
sizes are fixed at 2048. We train each of these
with an Adam optimizer with a learning rate of
0.001. We save the weights with the best valida-
tion loss, stopping training after 5 epochs without
improvement. Training takes only a few minutes
on a desktop with an Nvidia GTX 1070 GPU.

3.3 Dimensionality Reduction

Due to the exponential complexity of algorithms
used to compute convex hulls (specifically Quick-
Hull (Barber et al., 1996)) we are unable to com-
pute Classical-based representations for values of
d > 4. For now, we address this by training the
VAE with higher dimensional encodings, then pro-
jecting into a lower dimension before applying the
Classical-based method. We report results for pro-
jected and unprojected variants of both Classical-
based and Prototype-based methods in Section 5.
Although initial experiments do not suggest a ben-
efit to using higher dimensions (i.e. d = 4 dimen-
sions did not outperform d = 2 in our early exper-
iments), a priority of our future work is to employ
more sophisticated algorithms from computational
geometry which will allow us to compute convex
hulls in higher-dimensional spaces.

4 Evaluation

4.1 Entailment

For entailment, we consider both the traditional
version of the task, in which entailment judg-
ments are binary, as well as a graded variant of
the task, in which concepts are said to entail one
another to varying degrees (e.g. a “robin” is said
to be a better instance of “bird” than a “pen-
guin” is, and thus “robin” entails “bird” more
than “penguin” entails “bird”). The observation
that humans produce graded entailment judgments
is what spurred Prototype Theory initially (Rosch

and Lloyd, 1978), and thus is a relevant evaluation
task. Examples of binary and graded entailment
judgements are given in Table 1.

Standard Graded
WBLESS HYPERLEX

stove→object X kangaroo→animal 6.0
scarf→garment X mammal→animal 6.0
pistol→ weapon X grape→food 5.9

grain→corn X animal→mammal 0.8
telephone→stove X horn→car 0.9
jacket→raincoat X plate→spoon 0.2

Table 1: Positive and negative examples from each of
our lexical entailment (LE) evaluation sets.

WBLESS. For the standard (binary) lexical en-
tailment task, we use the WBLESS lexical entail-
ment dataset (Weeds et al., 2014), which con-
sists of 1,168 word pairs, containing an equal
number of positive and negative lexical entail-
ment examples. Positive examples are hyponym-
hypernym pairs, where negative examples in-
clude reversed entailment pairs, co-hyponyms,
holonym-meronym pairs, and random word pairs.

HYPERLEX. For the graded entailment task, we
use the HYPERLEX (Vulić et al., 2017) dataset,
which contains human judgements of the degree
of lexical entailment in the range [0, 6]. We use
the noun component of HYPERLEX, which con-
tains 2,163 noun pairs with a mean score of 3.3.

IMAGENET Mapping. For each word/concept
C in WBLESS, we want to obtain a set of im-
ages XC that are considered instances of that
concept. To do this, we compute the hy-
ponym closure of C in WORDNET (contain-
ing all hyponym descendants, or all words that
entail C), and gather any that exist as IMA-
GENET class labels. For example, for the WB-
LESS concept “bird of prey”, we identify IMA-
GENET class labels {“kite”, “bald eagle”, “vul-
ture”, “great grey owl”}. All image instances
in these classes are then considered to comprise
Xbird of prey. Often, different concepts map to the
same synset. For example, “toad”→“frog” be-
comes “frog”→“frog”. Different pairs also map
to identical pairs in IMAGENET. For example,
“lizard”→“animal” and “lizard”→“creature”
each map to “lizard”→“animal”, despite having
different human judgement values. Finally, some
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pairs might map onto multiple synsets. In the for-
mer two cases, we leave these flaw as-is. In the
third case, we assign words to their first sense. Ex-
periments with multiple ways of processing these
conflicts showed no noticeable impact on results.

After filtering out pairs in which one or both
words have no corresponding images in IMA-
GENET, both of our datasets are left with a slight
entailment bias. Specifically, for WBLESS, we are
left with 463 examples (325 entailing, 138 non-
entailing). For HYPERLEX, we are left with 362
pairs, with a mean score of 4.0.

4.2 Categorization

We frame categorization as a binary classification
task for each of the 1000 base-level IMAGENET

categories. For each category, we take the 100
positive examples, and 100 random negative ex-
amples (from test data). We then evaluate whether
each instance belongs to that category.

5 Results

Quantitative results are shown in Table 2. Figure
2 shows illustrative examples of instances occur-
ring near the prototype vs. on the boundary, to
provide an intuition of the differences between the
two representations.

5.1 Model Variants

We consider several variants of each representa-
tion. For the Classical-based representation, we
consider both strict and soft variants (Section 3.1).
For the Prototype-based method, we train at var-
ious dimension sizes and find that d = 64 con-
sistently performs best on a held-out validation
set. For the Classical-based methods, we find that
d = 2 consistently performs best on validation.
To make as fair a comparison as possible, we also
evaluate both methods on representations achieved
by training the VAE with d = 64 and then project-
ing down to 2 dimensions. We note that this leads
to rough comparisons, and in future work, we in-
tend to find computational approaches which will
allow us to compute the Classical-based represen-
tations directly in high dimensions.

5.2 Lexical Entailment.

On lexical entailment, the best variant of the
Classical-based approach achieves a very high ac-
curacy of 0.90. The method based on a strict inter-
pretation of Classical Theory (τ = 1) achieves a

(a) On the boundary (b) Prototypical

Figure 2: Examples instances of great grey owl. In-
stances (a) on the Classical-based convex hull bound-
ary are on the left; instances (b) of the most “prototyp-
ical” owls are on the right.

very high precision of 0.99 on WBLESS. While
our results are not directly comparable to prior
work (since we are using only a subset of WB-
LESS), we note that this accuracy is quite high for
the task. For reference, prior work which used
image generality for lexical entailment achieves
a maximum accuracy of 0.75 on WBLESS (Kiela
et al., 2015a); an approach using hierarchical em-
beddings achieves an accuracy of 0.87 (Nguyen
et al., 2017); and recent work using a retrofitting
approach reports an accuracy of 0.91 (Vulić and
Mrkšić, 2017). In contrast, the Prototype-based
approach greatly over-predicts lexical entailment,
yielding high recall and low precision. The two-
dimensional and downward-projected configura-
tions perform no better than random, and the 64-
dimensional case is only marginally better.

We were surprised to find that the Classical-
based method also performed better than
Prototype-based on graded lexical entailment
(HYPERLEX), achieving a Spearman ρ score of
0.55 in both the strict and soft two-dimensional
cases. By comparison, Vulić and Mrkšić 2017
achieve a maximum Spearman ρ of 0.71 on
HYPERLEX nouns, while work using Poincaré
embeddings for learning hierarchical represen-
tations achieves a ρ of 0.51 (Nickel and Kiela,
2017). The Prototype-based approach again
performs only somewhat better than random on
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Standard LE Graded LE Categorization
(WBLESS) (HyperLex) (ImageNet)

Model Dim. Proj. Acc. Prec. Rec. F1 Spearman ρ Acc. Prec. Rec. F1

Random 0.70 0.70 1.00 0.82 0 0.50 0.50 1.00 0.67

Classical-based (strict) 2 – 0.81 0.99 0.72 0.83 0.55 - - - -
Classical-based (soft) 2 – 0.90 0.95 0.89 0.92 0.55 0.55 0.52 1.00 0.69
Classical-based (soft) 64 2 0.87 0.90 0.90 0.90 0.51 0.50 0.50 1.00 0.67

Prototype-based 2 – 0.67 0.67 0.97 0.80 0.08 0.59 0.56 0.9 0.67
Prototype-based 64 2 0.67 0.67 0.98 0.80 0.04 0.50 0.50 1.00 0.67
Prototype-based 64 – 0.76 0.76 0.95 0.84 0.20 0.72 0.66 0.92 0.77

Table 2: Results comparing Classical-based and Prototype-based approaches on lexical entailment (WBLESS and
HYPERLEX) and categorization (IMAGENET).

HYPERLEX, with the 64-dimensional configu-
ration performing best. We were surprised to
find that the Prototype-based method performed
worse on graded entailment, since Prototype
Theory should be well-suited to capturing graded
judgements. Further experiments are required
to diagnose the extent to which the poor perfor-
mance of the Prototype-based methods on lexical
entailment are due to theory vs. in particulars of
our instantiation.

Categorization. The only approach that per-
forms significantly better than random on catego-
rization is 64-dimensional Prototype-based. All 2-
dimensional cases (real and projected) perform at
chance, over-predicting positive categorizations.
This is unsurprising, as it can be expected that
more dimensions are needed to capture sufficient
information for differentiating classes. We note
that, since our image instances are represented as
pretrained IMAGENET classifier embeddings, high
categorization accuracy can be achieved with a
simple perceptron. However, we are not interested
in the task of categorization per se. Rather, our
goal is to assess the extent to which a single rep-
resentation of a concept can be used to perform
both categorization and entailment, without train-
ing task-specific modules.

6 Discussion

Several aspects of these initial results prevent us
from drawing strong conclusions. In particular:
the fact that we cannot compare the representa-
tions directly in high dimensions, the fact that we
focus on a small number of concrete nouns only,
and the fact that we choose one particular defini-
tion of prototype and distance function despite the
existence of many equally-plausible alternatives.

Nonetheless, despite being preliminary, our re-
sults suggest trends which are intuitive as well as
some which are counter-intuitive. In particular, we
were unsurprised to find that Classical-based rep-
resentations achieve high precision and all-around
high accuracy for tasks related to entailment. As
this theory was largely developed with the goal
of explaining logical inferences, it is intuitive that
such representations would be more sensitive to
distinctions which explain judgements about en-
tailment. Similarly, we were unsurprised to see
that the Prototype-based representations achieve
better performance at categorization, as such theo-
ries were originally motivated in terms of catego-
rization (rather than inference) phenomena.

The strong performance of the Classical-based
method on the graded entailment evaluation was
highly unexpected. Further investigation is re-
quired in order to understand whether these results
are attributable to something superficial (e.g. ar-
tifacts of the dataset), something methodological
(e.g. our choice of distance function), or some-
thing deeper about the relationship between these
two theories. However, this counter-intuitive re-
sult does emphasize how aspects of Classical The-
ory (i.e. the explicit representation of a “bound-
ary”) can play a role in the representation of
concepts without sacrificing the ability to make
graded or probabilistic predictions.

7 Related Work

Our work is very closely related to the work of
Young et al. (2014), which sought to instantiate
the formal semantics notion of set-theoretic en-
tailment using images to represent the “worlds”
to which natural language refers. Their work fo-
cused on representations motivated by Classical
Theory, and dealt with literal sets of discrete im-
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ages, meaning it could not generalize to refer-
ents outside the training data. Our Classical-based
method can be viewed as an updated version of
their approach, which uses a VAE in order to rep-
resent the visual world in a more flexible way. Our
Prototype-based method is novel with respect to
the work done by Young et al. (2014).

Also very closely related is Kiela et al. (2015b),
which represented a lexical concept as a set of im-
age encodings, and sought to make lexical entail-
ment decisions by comparing how dispersed ver-
sus compact images within a category were. We
note many aspects of Kiela et al. (2015b)’s ap-
proach which overlap with our own–namely, the
use of sets of images to derive representations of
concepts and the use of set overlap to determine
entailment. However, our focus is on a partic-
ular question which is tangential to Kiela et al.
(2015b). That is, we are interested in the differ-
ences between boundary-focused (Classical) rep-
resentations compared to center-focused (Proto-
type) representations, acknowledging either repre-
sentation is equally capable of capturing proper-
ties like dispersion and “generality” of a concept,
the focus of Kiela et al. (2015b)’s work.

In general, the present study relates to the am-
ple prior work on visually-grounded meaning rep-
resentations. Beinborn et al. (2018) gives an in-
depth survey of work in this area, from both a
computational and a cognitive perspective. Of
particular relevance to our work is prior work on
multimodal lexical semantics, e.g. work which
extends skipgram-like training procedures to in-
clude both visual and text information Lazaridou
et al. (2015); Silberer and Lapata (2012); Silberer
et al. (2017); Collell et al. (2017); Kiela et al.
(2016); Kiros et al. (2018). Such representations
not only perform better in practice, but have been
shown to be more cognitively-plausible in terms
of their ability to predict human brain activity
(Bulat et al., 2017). Beyond lexical representa-
tions, multimodal representations have been in-
corporated representations of more complex con-
cepts such as frames (Shutova et al., 2017) and
full sentences (Han et al., 2017). Again, our work
differs in that we are not focused on harnessing
visual data per se; rather, our focus is on how,
given a representation of the world to which we
can “ground” meaning, different theories can be
operationalized, and how the assumptions of these
theories affect performance on basic tasks. That

is, we view our work as complementary to, rather
than competing with, existing ongoing work on
multimodal and grounded representations.

Finally, there is an enormous body of work
aimed at modelling lexical entailment using text-
only training data, recently (Shwartz et al., 2016;
Chang et al., 2017; Vulić and Mrkšić, 2017;
Pavlick and Pasca, 2017; Pavlick et al., 2015).
Such work often treats lexical entailment as a su-
pervised learning problem, or at least as a task to
which we should tune directly. We view such ap-
proaches as fundamentally different from what we
present here. That is, our work focuses on how to
form concepts which relate language to the world,
with the assumption that inferences about entail-
ment should come from reasoning directly about
the extensions of these concepts, rather than indi-
rectly by relating the surface forms which refer to
those denotations.

8 Conclusion

Using a VAE to encode image embeddings into
a shared low-dimensional space, we compare a
Classical-based with a Prototype-based model of
concepts using common evaluations on lexical en-
tailment and categorization. The Classical-based
approach performed exceptionally well on lexi-
cal entailment detection, and relatively well on
graded entailment judgements. While the higher-
dimensional Prototype-based approach performed
well on categorization, in general our Prototype-
based approach performs subpar. The extent to
which this is theory vs. approach can’t be de-
termined by this research - the vagueness of the
distance function d proposed by Prototype Theory
gives way to a vast world of unexplored cogni-
tively plausible instantiations that we look forward
to exploring.
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embeddings for learning hierarchical representa-
tions. In Advances in neural information processing
systems, pages 6338–6347.

Daniel N Osherson and Edward E Smith. 1981. On
the adequacy of prototype theory as a theory of con-
cepts. Cognition, 9(1):35–58.

Ellie Pavlick, Johan Bos, Malvina Nissim, Charley
Beller, Benjamin Van Durme, and Chris Callison-
Burch. 2015. Adding semantics to data-driven para-
phrasing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1512–1522, Beijing, China. Association for
Computational Linguistics.

Ellie Pavlick and Marius Pasca. 2017. Identifying
1950s american jazz musicians: Fine-grained isa
extraction via modifier composition. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2099–2109, Vancouver, Canada. Asso-
ciation for Computational Linguistics.

Eleanor Rosch and Barbara Bloom Lloyd. 1978. Cog-
nition and categorization.

Ekaterina Shutova, Andreas Wundsam, and Helen Yan-
nakoudakis. 2017. Semantic frames and visual
scenes: Learning semantic role inventories from im-
age and video descriptions. In Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics (*SEM 2017), pages 149–154, Vancou-
ver, Canada. Association for Computational Lin-
guistics.

168



Vered Shwartz, Enrico Santus, and Dominik
Schlechtweg. 2016. Hypernyms under siege:
Linguistically-motivated artillery for hypernymy
detection.

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2017. Visually grounded meaning representations.
IEEE transactions on pattern analysis and machine
intelligence, 39(11):2284–2297.

Carina Silberer and Mirella Lapata. 2012. Grounded
models of semantic representation. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning, pages 1423–1433, Jeju
Island, Korea. Association for Computational Lin-
guistics.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 2818–2826.
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Ivan Vulić and Nikola Mrkšić. 2017. Specialising word
vectors for lexical entailment.

Julie Weeds, Daoud Clarke, Jeremy Reffin, David Weir,
and Bill Keller. 2014. Learning to distinguish hyper-
nyms and co-hyponyms. In Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
2249–2259. Dublin City University and Association
for Computational Linguistics.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. volume 2,
pages 67–78.

Lotfi Asker Zadeh, George J Klir, and Bo Yuan. 1996.
Fuzzy sets, fuzzy logic, and fuzzy systems: selected
papers, volume 6. World Scientific.

169





Author Index

Agarwal, Sumeet, 30

Bernardi, Raffaella, 105
Broersma, Mirjam, 20
Bushong, Wednesday, 62

Cho, Pyeong Whan, 53

Danet, Lola, 71
De Boissezon, Xavier, 71
De Santo, Aniello, 93
Demberg, Vera, 134
Dunn, Jonathan, 117

Ebert, Dylan, 160

Fabre, Cécile, 71
Farinas, Jérôme, 71
Feliciano de Faria, Pablo Picasso, 152
Fourtassi, Abdellah, 129
Frank, Michael, 129
Frank, Stefan L., 20, 77

Gaume, Bruno, 71

Hathout, Nabil, 71
Hunter, Tim, 1

Jaeger, T. Florian, 62
Jucla, Mélanie, 71

Lewis, Richard, 53
Lindemann, Matthias, 134
Lopopolo, Alessandro, 77

Mai Ho-Dac, Lydia, 71
Marantz, Alec, 43
Melnick, Robin, 11

Oseki, Yohei, 43
O’Sullivan, Lewis, 140

Pavlick, Ellie, 160
Péran, Patrice, 71
Pezzelle, Sandro, 105
Pierrejean, Bénédicte, 71
Pinquier, Julien, 71

Rajkumar, Rajakrishnan, 30
Ranjan, Sidharth, 30

Sayeed, Asad, 134
Scheinfeld, Isaac, 129
Stabler, Edward, 1
Stanojević, Miloš, 1
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