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Abstract

Segmentation is the first step in building prac-
tical discourse parsers, and is often neglected
in discourse parsing studies. The goal is
to identify the minimal spans of text to be
linked by discourse relations, or to isolate ex-
plicit marking of discourse relations. Exist-
ing systems on English report F1 scores as
high as 95%, but they generally assume gold
sentence boundaries and are restricted to En-
glish newswire texts annotated within the RST
framework. This article presents a generic
approach and a system, ToNy, a discourse
segmenter developed for the DisRPT shared
task where multiple discourse representation
schemes, languages and domains are repre-
sented. In our experiments, we found that a
straightforward sequence prediction architec-
ture with pretrained contextual embeddings is
sufficient to reach performance levels com-
parable to existing systems, when separately
trained on each corpus. We report perfor-
mance between 81% and 96% in F1 score.
We also observed that discourse segmentation
models only display a moderate generalization
capability, even within the same language and
discourse representation scheme.

1 Introduction

Discourse segmentation corresponds to the identi-
fication of Elementary Discourse Units in a doc-
ument, i.e. the minimal spans of text that will
be linked by discourse relations within the dis-
course structure, and/or the explicit markings of
a discourse relations. The task definition differs
slightly across the various existing and compet-
ing formalisms: in Rhetorical Structure Theory
(RST) (Mann and Thompson, 1988), all segments
are adjacent while in Segmented Discourse Repre-
sentation Theory (SDRT) (Asher and Lascarides,
2003), segments can be embedded in one another;
In the Penn Discourse TreeBank (PDTB) (Prasad

et al., 2008), the task is expressed as finding the
arguments of a discourse connective, whether this
connective is implicit or explicit. Combining the
existing corpora is thus a challenge, while the lack
of annotated data makes it an appealing solution.

Even within a given framework, the criteria
for identifying EDUs differ between the annota-
tion projects: for instance, the RST-DT corpus
(Carlson et al., 2001) and the RST GUM cor-
pus (Zeldes, 2016) have very different segmenta-
tion guidelines. While discourse analysis mainly
involves semantic and pragmatic questions, dis-
course segmentation is closer to the syntactic
level, as is reflected in the annotation guidelines,
which tend to equate segments with various kinds
of clauses. Most existing work considers seg-
mentation at the sentence level (intra-sentential
segmentation), implicitly assuming that the task
of sentence boundary detection can be done per-
fectly. This assumption is rarely questioned even
though the performance of sentence boundary de-
tection systems is far from perfect and very sensi-
tive to noisy input. Also, it is crucial for some lan-
guages to consider document-level segmentation.

Within the framework of the shared task, we in-
vestigate performance at the document-level with
no gold sentence information, and compare it to
the performance when assuming gold sentence
boundaries. We present different sequence pre-
diction architectures with different pre-trained em-
beddings, and show that the best configurations
using contextual embeddings (Peters et al., 2018;
Devlin et al., 2018) seem sufficient to reach com-
parable performances to existing systems, when
separately trained on each corpus, while using
more generic resources.1 Our best system consis-
tently improves over the state-of-the-art models at
the document level without the use of any addi-

1The code is available on https://gitlab.inria.
fr/andiamo/tony.

https://gitlab.inria.fr/andiamo/tony
https://gitlab.inria.fr/andiamo/tony
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tional information apart from words, obtaining F1
scores between 80% and 94% when no gold sen-
tence boundaries are given.

2 Related work

The first discourse segmenters built on the En-
glish RST-DT were rule-based: they used punctu-
ations, POS tags, some syntactic information and
the presence of specific discourse connectives to
identify discourse boundaries (Le Thanh et al.,
2004; Tofiloski et al., 2009). Rule based seg-
menters also exist for Brazilian Portuguese (Pardo
and Nunes, 2008) (51.3% to 56.8%, depending
on the genre), for Spanish (da Cunha et al., 2010,
2012) (80%) and for Dutch (van der Vliet, 2010)
(73% with automatic parse, 82% with gold parse).

More recent approaches, on the English RST-
DT, used binary classifiers at the word level (Sori-
cut and Marcu, 2003; Fisher and Roark, 2007;
Joty et al., 2015; Subba and Di Eugenio, 2007),
or cast the task as a sequence labeling problem
(Sporleder and Lapata, 2005; Hernault et al., 2010;
Xuan Bach et al., 2012; Braud et al., 2017a,b;
Wang et al., 2018).

While earlier studies investigated the usefulness
of various sources of information, notably syntac-
tic information using chunkers (Sporleder and La-
pata, 2005) or full trees (Fisher and Roark, 2007;
Braud et al., 2017b), recent studies mostly rely on
word embeddings as input of neural network se-
quential architectures (Wang et al., 2018; Li et al.,
2018).

Most of these studies only consider intra-
sentential discourse segmentation, however, thus
leaving sentence segmentation as a pre-processing
step. In this setting, the best current results on
the English RST-DT are presented in (Wang et al.,
2018) where the authors trained a BiLSTM-CRF
using ELMo and self attention. They report at best
94.3% in F1.

The first results at the document level were pre-
sented in (Braud et al., 2017a), where the authors
investigated cross-lingual and cross-domain train-
ing, and in (Braud et al., 2017b), a study focused
on the use of syntactic information. In these stud-
ies, the best performing system for the English
RST-DT obtained 89.5% in F1, showing that the
task is more difficult when the sentence bound-
aries are not given. Scores for other datasets
are also reported: 83.0% in F1 for Portuguese,
79.3% for Spanish, 86.2% for German, 82.6% for

Dutch and 68.1% for the English GUM corpus.
Most of these results were obtained when com-
bining words and morpho-syntactic information
(Penn Treebank or Universal Dependencies POS
tags), the authors showing that using words alone
leads to scores 6 to 10 points lower. They did
not use any pre-trained word embeddings. Note
that the results presented in this paper are not di-
rectly comparable to these studies, since the test
sets are different and there are also differences on
the training data (see Section 3).

3 Data

3.1 Discourse corpora

The shared task organizers provided 15 corpora
annotated with discourse boundaries, 4 of which
are not freely available. There is no public proce-
dure to get the text for the Chinese PDTB corpus
hence we were unable to include it in our experi-
ments.2

The generic term of “discourse annotated” cor-
pora covers a variety of heterogeneous datasets
bundled together:

Multilingual Annotated data are provided for
9 different languages. 4 datasets are in En-
glish (Carlson et al., 2001; Prasad et al., 2008;
Asher et al., 2016; Zeldes, 2016), 2 are in Span-
ish (da Cunha et al., 2011; Cao et al., 2018) and
2 in Mandarin Chinese (Zhou et al., 2014; Cao
et al., 2018). The other datasets are in Ger-
man (Stede and Neumann, 2014), French (Afan-
tenos et al., 2012), Basque (Iruskieta et al., 2013),
Portuguese (Cardoso et al., 2011), Russian (Pis-
arevskaya et al., 2017), Turkish (Zeyrek et al.,
2013) and Dutch (Redeker et al., 2012). To the
best of our knowledge, this is the first time models
are suggested for discourse segmentation of Rus-
sian, Turkish, and Chinese.

Multi-formalisms The 3 main frameworks for
discourse are represented, namely RST, SDRT and
PDTB. The latter two are only represented by two
and three corpora. For PDTB, the English corpus
is the largest one, but for SDRT, both the French
and the English ones are very small. Moreover,
the English eng.sdrt.stac corpus is the only corpus
containing dialogues. Finally, note that labels are

2The organizers however trained and ran our final system
on this corpus and provided us with the results reported in
Table 3.
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Corpus Lg # Doc. Sent seg # Sents. # Disc. Bound. Vocab. Size
Train Dev Test Train Train Train

PDTB

eng.pdtb.pdtb en 1,992 79 91 manual 44,563 23,850 49,156
tur.pdtb.tdb tr 159 19 19 manual 25,080 6,841 75,891

RST

eng.rst.rstdt en 309 38 38 manual 6,672 17,646 17,071
eng.rst.gum en 78 18 18 manual 3,600 5,012 10,587
deu.rst.pcc de 142 17 17 manual 1,773 2,449 7,072
eus.rst.ert eu 84 28 28 manual 991 1,713 7,300
nld.rst.nldt nl 56 12 12 manual 1,202 1,679 3,942
por.rst.cstn pt 110 14 12 manual 1,595 3,916 6,323
rus.rst.rrt ru 140 19 19 UD-Pipe 9,859 15,804 41,231
spa.rst.stb es 203 32 32 manual 1,577 2,474 7,715
spa.rst.sctb es 32 9 9 manual 304 473 2,657
zho.rst.sctb zh 32 9 9 manual 344 473 2,205

SDRT

eng.sdrt.stac en 29 6 6 manual 7,689 8,843 3,127
fra.sdrt.annodis fr 64 11 11 manual 880 2,411 5,403

Table 1: Statistics on the corpora.

the same for all RST and SDRT data, with labels
indicating the beginning of an EDU (BIO format,
without the Inside tag), but the task is quite dif-
ferent for PDTB corpora where the system has to
identify the beginning of a connective span and all
its inside tokens (BIO format).

The results for this shared task are not directly
comparable with the ones presented in (Braud
et al., 2017a,b) because for the shared task, the
GUM corpus has been extended – from 54 to 78
documents – while the Portuguese corpus is re-
stricted to the 110 documents of the CSTNews
corpus (Cardoso et al., 2011) – against 330 in
(Braud et al., 2017a) where all the discourse cor-
pora available for this language were merged.

3.2 Statistics

We provide a summary on the corpora used in this
paper in Table 1, showing the wide differences in
sizes, numbers of documents, vocabularies, and
number of sentences per document, from about
10 sentences on average, to a maximum of 70 for
the Russian corpus. We note that 7 corpora con-
tain less than 100 documents, which will probably
make it harder to learn from them.

Leaving out PDTB-style corpora that include
a different kind of annotations, the proportion
of intra-sentential boundaries varies across cor-
pora: e.g., in eng.rst.gum, the number of sentences
is close to the number of boundaries, while the
eng.rst.rstdtcontains largely more intra-sentential

discourse boundaries than sentence boundaries.
This is an indication of the difficulty of the task,
since, at least in principle, intra-sentential bound-
aries are harder to detect than sentence frontiers.

4 Approach

In this paper, we investigate the usefulness of con-
textual pre-trained embeddings, and evaluate the
effect of using sentence splitter as a pre-processing
step. We compare our systems to rule-based base-
lines and a simple sequence labelling model using
a bi-directional LSTM.

4.1 Baselines
Rule based Sentence segmentation is gener-
ally considered as given in discourse segmenters.
However, performance of sentence splitters are far
from perfect, especially for specific genres and
low-resourced languages.

In this shared task, sentence boundaries are
given in the CoNLL files, and are either gold or
predicted (for rus.rst.rrt). Since sentence bound-
aries are always discourse boundaries for RST and
SDRT style segmentation, the performance of a
sentence splitter is a lower bound for our sys-
tems. Moreover, we propose systems relying on
sentence segmentation as a way to reduce the size
of the input, and thus help the model.

We use StanfordNLP 3 (Qi et al., 2018) with
language-specific models to predict sentence seg-

3version 0.1.1
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mentation. StanfordNLP performs sentence and
token segmentation jointly but the corpora pro-
vided for the shared task were already tokenized.
We approximately rebuilt the original text from
the tokens, applied StanfordNLP’s tokenizer, then
mapped the predicted sentence boundaries onto
the given tokens.

We report the performance of the baseline sys-
tem based of the sentence segmentation produced
in Table 2 (see Section 6) .

Bi-LSTM: As an additional baseline, we
trained single-layer bi-directional LSTM mod-
els (Hochreiter and Schmidhuber, 1997; Graves
and Schmidhuber, 2005) performing sequence
labeling. These models read the input in both
regular and reverse order, and are thus able, in
principle, to better take into account both right
and left contexts. Our implementation is based on
PyTorch.

These models take as input the whole docu-
ments or a sequence of sentences, both corre-
sponding to a sequence of words represented by
real-valued vectors, here either initialized ran-
domly or using pre-trained vectors. At the upper
level, we use SoftMax to get predictions for each
word based on a linear transformation, and we use
a negative log likelihood loss.

4.2 Multilingual models with pretrained
contextual embeddings

Our main experiment was to study the impact of
contextual embeddings, i.e. vector representations
for words that are computed taking into account
the sentence the word appears in, on a sequence
to sequence model predicting discourse segmenta-
tion labels. Two popular models have been pro-
posed recently: ELMo (Peters et al., 2018) uses
the conjunction of a left-to-right language model
and a right-to-left language model, and BERT
(Devlin et al., 2018) uses a single language model
predicting a word given the whole sentential con-
text. Both models show interesting results on var-
ious semantic tasks, and have been trained on cor-
pora in multiple languages.

We applied here a simplified version of named
entity recognition built on these embeddings, with
a single-layer LSTM encoding a document or a
sentence on top of character-based convolution
filters and contextual word embeddings. ELMo
reaches good results on CoNLL 2003 NER tasks
with a 2-layer LSTM and a CRF on top to lever-

age dependencies between labels, but the rarity
of segmentation labels and the small size of most
discourse corpora encouraged us to use a smaller
model. It was not possible, within the limited time
frame of the shared task, to test too many different
setups, but it is certainly worth exploring more ex-
pressive models, especially for connective identi-
fication where there are more label types and more
dependencies between them.

We used the development set on English to test
whether ELMo or BERT seemed to yield better
results in this setup, and consequently chose the
BERT-based model to train segmenters on each
dataset, and for the two given configurations: (i)
the sentence-level segmentation where gold sen-
tences are given, and (ii) the document level where
the whole document is passed to the model.

The BERT authors provide a multilingual
model, where embeddings are made available si-
multaneously for several languages, rendering the
model more generic and convenient to test. How-
ever, one disadvantage of using BERT in the
discourse-level setting is that encoding sentences
are limited to 512 WordPieces (subtokens of to-
kens showing a good regularity in the training cor-
pus), while a lot of documents are longer than that
in the task. In that configuration we thus prepro-
cessed documents with the StanfordNLP pipeline
to have a reasonable sentence splitting process, af-
ter checking that precision on the development set
seemed high enough.

Since using ELMo with language-specific mod-
els involved separate and heterogeneous trained
models, we decided to use only the multilingual
generic one, but did a more precise comparison of
performances on English datasets.

5 Settings

For the baseline models based on a bi-LSTM, we
used randomly initialized or pre-trained word em-
beddings with a dimension of 50 or 300. For
monolingual experiments, we used the FastText
monolingual embeddings available for 157 lan-
guages (Grave et al., 2018), with 300 dimensions.4

We also tested with GloVe (Pennington et al.,
2014) and 50 dimensions for English datasets,
since these embeddings are the ones used by our
main model.5

4https://fasttext.cc/docs/en/
crawl-vectors.html

5https://nlp.stanford.edu/projects/
glove/

https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
https://nlp.stanford.edu/projects/glove/
https://nlp.stanford.edu/projects/glove/
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The other hyper-parameters are: one hidden
layer with 100 dimensions, a dropout of 0.5, the
Adam optimizer, a learning rate of 0.001 and 10
epochs.

For the BERT-based sequence prediction
model, we used a configuration close to the NER
ELMo system provided by the Allen NLP library
(Gardner et al., 2017), with convolution filters at
the character level combined to word-level embed-
dings, where BERT replaces ELMo embeddings.
As explained above, we removed the CRF layer,
and kept a bi-LSTM with only one layer, with 100
dimensions for the state representation. We found
that small batches were better, and that the loss
converged quickly, always in less than 10 epochs.
We used the BERT-Adam optimizer with learning
rate of 0.001. The English ELMo-based model is
similar, with 50-dimensions GloVe embeddings
and ELMo embeddings as provided by AllenNLP.

Two datasets required some preprocessing: we
replaced URLs and special symbols in the Russian
dataset, and arbitrarily split long sentences at 180
tokens on the Turkish dataset to comply with the
512 WordPiece limit on BERT embeddings6.

6 Results

We report the F1 scores of our systems on 14 cor-
pora (all corpora for this shared task but the Chi-
nese PDTB) in Table 2. The left side of the table
corresponds to the document-level setting where a
document is provided as a plain sequence of to-
kens (.tok files). The right side of the table cor-
responds to the sentence-level setting where a doc-
ument is provided as a sequence of sentences and a
sentence is a sequence of tokens (.conll files).
In the document-level setting, 2 systems directly
process the whole document while 3 systems first
segment the document into sentences. We report
F1 scores on the dev and test sets, except for the
two rule-based systems (rb-ssplit and rb-CoNLL).

6.1 Baselines

Our baseline systems are of two kinds: rule-based
or using a simple bi-LSTM.

Rule based The rule-based systems for segmen-
tation in the RST and SDRT frameworks obtain
relatively high F1 scores given their extreme sim-
plicity. In the sentence-level setting, the sentence

6This was also necessary for the Chinese PDTB corpus
that was not available to us at submission time.

splits provided in the CoNLL files suffice to ob-
tain a very high precision except for the Rus-
sian (rus.rst.rrt) and to a lesser extent Chinese
(zho.rst.sctb) RST corpora. Both corpora contain a
number of very long segments spanning more than
one sentence, and the Russian RST corpus is the
only corpus where sentence segmentation was not
manually annotated but predicted, which means
that some sentence-initial boundaries are lost. In
this setting, the F1 scores of the rule-based sys-
tems are largely driven by recall, hence directly
reflects the proportion of intra-sentential segment
boundaries.

In the document-level setting, F1 scores de-
grade with the performance of the sentence seg-
menter on certain languages and genres. The
sentence segmenter used in this study neverthe-
less gives largely better results than the UDPipe
segmenter used in (Braud et al., 2017a) for Por-
tuguese (62.92 vs 49.0), Spanish (72.21-71.89 vs
64.9) and German (78.51 vs 69.7), and similar re-
sults for English (RST-DT and GUM) and Dutch.

Bi-LSTM: Our additional baselines are single
layer bi-LSTM models using randomly initialized
word embeddings or pre-trained word embeddings
(FastText or GloVe for English). In addition to the
results presented in Table 2, we report English spe-
cific results in Table 5.

In general, these baseline models already give
rather high performances, between 69.1% in F1
at the lowest for zho.rst.sctb (according to the re-
sults on the development set, using FastText is the
best option for this corpus), and 88.11% at best
for fra.sdrt.annodis. On the eng.rst.rstdt, our best
system gets 87.37% in F1, lower than the 89.5%
reported in (Braud et al., 2017a). This seems to
indicate that FastText embeddings do not capture
the syntactic information provided by POS tags in
the latter study. However, we get better results on
nld.rst.nldt, with at best 85.85% in F1 compared
to 82.6% in (Braud et al., 2017a).

As expected, the use of pre-trained embed-
dings most often leads to better results than ran-
domly initialized word vectors (’Rand.-300d’ vs
’FastText-300d’). Improvements are especially
high for the Spanish SCTB (+5.39 when using
FastText), for the Russian corpus (+3.59), for
fra.sdrt.annodis (+2.85), and around 2 points for
the eng.rst.rstdt and por.rst.cstn.

The only exceptions are eng.sdrt.stac (-2.66
when using FastText), deu.rst.pcc (-2.53),
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Plain format (.tok) Treebank format (.conll)
whole doc predicted sentence (ssplit) gold sentence (ssplit)

Rand.-300d FastText-300d rb-ssplit FastText-300d-ssplit BERT-M-doc rb-CoNLL FastText-300d-CoNLL BERT-M-CoNLL
Dev Test Dev Test Test Dev Test Dev Test Test Dev Test Dev Test

eng.pdtb.pdtb 81.55 79.87 80.16 80.02 - 80.20 80.29 92.39 89.89 - 79.61 76.72 91.21 87.90
tur.pdtb.tdb 64.55 64.25 68.18 71.61 - 68.05 72.64 81.97 84.01 - 00.27 00.26 75.6 72.18

deu.rst.pcc 85.66 86.23 85.43 83.7 78.51 69.01 67.92 93.36 94.1 84.02 62.92 63.39 95.75 93.98
eng.rst.gum 80.65 82.17 81.45 83.43 77.26 62.34 56.19 88.17 87.27 85.05 21.27 23.31 91.34 96.35
eng.rst.rstdt 84.06 85.06 86.05 87.37 52.27 84.5 84.88 93.28 93.72 56.73 81.02 82.59 91.2 92.77
eus.rst.ert 82.85 77.53 82.4 78.75 71.47 69.98 67.97 87.87 85.79 68.78 61.84 60.29 88.46 85.46
nld.rst.nldt 84.31 84.59 86.78 85.85 79.60 71.43 76.83 90.96 90.69 83.78 53.86 55.33 91.97 93.55
por.rst.cstn 80.44 82.98 81.78 85.16 62.92 74.53 80.55 89.09 91.32 62.89 41.83 38.6 89.34 92.11
rus.rst.rrt 71.72 71.42 73.95 75.01 52.22 68.67 68.82 80.77 81.04 59.60 46.06 45.29 82.96 83.07
spa.rst.stb 79.05 81.78 81.28 80.87 72.21 75.22 74.8 93.76 88.22 77.73 73.02 71.05 93.24 90.73
spa.rst.sctb 73.02 69.86 81.28 75.25 71.89 44.66 56.25 85.44 80.81 72.39 62.5 65.93 86.87 82.58
zho.rst.sctb 66.98 69.33 75.76 69.1 34.82 67.74 70.9 65.28 66.67 81.33 31.58 45.77 84 80.89

eng.sdrt.stac 82.12 80.96 79.75 78.3 46.75 79.76 77.77 84.36 84.45 93.32 17.94 16.43 95.1 95.15
fra.sdrt.annodis 83.75 85.26 86.66 88.11 46.79 84.99 86.59 90.06 90.45 47.36 84.27 86.44 91.28 90.96

Table 2: F1 scores on 14 datasets for all our systems: Baseline rule-based systems (”rb”), models based on a
bi-LSTM with random initialization of the word embeddings (”Rand.”) or using pre-trained word embeddings
(”FastText”) with 300 dimensions (”300d”), and models based on Multilingual BERT (”BERT-M”). Models are
trained directly at the document level, or using gold or predicted sentence splits (resp. ”CoNLL” and ”ssplit” for
the baseline and bi-LSTM models, ”BERT-M-CoNLL” and ”BERT-M-doc” for BERT-M). Best scores are in bold,
underlined scores are the highest among baseline and bi-LSTM systems.

spa.rst.stb (-0.8), and for zho.rst.sctb both systems
give similar results. eng.sdrt.stac has probably
more out-of-vocabulary words, since it contains
conversations, thus making the pre-trained vectors
less useful. It is less clear why FastText does
not help for German, but note that on the dev,
results for both systems are very similar, we thus
hypothesize that these lower results are due to
some difference in the test set rather than to the
quality of the pre-trained word embeddings.

In this setting, the preliminary segmentation of
documents into sentences does not help much. It
even really hurts performance in many cases, es-
pecially when using the sentence splitting given
in the CoNLL files (e.g. 23.31% in F1 on the
eng.rst.gum against 83.43% at best when the input
is a whole document). The architecture of our sys-
tem seems able to tackle long input sequences, and
to take advantage of the whole document structure
to learn regularities for the task.

6.2 Contextual embeddings

The results presented in Table 2 indicate that
the sequence prediction model based on BERT
contextual embeddings beats all other systems
on all datasets – except the Chinese RST tree-
bank7 –, often by a large margin. This advantage
holds in both configurations: sentential (with gold
sentence segmentation, ’BERT-M-CoNLL’ col-

7Since none of the authors is a Mandarin speaker, it is
hard to analyze the source of the discrepancy for now.

input corpus P R F1

conll eng.pdtb.pdtb 89.39 87.84 88.6
tur.pdtb.tdb 76.89 64 69.85
zho.pdtb.cdtb 82.67 76.25 79.32

mean 82.98 76.03 79.26

tok eng.pdtb.pdtb 91.32 87.84 89.54
tur.pdtb.tdb 84.06 86.74 85.37
zho.pdtb.cdtb 81.64 71.07 75.99

mean 85.67 81.88 83.63

Table 3: Final detailed scores on connective tag-
ging with multilingual BERT, on the syntactically pro-
cessed corpora (conll) and on the tokenized-only doc-
uments (tok), after preprocessing for sentence bound-
aries. Scores are averaged on 5 runs, courtesy of the
Shared task organizers.
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umn) and document-level (’BERT-M-Doc’), even
though for the latter the model is used on the
output of a sentence segmenter that probably de-
grades its performances. This is due to BERT
embeddings limitations on the lengths of the in-
put (512 subwords), which is reasonable on sen-
tences but too restrictive on unsegmented docu-
ments. With respect to that factor, it would be in-
teresting to analyze results for different sentence
or document lengths, although one must be pru-
dent when comparing across corpora, as the size
of the training set is probably the most crucial pa-
rameter influencing the results (see for instance
the wide difference between the Spanish RST cor-
pora).

As there were a lot of small differences in scores
between our experiments and the reproduced ex-
periments carried out by the shared task organiz-
ers, we suggested averaging on a few runs to have
a more reliable estimation of the performance.
These more reliable scores are reported for our
best system in tables 3 and 4. They are the the
average of 5 runs done by the task organizers
themselves, and we also report their average es-
timates for precision and recall. The organizers
also provided the details of the runs, from which
we computed the standard errors on the measure
estimates. We found that variance is greater for
connective prediction (0.7 and 1.1 points on aver-
age respectively on the document or the CoNLL
file, with a maximum at 1.6), while it is reason-
able on segmentation prediction (0.26 and 0.24 on
document and CoNLL with a maximum at 0.8).

We compared BERT and ELMo on the En-
glish datasets, and it is clear that when they op-
erate on the same setup (either CoNLL input or
preprocessed sentences for both), BERT achieves
better performance, so it is safe to conclude that
the WordPiece threshold is a crucial factor in
document-level segmentation. It is also worth not-
ing that using multilingual BERT yields better re-
sults in some cases (only tested on English) than
the language specific BERT embeddings. This
goes beyond the scope of the present article, but
it would be interesting to make a more controlled
comparison, if more language specific models be-
come available (ELMo has already been trained in
the relevant languages).

To have a better view of the performance level
attainable by ELMo-based sequence predictors,
we compared BERT- and ELMo-based systems on

English using their best setups at the document-
level; ie. ELMo is trained and tested on whole
documents, and BERT is trained and tested on
automatically split documents. The results re-
ported in Table 5 show that ELMo obtains the
best scores on discourse segmentation, however
by no more than 0.4 points on the RST corpora.
The BERT based models outperform ELMo on
discourse marker identification, hypothetically be-
cause sentence segmentation errors are less cru-
cial in this context since positive labels are prob-
ably further away from sentence boundaries. On
the eng.sdrt.stac conversation dataset, ELMo has
a clear advantage, but it could be because sen-
tence segmentation is much harder. The version of
the STAC corpus used in the shared task does not
provide dialogue turn boundaries, and the Stan-
fordNLP pipeline is not trained on this kind of in-
put. In this context, having a bad sentence seg-
mentation is worse than not having one at all. The
“whole document” setup in this shared task is a bit
artificial for STAC, since the boundaries of speak-
ers’ interventions are available in the raw data pro-
vided by the chat software.

Last, it is worth noting that the shared task
provides an opportunity to assess the homogene-
ity of discourse segmentation guidelines within
the same language, and within the same theory.
Two datasets annotated in the RST framework are
available for English and Spanish. Training on
the STB and evaluating on the SCTB dataset in
Spanish resulted in a 7 point decrease (from 90%
to 83%). This relative stability contrasts with the
large differences observed between the English
RST datasets. Training on GUM and testing on
RST-DT results in a drop from 96% to 66% in
F1 and training on RST-DT to test on GUM from
93% to 73% (all these scores assume a gold sen-
tence segmentation). The reason is that there are
many more segments in RST-DT, so the models
overpredicts segment boundaries (and vice versa).
Of course, it would be better to evaluate trans-
fer on different corpora annotated with identical
or nearly identical guidelines, but the fact that no
such pair of corpora exists also raises the issue of
the reproducibility of annotations within the same
discourse framework.

7 Conclusion

The datasets provided in the shared task allow
for the investigation of discourse segmentation in
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input corpus P R F1

conll deu.rst.pcc 95.22 94.76 94.99
eng.rst.gum 95.84 90.74 93.21
eng.rst.rstdt 95.29 96.81 96.04
eng.sdrt.stac 94.34 96.22 95.27
eus.rst.ert 89.77 82.87 86.18
fra.sdrt.annodis 94.42 88.12 91.16
nld.rst.nldt 97.9 89.59 93.56
por.rst.cstn 92.78 93.06 92.92
rus.rst.rrt 86.65 79.49 82.91
spa.rst.rststb 92.03 89.52 90.74
spa.rst.sctb 91.43 76.19 83.12
zho.rst.sctb 87.07 76.19 81.27

mean 92.73 87.80 90.11

tok deu.rst.pcc 94.88 94.49 94.68
eng.rst.gum 92.28 82.89 87.33
eng.rst.rstdt 93.6 93.27 93.43
eng.sdrt.stac 87.56 80.78 83.99
eus.rst.ert 87.43 80.94 84.06
fra.sdrt.annodis 94.31 89.15 91.65
nld.rst.nldt 94.81 89.97 92.32
por.rst.cstn 93.04 90.72 91.86
rus.rst.rrt 83.37 78.44 80.83
spa.rst.rststb 89.11 90.09 89.6
spa.rst.sctb 87.16 76.79 81.65
zho.rst.sctb 66.26 64.29 65.26

mean 88.65 84.32 86.39

Table 4: Final detailed scores on segmentation with
multilingual BERT, on the syntactically processed cor-
pora (conll) and on plain tokenized documents (tok)
with predicted sentence boundaries. Scores are aver-
aged on 5 runs, courtesy of the Shared task organizers.

Rand.-50d GloVe-50d BERT-E BERT-M ELMo

eng.pdtb.pdtb 77.08 65.17 90.83 89.89 88.40
eng.rst.gum 80.58 78.28 86.29 87.27 87.65
eng.rst.rstdt 78.97 83.21 94.41 93.72 94.75
eng.sdrt.stac 77.43 71.70 84.65 84.45 86.06

Table 5: Specific results on English test data at the doc-
ument level. ’Rand.-50d’ and ’GloVe-50d’ correspond
to the baseline model, taking a whole document as in-
put. BERT models are still pipelined to a sentence-
splitter, but ELMo-based models take the whole docu-
ment as input. BERT-E uses English embeddings and
BERT-M uses multilingual embeddings.

a multilingual setting, and enable comparisons
within a language or framework. We presented
good baseline systems at the sentence and docu-
ment levels, and showed that contextual embed-
dings can be usefully leveraged for the task of dis-
course segmentation, as on other tasks involving
structural and lexical information, yielding state of
the art performance.
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