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Abstract

Whitespace errors are common to digitized
archives. This paper describes a lightweight
unsupervised technique for recovering the
original whitespace. Our approach is based on
count statistics from Google n-grams, which
are converted into a likelihood ratio test com-
puted from interpolated trigram and bigram
probabilities. To evaluate this approach, we
annotate a small corpus of whitespace errors in
a digitized corpus of newspapers from the 19th
century United States. Our technique identi-
fies and corrects most whitespace errors while
introducing a minimal amount of oversegmen-
tation: it achieves 77% recall at a false positive
rate of less than 1%, and 91% recall at a false
positive rate of less than 3%.

1 Introduction

The application of natural language processing to
digitized archives has the potential for significant
impact in the humanities. However, to realize this
potential, it is necessary to ensure that digitization
produces accurate representations of the original
texts. Most large-scale digital corpora are pro-
duced by optical character recognition (OCR; e.g.,
Smith, 2007), but even the best current methods
yield substantial amounts of noise when applied
to historical texts, such as the nineteenth-century
newspaper shown in Figure 1. Alternatively, with
substantial effort, digitization can be performed
manually, or by manual correction of OCR output
(Tanner et al., 2009). However, even for manually
“keyed-in” corpora, noise can be introduced due
to errors in workflow (Haaf et al., 2013).

Whitespace is a particularly common source
of digitization errors in both OCR and manu-
ally digitized corpora. Such errors, also known
as word segmentation errors or spacing errors,
can arise during OCR as well as during the post-
digitization handling of the data (Kissos and Der-

Figure 1: An example front page from the Accessible
Archives corpus.

showitz, 2016). These errors can result in the
elimination of whitespace between words, leading
to out-of-vocabulary items like senatoradmits and
endowedwith. This paper presents a set of unsu-
pervised techniques for the identification and cor-
rection of such errors.

To resolve these errors, we apply large-scale n-
gram counts from Google Books (Michel et al.,
2011; Lin et al., 2012). The basic premise of
this approach is that additional whitespace should
be introduced in cases where a token is out-of-
vocabulary, yet can be decomposed into two or
more in-vocabulary tokens. By using bigram
and unigram counts, it is possible to distinguish
these cases, without treating membership in a pre-
defined vocabulary as the sole and determina-
tive indicator of whether a token should be seg-
mented. Furthermore, by using higher-order n-
gram counts, it is possible to make a contextual-
ized judgment about whether and how whitespace
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should be introduced. We show that contextualiza-
tion yields significant improvements in segmenta-
tion accuracy.

Our research is motivated by our own experi-
ence working with historical texts. We were for-
tunate to obtain access to a manually-digitized
corpus of nineteenth-century newspapers from the
United States.1 However, the digitization pro-
cess introduced whitespace errors, and the origi-
nal tokenization was unrecoverable. These errors
were sufficiently frequent as to substantially im-
pact downstream analyses such as topic models
and word embeddings. We undertook this research
to solve this practical problem, but because we be-
lieve it generalizes beyond our specific case, we
systematically analyze the performance of our so-
lution, and release a trained system for whitespace
recovery. To summarize our contributions:

• We present a new method for correcting com-
mon whitespace errors in digitized archives.

• We evaluate on new annotations of manual
whitespace error corrections in a digitized
historical corpus.

• We release a trained system for other re-
searchers who face similar problems.2

2 Unsupervised Token Segmentation

A token is likely to contain missing whitespace if
(a) the token is out-of-vocabulary; and (b) there
is some segmentation of the token into substrings
that are all in-vocabulary. By these conditions,
the term applebanana is likely to contain missing
whitespace. The term watermelon is excluded by
condition (a), and cherimoya is excluded by con-
dition (b).

In real scenarios, membership in a predefined
vocabulary of terms is not the sole indicator of
whether a token should be segmented: in some
contexts, an “in-vocabulary” term should be seg-
mented; in other cases, an out-of-vocabulary term,
such as a name, should not be segmented. The
premise of our approach is to approximate the no-
tion of vocabulary inclusion with n-gram proba-
bilities. Specifically, a segmentation is likely to be
correct when the segments have high probability
in a large corpus of (mostly) clean text, in com-
parison with both (a) the original token, and (b)

1https://www.accessible-archives.com.
The dataset is described in a review article by Maret (2016).

2https://github.com/sandeepsoni/
whitespace-normalizer

other segmentations of that same token. We there-
fore apply a set of likelihood ratios to score candi-
date segmentations. The numerator quantifies the
likelihood of a proposed segmentation, and the de-
nominator quantifies the likelihood of the unseg-
mented token.

To describe our approach, we introduce the fol-
lowing notation. Let w(t) indicate token t from
a corpus, where the tokenization is performed by
simple whitespace pattern matching. We are con-
cerned with the question of whether w(t) contains
missing whitespace. Given a segmentation of w(t)

such that i is the index of the first character in the
second segment, we denote the segments as w(t)

0,i

and w(t)

i,`(t)
, where `(t) is the length of w(t) in char-

acters.3

2.1 Non-contextual likelihood ratio

We first consider the probability of the bigram
(w

(t)
0,i , w

(t)

i,`(t)
), in comparison with the unigram

probability w(t):

r(w(t), i) =
p2

(
w

(t)
0,i , w

(t)

i,`(t)

)
p1(w(t))

, (1)

where p2 is a bigram probability, and p1 is a uni-
gram probability. These probabilities can be com-
puted from n-gram counts,

p2(u, v) =
n2(u, v)∑

(u′,v′) n2(u
′, v′)

(2)

p1(u) =
n1(u)∑
u′ n1(u′)

, (3)

where n2 and n1 are bigram and unigram counts,
respectively. The denominator of p2 is the count
of all bigrams, and the denominator of p1 is the
count of all unigrams. Both are equal to the total
size of the corpus, and they cancel in Equation 1.
This makes it possible to perform segmentation by
directly comparing the raw counts. However, in
the contextualized models that follow, it will be
necessary to work with normalized probabilities.

To use Equation 1, we first identify the seg-
mentation point with the highest score, and then
compare this score against a pre-defined threshold.
The threshold controls the tradeoff between recall
and precision, as described in § 4.

3In our dataset, we do not encounter the situation in which
a single token requires more than two segments. This prob-
lem is therefore left for future work.

https://www.accessible-archives.com
https://github.com/sandeepsoni/whitespace-normalizer
https://github.com/sandeepsoni/whitespace-normalizer
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In our experiments, the counts are obtained
from Google n-grams (Michel et al., 2011). It
is not essential that the corpus of counts be com-
pletely free of whitespace errors or other mistakes.
As long as errors are independent and identically
distributed across terms (in other words, each term
is equally likely to have a segmentation error), the
correct segmentation can still be recovered in the
limit of sufficient data. This consideration pre-
vents us from using the historical corpus, because
it is possible that errors will be especially frequent
for some terms, adding bias to the relevant n-gram
counts.

2.2 Contextual likelihood ratio
The likelihood ratio based on word counts can
be strengthened by considering additional context.
Consider a term like often. According to Equa-
tion 1, we would be unlikely to segment often into
of ten, since p1(often) exceeds p2(of ten), by a fac-
tor of 10-20 in the Google n-grams corpus.4 Yet
there are contexts in which segmentation is appro-
priate, such as the phrase memory often years.

We can resolve such cases by considering the
additional context provided by the neighboring to-
kens w(t−1) and w(t+1):

rc(w
(t), i) =

p
(
w

(t)
0,i , w

(t)

i,`(t)
| w(t−1), w(t+1)

)
p(w(t) | w(t−1), w(t+1))

.

(4)
We decompose these terms into trigram and bi-
gram probabilities. The numerator can be ex-
pressed as:

p
(
w

(t)
0,i , w

(t)

i,`(t)
| w(t−1), w(t+1)

)
∝ p3(w(t+1) | w(t)

i,`(t)
, w

(t)
0,i)

× p3(w(t)

i,`(t)
| w(t)

0,i , w
(t−1))

× p2(w(t)
0,i | w

(t−1)),

(5)

with p3 and p2 indicating trigram and bigram prob-
abilities respectively. The denominator is similar:

p
(
w(t) | w(t−1), w(t+1)

)
∝ p3(w(t+1) | w(t), w(t−1))

× p2(w(t) | w(t−1)).

(6)

In both the numerator and denominator, the con-
stant of proportionality is p(w(t+1) | w(t−1)),
which cancels from the likelihood ratio.

4From a web interface search of American books in the
19th century.

In the example above, the trigrams memory of
ten and of ten years have relatively high condi-
tional probabilities, and memory often years has a
low conditional probability. This ensures that the
appropriate segmentation is recovered.

Interpolation. The bigram and trigram proba-
bilities in Equations 5 and 6 can be unreliable
when counts are small. We therefore use interpo-
lated probabilities rather than relative frequencies
for p3 and p2:

p3(u | v, w) =α3p̂3(u | v, w)
+ β3p̂2(u | v)
+ (1− α3 − β3)p̂1(u)

(7)

p2(u | v) =β2p̂2(u | v) + (1− β2)p̂1(u), (8)

where p̂n refers to the unsmoothed empirical n-
gram probability, and (α3, β3, β2) are hyperpa-
rameters. We manually set α3 = 0.7, β3 =
0.2, β2 = 0.9, and did not try other values.

3 Experimental Setup

We apply the segmentation techniques from the
previous section to the Accessible Archives cor-
pus, a dataset of manually digitized articles
from newspapers in the nineteenth-century United
States. As noted in the introduction, whitespace
errors were introduced during the digitization pro-
cess, likely by deleting newline characters when
moving the files across operating systems. As
a result, the dataset contains a relatively large
number of concatenated terms, such as andsaw,
daythe, dreamsof, manufactureof, onlytwo, return-
ingto, showsthe, theboys, thelevel, and thesea.

To measure segmentation accuracy, two of the
authors manually annotated a randomly-selected
subset of 200 terms that occur in at least 5 con-
texts in the corpus. In each case, the annotator
either provides the correct segmentation or indi-
cates that no segmentation is necessary. The an-
notators indicated that 33 % of the terms needed a
segmentation and agreed on all segmentation deci-
sions, indicating that this problem is unambiguous
for human readers. Although a high proportion of
terms required segmentation, these terms were all
concentrated in the long tail of the distribution of
the terms by frequency. This indicates that the seg-
mentation errors are spread across several terms in
the corpus but are still rare and may not adversely
affect the readability of the corpus. We tested the
ability of likelihood ratio scores to recover the true
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Figure 2: Performance of each method. The false posi-
tive rate is controlled by varying the threshold for seg-
mentation.

segmentations. The evaluation is based on the fol-
lowing counts:

True positive: The system proposes a segmenta-
tion, and it matches the annotated segmenta-
tion.

False positive: The system proposes a segmenta-
tion, and either it does not match the anno-
tated segmentation or the annotators marked
the term as unsegmented.

False negative: A segmentation was annotated,
and the system does not propose it.

True negative: A segmentation was not anno-
tated, and the system does not propose one.

The recall is computed as TP/(TP + FN), and the
false positive rate is computed as FP/(FP + TN).

4 Results

Results are shown in Figure 2 and in Table 1. The
contextualized likelihood ratio obtains a recall of
0.768 at a false positive rate of 0.008, and a recall
of 0.909 at a false positive rate of less than than
0.029. Contextualization substantially improves
the recall at low false positive rates, but only when
used in combination with interpolated probabili-
ties. This indicates that contextualization makes
it possible to segment more aggressively without
suffering false positives.

We also illustrate the strengths of each method
through examples. Tokens like Themotion, and-
provided and wearthese are correctly segmented
as The motion, and provided and wear these.
However, due to sparse counts in the trigram dic-
tionaries, merely adding the context does not lead
to correct segmentations in these cases without ad-
ditionally using interpolation. On the other hand,

not relying on context leads to erroneous segmen-
tations for tokens like innumerous (as in numer-
ous), Safeguard (as Safe guard) and Norice (as
No rice). Both contextualization and interpolation
help in correcting these errors. Note that adding
interpolation to the contextualization helps find
a sweet spot between the more aggressive non-
contextual model and the less aggressive contex-
tual model.

All three methods are based on the calculation
of likelihood ratio, which is crucial for their suc-
cess. To show this, we additionally evaluate the
performance for a rule-based baseline with the
two rules described in § 2: we segment a token
if it is out-of-vocabulary and some segmentation
is in-vocabulary. When there are multiple valid
segmentations, the segmentation with the largest
second segment by length was chosen. The pre-
cision and false positive rate of this baseline is
0.24, 0.39 respectively. This shows the advantage
of probabilistic segmentation over a deterministic
dictionary-based alternative.

5 Related Work

Dataset “cleanliness” is an increasingly salient is-
sue for digital humanities research. Difficulties
with optical character recognition (OCR) were
highlighted in a 2018 report to the Mellon Foun-
dation (Smith and Cordell, 2018), which outlines
an agenda for research and infrastructure develop-
ment in handling such texts. A key point from
this report is that postprocessing of noisily digi-
tized texts will continue to be important, despite
the obvious interest in improving the accuracy of
OCR itself (e.g., Berg-Kirkpatrick et al., 2013).

Several papers tackle the more general prob-
lem of OCR post-correction. An early example
is the work of Tong and Evans (1996), who em-
ploy bigram word counts and character transduc-
tion probabilities to score corrections by their log-
probability. However, their approach cannot han-
dle whitespace erorrs (which they refer to as “run-
on” and “split-word” errors). Another approach is
to train a supervised system from synthetic train-
ing data, using features such as proposed spelling
corrections (Lund et al., 2011). Dong and Smith
(2018) propose an alternative unsupervised train-
ing technique for OCR post-correction, which
builds on character-level LSTMs. In their method,
which they call seq2seq-noisy, they build an
ensemble of post-processing systems. On each ex-
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False positive rate: 0.01 0.03 0.05 0.1

No context likelihood ratio 0.750 0.765 0.926 0.941
Contextual likelihood ratio 0.735 0.735 0.735 0.768
Contextual likelihood ratio + Interpolation 0.768 0.909 0.932 0.944

Table 1: Maximum segmentation recall at various false positive rates.

ample, a candidate output is produced by each sys-
tem in the ensemble. They then select as noisy
ground truth the system output that scores high-
est on a character-level language model trained on
clean text from a New York Times (NYT) corpus,
and use this noisy ground truth to train the other
members of the ensemble.

Our paper approaches a special case of the
general OCR post-correction problem, focusing
specifically on whitespace errors, which Kissos
and Dershowitz (2016) call segmentation errors.
A key point is that these errors can and do arise
even in texts that are manually keyed in, due to
mishandling of file formats across operating sys-
tems. We are interested to test the applicability
of general OCR post-correction systems to whites-
pace errors, but our results suggest that this prob-
lem can be addressed by the more lightweight so-
lutions described here.

6 Conclusion

This paper describes an unsupervised approach for
post-correcting whitespace errors, which are fre-
quently present in digitized humanities archives.
These errors can be resolved by considering two
sources of information: character-level informa-
tion about which surface forms are likely to be
word tokens, and contextual information about
which tokens are likely to appear in context. Both
sources of information can be obtained from large-
scale n-gram statistics, and combined using a
straightforward likelihood ratio score. The result-
ing segmenter obtains high recall with a minimal
rate of false segmentations. Tuning the interpola-
tion coefficients on a validation set may improve
performance further. Future work should test the
applicability of these techniques in languages be-
yond English, and on other types of errors.
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